SOLUZIONE COMMENTATA TEST DI AUTOVALUTAZIONE
|
|
|
- Bonifacio Magni
- 8 anni fa
- Visualizzazioni
Transcript
1 SLUZINE CMMENTATA TEST DI AUTVALUTAZINE CRS DI MATEMATICA PER L ECNMIA III MDUL ) Individuare il campo di esistenza della seguente funzione polinomiale: = , 6 Poiché la funzione data è polinomiale, essa risulta definita su tutto l asse reale: una qualunque funzione polinomiale, infatti, è definita su tutto!!! ) Individuare il campo di esistenza della seguente funzione razionale fratta: = + < < + +, Poiché la funzione data è razionale fratta, essa risulta definita su tutto l asse reale tranne nei punti ove si annulla il denominatore della frazione; nel caso in esame, quindi, bisogna porre la condizione + 0, che è sempre verificata essendo + la somma di due quadrati, ovvero una quantità sempre positiva; del resto, risolvendo l equazione associata, cioè + = 0, si può subito constatare che essa presenta < 0, per cui + = 0 non è mai soddisfatta. ) Individuare il campo di esistenza della seguente funzione razionale fratta: + + = 4 +, Prof.ssa
2 Poiché la funzione data è razionale fratta, essa risulta definita su tutto l asse reale tranne nei punti ove si annulla il denominatore della frazione; nel caso in esame, quindi, bisogna porre la condizione 4 0; inoltre l equazione associata, 4= 0, ha come soluzioni = +, = ; ne segue che 4 0 ha come soluzioni +,. 4) Individuare l equazione dell asintoto verticale della seguente funzione: = + = = = = L asintoto verticale di una funzione razionale fratta si ottiene dal campo di esistenza della funzione, precisamente uguagliando a zero il denominatore; ne segue: + = 0 = = = 5) Individuare l equazione dell asintoto orizzontale della seguente funzione: + + = 4 = = = = L asintoto orizzontale di una funzione razionale fratta si ottiene risolvendo il limite della funzione data per che tende a ± : + + lim ± 4 Poiché nel caso in questione il numeratore ed il denominatore della frazione presentano lo stesso grado, ovvero sono entrambi polinomi di grado, per calcolare il limite è sufficiente fare il rapporto dei coefficienti della che figura al grado più alto; precisamente risulta: + + lim lim lim ± = = = 4 ± ± Prof.ssa
3 6) Individuare il valore del seguente limite: lim Infatti risulta: lim lim 0 + = = = osservando che un qualunque numero diviso infinito dà come risultato zero. Si poteva pervenire allo stesso risultato osservando che nella frazione il grado del numeratore è zero (il numeratore è costituito solo da un numero, per cui ha grado zero), motivo per cui risulta inferiore al grado del denominatore che è, invece, due: ogni volta che ci si trova in una situazione di questo tipo il limite è sempre zero. 7) Individuare il valore del seguente limite: + lim Infatti risulta: + ( ) lim = lim = lim = = 5 + osservando che infinito diviso per un qualunque numero dà come risultato infinito. Si poteva pervenire allo stesso risultato osservando che nella frazione il grado del numeratore, pari a due, risulta superiore al grado del denominatore che è, invece, uno: ogni volta che ci si trova in una situazione di questo tipo il limite è sempre infinito. Prof.ssa
4 8) Individuare il valore del seguente limite: lim Infatti risulta: lim lim + + = = osservando che nella frazione il grado del numeratore, ovvero due, coincide con quello del denominatore, per cui per il calcolo del limite assegnato è sufficiente fare il rapporto dei coefficienti della che figura al grado più alto. 9) Individuare gli asintoti orizzontali e verticali della seguente funzione: = + AV..: = ; A..: = AV..: = ; A..: = AV..: = ; A..: = AV..: = ; A..: = Per la ricerca degli asintoti verticali basta porre il denominatore della frazione uguale a zero, ovvero: + = 0 = = AV..: = Per la ricerca degli asintoti orizzontali, invece, basta calcolare il limite della funzione per che tende a ± ; poiché la funzione data ha numeratore e denominatore di egual grado, pari ad uno, tale limite è uguale al rapporto dei coefficienti della che figura al grado più alto; risulta, quindi: lim = lim = A..: = ± ± + Prof.ssa 4
5 0) Individuare gli asintoti orizzontali e verticali della seguente funzione: 6 + = AV..: =, = ; A..: = 7 AV..: =, = ; A..: = AV..: =, = ; A..: = 6 AV..: =, = ; A..: = Per la ricerca degli asintoti verticali basta porre il denominatore della frazione uguale a zero, ovvero: 7± ± 7± = = 0, = = = = = = ; = + = = AV..: = ; = Per la ricerca degli asintoti orizzontali, invece, basta calcolare il limite della funzione per che tende a ± ; poiché la funzione data ha numeratore e denominatore di egual grado, pari a due, tale limite è uguale al rapporto dei coefficienti della che figura al grado più alto; risulta, quindi: lim lim A..: = ± = = 7 6 ± ) Individuare gli asintoti verticali della seguente funzione polinomiale: = + 5 AV..: = AV..: = 5 AV..: =, = 5 non esistono asintoti verticali Le funzioni polinomiali, in quanto definite su tutta la retta reale, non presentano mai asintoti verticali!!! Prof.ssa 5
6 ) Individuare la derivata della seguente funzione: + + = ( + )( ) + ( + + )( ) ' = ( ) ( + + )( ) ( + )( ) ' = ( + )( ) ( + + )( ) ' = ( ) ( + )( ) ( + + )( ) ' = Si tratta di una funzione razionale fratta, per cui per calcolare la sua derivata bisogna sfruttare la seguente regola: f ( ) D f ( ) g( ) f ( ) D g( ) D = g ( ) g( ) essendo f() il polinomio che figura al numeratore della funzione e g() il polinomio che figura al suo denominatore. Applicando la regola sopra riportata, risulta: + + D( + + ) ( + + ) D( ) = ' = = ( ) ( ) ( ) ( ) ( ) ( ) 4 6 ( 6 ) 6 6 ( ) = = = = = = Prof.ssa 6
7 ) Individuare quali tra i seguenti è il grafico approssimativo della funzione: = = = = = = = 0 = = = Per la risoluzione di questo esercizio, senza perdere troppo tempo, bisogna lasciarsi trasportare un po dall intuito. sserviamo, infatti, che si tratta di una funzione razionale fratta: se poniamo uguale a zero il denominatore otteniamo l asintoto verticale, cioè = 0 = AV..: = ; inoltre, numeratore e denominatore hanno lo stesso grado, motivo per cui facendo il rapporto dei coefficienti della al grado più alto si ottiene l asintoto orizzontale, cioè lim = lim = A..: =. Procedendo per esclusione il grafico ± ± richiesto non può che essere il primo!!! 4) Individuare il punto di massimo della funzione: = + + M =, 4 M =, M = 4, ( ) 4 M =, Prof.ssa 7
8 Per trovare il punto di massimo occorre calcolare, in primo luogo, la derivata prima della funzione: = + + ' = 6+ da cui segue: ' > 0 6+ > 0 6> 6< < < 6 cioè: = ' > 0 per < M Dunque, per = si ottiene un massimo. Per individuare il punto di massimo occorre calcolare l ordinata corrispondente a tale valore dell ascissa sostituendo il valore della appena determinato nella funzione data. Si ha: = = + + = + + = + + = = + + = M =, 5) Individuare quali tra i seguenti è il grafico approssimativo della funzione: = + + = = 0 = = = Anche in questo caso bisogna lasciarsi trasportare un po dall intuito. sserviamo, infatti, che si tratta di una funzione polinomiale di secondo grado, Prof.ssa 8
9 ovvero di una parabola; inoltre, il coefficiente del termine è negativo per cui la parabola avrà la concavità rivolta verso il basso; infine, nel precedente esercizio abbiamo calcolato già il punto di massimo della funzione!!! Dunque il grafico richiesto è esattamente il terzo (sono da escludere tutti quei grafici che presentano degli asintoti, sia orizzontali che verticali, trattandosi di una funzione polinomiale). Prof.ssa 9
Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 2005/2006
Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 005/006 Antonella Ballabene SOLUZIONI -14 marzo 006- SCHEMA per lo STUDIO di FUNZIONI 1. Dominio della funzione f)..
LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI
Autore: Enrico Manfucci - 6/05/0 LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI PREMESSA Per Studio di funzione si intende disegnare il grafico di una funzione data la sua espressione analitica. Questo significa
ESERCIZI SULLO STUDIO DI FUNZIONI
ESERCIZI SULLO STUDIO DI FUNZIONI 0 novembre 206 Esercizi Esercizio n. Si consideri la funzione f(x) = 7 x 2 + 3 Dominio: R Intersezioni con gli assi: Intersezioni con l asse x: { y = 0 y = 7 x 2 + 3.
FUNZIONI REALI DI UNA VARIABILE REALE
FUNZIONI REALI DI UNA VARIABILE REALE Vogliamo ora limitare la nostra attenzione a quelle funzioni che hanno come insieme di partenza e di arrivo un sottoinsieme dei numeri reali, cioè A, B R. Es6. Funzione
Matematica 2. Derivate Esercizi. y=sen( x 4 3x) y' =cos(x 4 3x)(4x 3 3) y=logsen( x x) y' = sen(x 4 +3x) cos(x4 +3x)(4x 3 +3)
Matematica 2 Derivate Esercizi y=sen( 4 3) y' =cos( 4 3)(4 3 3) y=logsen( 4 1 3) y' = sen( 4 +3) cos(4 +3)(4 3 +3) y=sen 2 ( 4 3) y' =2sen( 4 3 )cos( 4 3)(4 3 3) Funzioni ad una sola variabile y=f() è
Massimi e minimi di una funzione razionale fratta Francesco Daddi - 18 maggio 2010
Francesco Daddi - 18 maggio 2010 Esempio 1. Studiare la funzione f x 4 x 8 x 2 3 x 3. R (si osservi che il denominatore non si annulla mai); la funzione ha uno zero in x 2. La funzione è positiva per x
Esercitazioni di Analisi Matematica FUNZIONI CUBICHE. Effettuare lo studio completo delle seguenti funzioni di terzo grado intere:
FUNZIONI CUBICHE Effettuare lo studio completo delle seguenti funzioni di terzo grado intere: 1) y = fx) = x 3 + 2x 2 + x 2) y = fx) = x 3 + x 2 + x + 2 3) y = fx) = x 3 + 2x 2 + x 4 4) y = fx) = x 3 +
Esercitazioni di Matematica
Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +
Secondo parziale di Matematica per l Economia (esempio)
Corso di Laurea in Economia e Management Secondo parziale di Matematica per l Economia (esempio) lettere E-Z, a.a. 206 207 prof. Gianluca Amato Regole generali Si svolga il primo esercizio e, a scelta
Funzioni derivabili (V. Casarino)
Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente
La domanda che ci si deve porre innanzitutto per iniziare a risolvere questa disequazione è la seguente:
Disequazioni: caso generale Consideriamo ora la risoluzione di disequazioni che presentino al suo interno valori assoluti e radici. Cercheremo di stabilire con degli esempio delle linee guida per la risoluzione
5. EQUAZIONI e DISEQUAZIONI
5. EQUAZIONI e DISEQUAZIONI 1. Per ognuna delle affermazioni seguenti, indicare se e vera o falsa, motivando la risposta (a) L equazione di primo grado (1 2)x = 2 ha soluzione x = 2(1+ 2). V F (b) La disequazione
FUNZIONI ALGEBRICHE PARTICOLARI
FUNZIONI ALGEBRICHE PARTICOLARI (al massimo di secondo grado in x) Appunti presi dalle lezioni del prof. Nedo Checcaglini Liceo Scientifico di Castiglion Fiorentino (Classe 4 B) September 9, 003 1. FUNZIONI
Liceo Classico D. Alighieri A.S Studio di Funzione. Prof. A. Pisani. Esempio
Liceo Classico D. Alighieri A.S. 0-3 y Data la funzione: Studio di Funzione tracciatene il grafico nel piano cartesiano. Prof. A. Pisani Esempio ) Tipo e grado della funzione La funzione è analitica, data
Recupero primo quadrimestre CLASSE QUARTA FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA
Recupero primo quadrimestre CLASSE QUARTA FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA Si dice campo di esistenza (C.E.) di una funzione = f(), l'insieme di tutti i valori reali che assegnati
Esame di Matematica Generale 7 Febbraio Soluzione Traccia E
Esame di Matematica Generale 7 Febbraio 013 - Soluzione Traccia E ESERCIZIO 1. Si consideri la funzione f : R R f(x) = x + 1 x. (a) Determinare il dominio di f ed eventuali simmetrie (3 punti). Dominio.
Studio di una funzione razionale fratta
Studio di una funzione razionale fratta Nella figura è rappresentata la funzione 1. Quale tra gli insiemi proposti è il suo CDE? 2. La funzione presenta un asintoto verticale di equazione... x = 0 x =
Disequazioni di secondo grado
Disequazioni di secondo grado. Disequazioni Definizione: una disequazione è una relazione di disuguaglianza tra due espressioni. Detti p() e g() due polinomi definiti in un insieme A, una disequazione
1 Fattorizzazione di polinomi
1 Fattorizzazione di polinomi Polinomio: un polinomio di grado n nella variabile x, è dato da p(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0 con a n 0, a 0 è detto termine noto, a k è detto coefficiente
IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero
IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero Il teorema degli zeri è fondamentale per determinare se una funzione continua in un intervallo chiuso [ a ; b ] si annulla in almeno un punto interno
Mutue posizioni della parabola con gli assi cartesiani
Mutue posizioni della parabola con gli assi cartesiani L equazione di una parabola generica è data da: Consideriamo l equazione che definisce i punti di intersezione della parabola con l asse delle ascisse
Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2
Studio di funzione Copyright c 2009 Pasquale Terrecuso Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione
f(x) = 1 x 2 Per determinare il dominio di f(x) dobbiamo imporre che il determinante sia diverso da zero
. Data la funzione approssimarne il grafico. f() = 2 Per determinare il dominio di f() dobbiamo imporre che il determinante sia diverso da zero 2 0 = 2 = ± perciò il dominio ` D = R \ {, } =], [ ], [ ],
Istituzioni di Matematica I
Istituzioni di Matematica I Le soluzioni proposte costituiscono solo una traccia di possibili soluzioni (lo studente deve giustificare i vari risultati), possono esserci altri modi, altrettanto corretti,
CORSO ZERO DI MATEMATICA
UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA EQUAZIONI E DISEQUAZIONI DI SECONDO GRADO Dr. Erasmo Modica [email protected] EQUAZIONI DI SECONDO GRADO Definizione: Dicesi
UNITÀ DIDATTICA 2 LE FUNZIONI
UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo
Funzioni... senza limiti
Funzioni... senza limiti Versione del 18 aprile 2007 Propongo, in questa nota, una serie di esempi di grafici di funzioni tracciati per via elementare, senza l uso del calcolo differenziale. Una trattazione
R. Capone Analisi Matematica Limiti di una funzione reale di variabile reale ESERCIZI SUI LIMITI DI FUNZIONE ( )
Esercizio proposto N 1 Verificare che ESERCIZI SUI LIMITI DI FUNZIONE Si ricordi la definizione di ite finito in un punto: Pertanto, applicando la definizione al caso concreto, si ha: o, ciò che è lo stesso:
Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)
Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f è crescente nell intervallo (a, b) se
FUNZIONI REALI DI UNA VARIABILE REALE
FUNZIONI REALI DI UNA VARIABILE REALE INTERVALLI Per definire il campo di esistenza (o dominio) di una funzione reale di variabile reale y=f()si devono indicare talvolta insiemi di numeri reali che su
Esame di maturità scientifica, corso di ordinamento a. s
Problema 1 Esame di maturità scientifica, corso di ordinamento a. s. -4 Sia f la funzione definita da: f()=- Punto 1 Disegnate il grafico G di f()=-. La funzione f()=- è una funzione polinomiale (una cubica).
ESAME DI MATEMATICA I parte Vicenza, 05/06/2017. x log 2 x?
A. Peretti Svolgimento dei temi d esame di Matematica A.A. 6/7 ESAME DI MATEMATICA I parte Vicenza, 5/6/7 log? Domanda. Per quali valori di è definita l espressione L espressione è definita se l argomento
FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA
FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA Si dice campo di esistenza (C.E.) di una funzione f(x), l'insieme di tutti i valori reali che assegnati alla variabile indipendente x permettono
, per cui le due curve f( x)
DAL GRAFICO DI F(X) AL GRAFICO DI G(X) Pagina di 9 eas matematica http://spazioinwind.libero.it/adolscim DAL GRAFICO DI F(X) AL GRAFICO DI G(X) Dal grafico della funzione f( x ) al grafico della funzione
Frazioni algebriche. Osserviamo che un espressione di questo tipo si ottiene talvolta quando ci si propone di ottenere il quoziente di due monomi.
Frazioni algebriche 14 14.1 Definizione di frazione algebrica Diamo la seguente definizione: Definizione 14.1. Si definisce frazione algebrica un espressione del tipo A B polinomi. dove A e B sono Osserviamo
( x) Definizione: si definisce dominio (o campo di esistenza) di una funzione f ( x) l insieme dei valori
Definizione: si definisce dominio (o campo di esistenza) di una funzione f ( ) l insieme dei valori che la variabile può assumere affinché la funzione f ( ) abbia significato. Vediamo di individuare alcune
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2007 Sessione suppletiva
ESAME DI STAT DI LIE SIENTIFI RS DI RDINAMENT 7 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PRBLEMA Rispetto a un sistema di assi cartesiani
1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.
Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente
Esercizi 2016/17 - Analisi I - Ing. Edile Architettura Esponenziali e logaritmi
Esercizi 06/7 - Analisi I - Ing. Edile Architettura Esponenziali e logaritmi Esercizio. Risolvere la seguente equazione: Soluzione. ) x+ ) x 7 x = 0 7 L equazione è definita per ogni x 0, valore in cui
Richiami sullo studio di funzione
Richiami sullo studio di funzione Per studiare una funzione y = f() e disegnarne un grafico approssimativo, possiamo procedere in ordine secondo i seguenti passi:. determinare il campo di esistenza (o
Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che.
Esercitazioni di Analisi Matematica Prof.ssa Chiara Broggi Materiale disponibile su www.istitutodefilippi.it/claro Lezione 2: Funzioni reali e loro proprietà Definizione: Siano e due sottoinsiemi non vuoti
In un piano, riferito ad uni sistema cartesiano ortogonale Oxy, si considerino le parabole di equazione:
Maturità scientifica 966/967 Sessione estiva In un piano, riferito ad uni sistema cartesiano ortogonale Oy, si considerino le parabole di equazione: y m m essendo m un parametro diverso da zero. (a) Si
Breve formulario di matematica
Luciano Battaia a 2 = a ; lim sin = 1, se 0; sin(α + β) = sin α cos β + cos α sin β; f() = e 2 f () = 2e 2 ; sin d = cos + k; 1,2 = b± ; a m a n = 2a a n+m ; log a 2 = ; = a 2 + b + c; 2 + 2 = r 2 ; e
SEGNO DELLA FUNZIONE. Anche in questo caso, per lo studio del segno della funzione, occorre risolvere la disequazione: y > 0 Ne segue:
CAMPO DI ESISTENZA. Poiché la funzione data è una razionale fratta, essa risulta definita su tutto l asse reale tranne che nei punti in cui il denominatore della frazione si annulla, cioè: C.E. { R: 0}
Equazioni e disequazioni. M.Simonetta Bernabei, Horst Thaler
Equazioni e disequazioni M.Simonetta Bernabei, Horst Thaler A(x)=0 x si chiama incognita dell equazione. Se oltre all incognita non compaiono altre lettere l equazione si dice numerica, altrimenti letterale.
Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2
Matematica ed Informatica+Fisica ESERCIZI Modulo di Matematica ed Informatica Corso di Laurea in CTF - anno acc. 2013/2014 docente: Giulia Giantesio, [email protected] Esercizi 8: Studio di funzioni Studio
3 Equazioni e disequazioni.
3 Equazioni e disequazioni. 3. Equazioni. Una equazione algebrica è un uguaglianza tra espressioni letterali soddisfatta per alcuni valori attribuiti alle lettere che vi compaiono. Tali valori sono detti
CLASSE QUARTA RECUPERO PRIMO QUADRIMESTRE ANN
CLASSE QUARTA RECUPERO PRIMO QUADRIMESTRE ANN0 011-01 FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA Si dice campo di esistenza (C.E.) di una funzione y= f(x), l'insieme di tutti i valori reali
DISEQUAZIONI DI SECONDO GRADO. Le disequazioni di secondo grado intere si presentano nella forma (o equivalgono ad essa):
P. \ Disequazioni di secondo grado Maggio 0 Copyright-I.S. DISEQUAZIONI DI SECONDO GRADO DISEQUAZIONI INTERE DI SECONDO GRADO Le disequazioni di secondo grado intere si presentano nella forma (o equivalgono
Studiamo adesso il comportamento di f(x) alla frontiera del dominio. Si. x 0 lim f(x) = lim. x 2 +
Esercizi del 2//09. Data la funzione f(x) = ln(x 2 2x) (a) trovare il dominio, gli eventuali asintoti e gli intervalli in cui la funzione cresce o decresce. Disegnare il grafico della funzione. (b) Scrivere
3. (Da Medicina 2006) Quale delle seguenti equazioni rappresenta una funzione y = f(x) tale che f(2) = -1 e f(-1) = 5?
QUESITI 1 FUNZIONI 1. (Da Medicina e Odontoiatria 201) Data la funzione f ( x ) = x 6, quale delle seguenti risposte rappresenta la sua funzione inversa? 1 x a) f ( x ) = + 6 1 x b) f ( x ) = 2 1 x c)
Istituto d Istruzione Superiore A. Tilgher Ercolano (Na)
LO STUDIO DI FUNZIONE Lo studio di funzione è una delle parti più interessanti dell analisi perché permette di utilizzare le numerose conoscenze acquisite nel corso degli anni in un unico elaborato. Se
Programmazione per Obiettivi Minimi. Matematica Primo anno
Programmazione per Obiettivi Minimi Matematica Primo anno Saper operare in N, Z e Q. Conoscere e saper applicare le proprietà delle potenze con esponente intero e relativo. Saper operare con i monomi.
CONCETTO DI ASINTOTO. Asintoto verticale Asintoto orizzontale Asintoto obliquo
CONCETTO DI ASINTOTO Asintoto e' una parola che deriva dal greco: a privativo che significa no e sympìptein che significa congiungere cioe' significa che non tocca, in pratica si tratta di una retta che
ESAME DI STATO LICEO SCIENTIFICO MATEMATICA 2011
ESAME DI STATO LICEO SCIENTIFICO MATEMATICA PROBLEMA La funzione f ( ) ( )( ) è una funzione dispari di terzo grado Intercetta l asse nei punti ;, ; e ; Risulta f per e per è invece f per e per f ' risulta
Esercizi sul dominio di funzioni e limiti
Esercizi sul dominio di funzioni e iti Esercizio 1. Determinare il dominio D, studiare il segno e calcolare il ite ai suoi estremi delle seguenti funzioni: (a) y = e ; (b) y = 4 2 + 9; (c) y = 16 4 ; 2
Prontuario degli argomenti di Algebra
Prontuario degli argomenti di Algebra NUMERI RELATIVI Un numero relativo è un numero preceduto da un segno + o - indicante la posizione rispetto ad un punto di riferimento a cui si associa il valore 0.
SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO
ANNO SCOLASTICO 2012-13 SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO INDIRIZZO: SCIENTIFICO CORSO DI ORDINAMENTO Risoluzione Problema 1 a) Poiché per ogni valore di a l espressione analitica
Derivata di una funzione
Derivata di una funzione Prof. E. Modica http://www.galois.it [email protected] Il problema delle tangenti Quando si effettua lo studio delle coniche viene risolta una serie di esercizi che richiedono la
ORDINAMENTO SESSIONE SUPPLETIVA QUESITO 1
www.matefilia.it ORDINAMENTO 7 - SESSIONE SUPPLETIVA QUESITO 1 Si calcoli il ite della funzione x cosx x sen x, quando x tende a. x cosx x x sen x = [F. I. ] x x cosx x (1 sen x x ) x cosx 1 sen x x =
Analisi Matematica I Primo Appello ( ) - Fila 1
Analisi Matematica I Primo Appello (4-11-003) - Fila 1 1. Determinare la retta tangente alla funzione f() = (1 + ) 1+ in = 0. R. f(0) = 1, mentre la derivata è f () = ( e (1+) log(1+)) ( ) = e (1+) log(1+)
IDENTITÀ ED EQUAZIONI
IDENTITÀ ED EQUAZIONI Una identità è una eguaglianza tra due espressioni letterali che è verificata per qualsiasi valore attribuito alle lettere contenute nell espressione. Ad esempio le seguenti eguaglianze
ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012
ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 1. Esercizi 3 1. Studiare la seguente funzione FINO alla derivata prima, con tracciamento di grafico ed indicazione
Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04/11/ 13
Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04// 3 Esercizio. Si consideri la funzione ) se 0 f) e se 0. e si verifichi che non è continua in 0. Che tipo di discontinuità presenta in
Unità Didattica N 9 : La parabola
0 Matematica Liceo \ Unità Didattica N 9 La parabola Unità Didattica N 9 : La parabola ) La parabola ad asse verticale ) La parabola ad asse orizzontale 5) Intersezione di una parabola con una retta 6)
Esercizi sullo studio di funzione
Esercizi sullo studio di funzione Seconda parte Come visto nella prima parte, per poter descrivere una curva, data la sua equazione cartesiana esplicita y f () occorre procedere secondo l ordine seguente:
3. Segni della funzione (positività e negatività)
. Segni della funzione (positività e negatività) Questo punto, qualora sia possibile algebricamente, ci permette di stabilire il segno che assume la variabile dipendente y (che esprime il valore della
MATEMATICA EQUAZIONI FRATTE, DI SECONDO GRADO O SUPERIORE GSCATULLO
MATEMATICA EQUAZIONI FRATTE, DI SECONDO GRADO O SUPERIORE GSCATULLO Equazioni fratte, di secondo grado o superiore Le equazioni di secondo grado Un equazione è di secondo grado se si può scrivere nella
EQUAZIONI, DISEQUAZIONI E SISTEMI
EQUAZIONI, DISEQUAZIONI E SISTEMI RICHIAMI DI TEORIA Definizione: sia f una funzione reale di variabile reale. Gli elementi del dominio di f su cui la funzione assume valore nullo costituiscono l' insieme
ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA
ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA PRIMA PARTE Intervallo limitato di numeri reali Dati due numeri reali a e b, con a
Analisi Matematica 1+2
Università degli Studi di Genova Facoltà di Ingegneria - Polo di Savona via Cadorna 7-700 Savona Tel. +39 09 264555 - Fax +39 09 264558 Ingegneria Gestionale Analisi Matematica +2 A.A 998/99 - Prove parziali
Esercizi di Calcolo e Biostatistica con soluzioni
1 Esercizi di Calcolo e Biostatistica con soluzioni 1. Date le funzioni f 1 (x) = x/4 1, f 2 (x) = 3 x, f 3 (x) = x 4 2x, scrivere a parole le operazioni che, dato x in modo opportuno, permettono di calcolare
a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [;
ESERCIZIO - Data la funzione f (x) + x2 2x x 2 5x + 6, si chiede di: a) calcolare il dominio di f ; (2 punti) b) studiare la positività e le intersezioni con gli assi; (3 punti) c) stabilire se f ha asintoti
Le disequazioni frazionarie (o fratte)
Le disequazioni frazionarie (o fratte) Una disequazione si dice frazionaria (o fratta) se l'incognita compare al denominatore. Esempi di disequazioni fratte sono: 0 ; ; < 0 ; ; Come per le equazioni fratte,
LE EQUAZIONI DI SECONDO GRADO
LE EQUAZIONI DI SECONDO GRADO Definizione: un equazione è di secondo grado se, dopo aver applicato i principi di equivalenza, si può scrivere nella forma, detta normale: ax + bx + c 0!!!!!con!a 0 Le lettere
TEMI D ESAME DI ANALISI MATEMATICA I
TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea quadriennale) in Fisica a.a. 003/04 Prova scritta del 3 aprile 003 ] Siano a, c parametri reali. Studiare l esistenza e, in caso affermativo, calcolare
TEOREMA DEL RESTO E REGOLA DI RUFFINI
TEOREMA DEL RESTO E REGOLA DI RUFFINI ALCUNI TEOREMI IMPORTANTI Prendiamo una divisione intera tra numeri: 6 : 3 = 2. Il resto di questa divisione è 0, e questo significa che moltiplicando il quoziente
10 - Applicazioni del calcolo differenziale
Università degli Studi di Palermo Facoltà di Economia CdS Sviuppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 10 - Applicazioni del calcolo differenziale Anno Accademico 2015/2016
Scheda elaborata dalla prof.ssa Biondina Galdi Docente di Matematica
Tutorial - Studio di una funzione reale di variabile reale f : x R y = f (x) R Una funzione può essere: - 1 - algebrica ( razionale o irrazionale, intera o fratta) Classificare la trascendentale ( esponenziale,
(1;1) y=2x-1. Fig. G4.1 Retta tangente a y=x 2 nel suo punto (1;1).
G4 Derivate G4 Significato geometrico di derivata La derivata di una funzione in un suo punto è il coefficiente angolare della sua retta tangente Esempio G4: La funzione = e la sua retta tangente per il
ASINTOTI. Si chiama ASINTOTO di una funzione una retta alla quale la funzione si avvicina senza mai toccarla.
ASINTOTI Si chiama ASINTOTO di una funzione una retta alla quale la funzione si avvicina senza mai toccarla. Ad esempio: La funzione y=e x ha un asintoto orizzontale: l asse x, cioè la retta y=0. La funzione
DERIVATE. 1.Definizione di derivata.
DERIVATE Definizione di derivata Sia y = f( una funzione continua Fissato un punto o appartenente all insieme di definizione della funzione y = f(,sia Po = (; f(o il punto di ascissa o appartenente al
a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.
1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre
Traccia n.1 Studiare il comportamento della funzione: 3x + ex 3x e x. Svolgimento
Traccia n. Studiare il comportamento della funzione: Svolgimento f(x) = 3x + ex 3x e x Determinazione del campo di esistenza, E[f]. La funzione si presenta come rapporto di due funzioni; il campo di esistenza
INTEGRALI INDEFINITI e DEFINITI Esercizi risolti
INTEGRALI INDEFINITI e DEFINITI Esercizi risolti E data la funzione f( = (a Provare che la funzione F ( = + arcsin è una primitiva di f( sull intervallo (, (b Provare che la funzione G( = + arcsin π è
ORDINAMENTO SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1
www.matefilia.it ORDINAMENTO 2003 - SESSIONE SUPPLETIVA QUESTIONARIO QUESITO Tra i rettangoli aventi la stessa area di 6 m 2 trovare quello di perimetro minimo. Indicate con x ed y le misure della base
La continuità di una funzione
La continuità di una funzione Introduzione L'argomento legato ai limiti di una funzione porta in modo diretto al concetto di continuità e, conseguentemente, allo studio delle discontinuità di una funzione.
ESERCITAZIONE 9 : FUNZIONI QUADRATICHE
ESERCITAZIONE 9 : FUNZIONI QUADRATICHE e-mail: [email protected] web: www.dm.unipi.it/ tommei Ricevimento: Martedi 16-18 Dipartimento di Matematica, piano terra, studio 126 4 Dicembre 2012 L espressione
La Retta Ogni funzione di primo grado rappresenta, graficamente, una retta. L equazione della retta può essere scritta in due modi
La Retta Ogni funzione di primo grado rappresenta, graficamente, una retta. L equazione della retta può essere scritta in due modi Forma implicita Forma esplicita a x b y c 0 y m x q a c y x b b Esempio
