ORDINAMENTO SESSIONE SUPPLETIVA QUESITO 1
|
|
|
- Camillo Bernasconi
- 8 anni fa
- Visualizzazioni
Transcript
1 ORDINAMENTO 7 - SESSIONE SUPPLETIVA QUESITO 1 Si calcoli il ite della funzione x cosx x sen x, quando x tende a. x cosx x x sen x = [F. I. ] x x cosx x (1 sen x x ) x cosx 1 sen x x = QUESITO Si determini il campo di esistenza della funzione y = arcsen(tgx), con x. Deve essere: 1 tgx 1 x et 3 x 5 et 7 x QUESITO 3 Si calcoli il valore medio della funzione y = tg x, nell intervallo x. Il valor medio f(c) è dato da: Abbiamo: f(c) = b a f(x)dx b a = 1 tg xdx = tg xdx tg xdx = (1 + tg x 1)dx = (1 + tg x)dx dx = tgx x + k 1 / 7
2 Quindi: tg xdx = [tgx x] = [1 ] =.73 = valor medio QUESITO Si provi che per la funzione f(x) = x 3 8, nell intervallo x, sono verificate le condizioni di validità del teorema di Lagrange e si trovi il punto in cui si verifica la tesi del teorema stesso. La funzione (razionale intera) è continua in un intervallo chiuso e itato, quindi sono verificate le ipotesi del teorema di Lagrange. Esiste quindi almeno un punto c, interno all intervallo, cioè < c <, per cui: Risulta: f(b) f(a) b a = f (c) f(b) f(a) b a = + 8 = ed f (x) = 3x, quindi: 3x =, da cui c = ± 3. L unico valore interno all intervallo è quello positivo, quindi: c = 3 QUESITO 5 Fra tutti i triangoli isosceli inscritti in una circonferenza di raggio r, si determini quello per cui è massima la somma dell altezza e del doppio della base. / 7
3 Poniamo CH = x, con x r. Per il secondo teorema di Euclide risulta: AH = CH HD = x (r x), quindi: AB = AH = x (r x) Indicando con y la somma dell altezza e del doppio della base risulta: y = CH + AB = x + x (r x) Dobbiamo cercare il massimo di y quando x r. Calcoliamo la derivata prima della funzione: y = 1 + r x x (r x) = 1 + r x x (r x) = se: x (r x) = (x r) ; in cui deve essere x>r. Elevando al quadrato ambo i membri si ha: x (r x) = 16(x rx + r ) x 3rx + 16r = da cui: x = r + r = r ± r ± = r ( ) quindi: x 1 = r ( ).76 r non accettabile perchè minore di r + x = r ( ) 1. r accettabile perchè maggiore di r e minore di r Siccome la funzione è continua in un intervallo chiuso e itato, per il teorema di Weierstrass ammette massimo e minimo assoluto, da ricercarsi tra i valori agli estremi dell intervallo, tra i punti che annullano la derivata prima e tra gli eventuali punti di non derivabilità (nel nostro caso x= e x=r). f() =, f(r) = r, f(x ) f(1. r) 5.1 r Quindi il massimo si ha per x = r ( + ) e vale circa 5.1 r. Ponendo l unità di misura uguale ad r, la funzione da ottimizzare ha equazione: y = x + x ( x), con x, il cui grafico è il seguente: 3 / 7
4 QUESITO 6 Si consideri la seguente proposizione: Il luogo dei punti dello spazio equidistanti da due punti distinti è una retta. Si dica se è vera e si motivi esaurientemente la risposta. La proposizione è falsa. Il luogo richiesto è un piano, ed esattamente il piano perpendicolare al segmento che congiunge i due punti e passante per il punto medio del segmento stesso. Siano A e B due punti distinti dello spazio: A = (x 1, y 1, z 1 ) e B= (x, y, z ) Detto P = (x, y, z) il generico punto dello spazio, il luogo richiesto è dato da: PA = PB da cui PA = PB quindi: (x x 1 ) + (y y 1 ) + (z z 1 ) = (x x ) + (y y ) + (z z ) (x x 1 )x + (y y 1 )y + (z z 1 )z = x x 1 + y y 1 +z z 1 Questo piano (come si vede dai parametri direttori) è perpendicolare alla retta AB e, come si può verificare, passa per il punto medio M di AB che ha coordinate: M = ( x 1 + x, y 1 + y, z 1 + z ) / 7
5 QUESITO 7 Sia data la funzione: f(x) = { x arctg 1 per x x per x = Si dica se essa è continua e derivabile nel punto di ascissa. Per essere continua deve essere: x arctg 1 x x = Tale ite è effettivamente, poiché la funzione arctgx, se x ±, tende a ±. Stabiliamo se la funzione è derivabile in x= applicando la definizione di derivata: f(c + h) f(c) f(h) f() h h h h 1 h arctg h h h h arctg 1 h Se h + il ite è, se h il ite è : in x= la funzione non è quindi derivabile; in particolare si ha un punto angoloso, poiché la derivata destra e sinistra esistono, finite, ma sono diverse. Il grafico della funzione è il seguente: 5 / 7
6 QUESITO 8 Si determini l area della regione piana itata dalla curva di equazione y = e x, dalla curva di equazione y = x 3 e dalle rette x = e x = 1. L area richiesta si ottiene calcolando il seguente integrale: Area = (e x x 3 )dx = [e x 1 x ] 1 1 = e 1 (1) = e QUESITO 9 Si determinino le equazioni degli asintoti della curva f(x) = x +3 x+. La funzione (razionale fratta) è definita per x ed il numeratore non si annulla per x = ; poiché il grado del numeratore supera di 1 il grado del denominatore, avremo un asintoto verticale ed uno obliquo. f(x) = x = asintoto verticale. x Determiniamo l asintoto obliquo: f(x) = ; x f(x) x x x + 3 x x + x x x x = = m + 3 x (x x + x x) (3 ) = = q x x + Quindi l asintoto obliquo ha equazione: y = x. 6 / 7
7 Il grafico della funzione è il seguente: QUESITO 1 Si risolva la disequazione ( x 3 ) > 15 (x ). La presenza dei coefficienti binomiali impone le seguenti condizioni: x 3 e x, quindi: x 3 e intero. Sviluppando otteniamo: x(x 1)(x ) > 15 6 x(x 1), x(x 1)(x ) > 5x(x 1) da cui: x(x 1)(x 5) >, x(x 1)(x 9) >, da cui, tenendo presente che x 3 e quindi x e x-1 sono positivi: x 9 > Quindi la disequazione ammette come soluzione x > 9, con x intero: x = 5,6, 7, Con la collaborazione di Angela Santamaria, Simona Scoleri e Stefano Scoleri 7 / 7
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2007 Sessione suppletiva
ESAME DI STAT DI LIE SIENTIFI RS DI RDINAMENT 7 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PRBLEMA Rispetto a un sistema di assi cartesiani
ORDINAMENTO 2007 SESSIONE STRAORDINARIA - QUESITI QUESITO 1
www.matefilia.it ORDINAMENTO 2007 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 Si determini il campo di esistenza della funzione y = (x 2 3x) 1 x 4. Ricordiamo che il campo di esistenza di una funzione del
ORDINAMENTO SESSIONE SUPPLETIVA QUESITO 1
www.matefilia.it ORDINAMENTO 0 - SESSIONE SUPPLETIVA QUESITO Si sa che certi uccelli, durante la migrazione, volano ad un altezza media di 60 metri. Un ornitologa osserva uno stormo di questi volatili,
ORDINAMENTO 2014 SESSIONE SUPPLETIVA - PROBLEMA 1
www.matefilia.it ORDINAMENTO 20 SESSIONE SUPPLETIVA - PROBLEMA Sono dati un quarto di cerchio AOB e la tangente t ad esso in A. Dal punto O si mandi una semiretta che intersechi l arco AB e la tangente
PNI SESSIONE SUPPLETIVA QUESITO 1
www.matefilia.it PNI 8 - SESSIONE SUPPLETIVA QUESITO Si determinino le costanti a e b in modo tale che la funzione: ax + b per x f(x) = { e x per x > x risulti continua e derivabile nel punto x=. Per essere
ORDINAMENTO 2014 SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1
www.matefilia.it ORDINAMENTO 2 SESSIONE SUPPLETIVA QUESTIONARIO QUESITO Si determini il dominio della funzione f(x) = e 2x 3e x + 2 e 2x 3e x + 2 e x, e x 2 x, x ln2 DOMINIO: < x, ln2 x < + QUESITO 2 3
ORDINAMENTO SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1
www.matefilia.it ORDINAMENTO 2003 - SESSIONE SUPPLETIVA QUESTIONARIO QUESITO Tra i rettangoli aventi la stessa area di 6 m 2 trovare quello di perimetro minimo. Indicate con x ed y le misure della base
PNI SESSIONE SUPPLETIVA QUESITO 1
www.matefilia.it PNI - SESSIONE SUPPLETIVA QUESITO Si sa che certi uccelli, durante la migrazione, volano ad un altezza media di 6 metri. Un ornitologa osserva uno stormo di questi volatili, mentre si
ORDINAMENTO 2011 QUESITO 1
www.matefilia.it ORDINAMENTO 0 QUESITO Consideriamo la sezione della sfera e del cilindro con un piano passante per l asse del cilindro: Indicando con x il diametro di base del cilindro, con y la sua altezza
ORDINAMENTO SESSIONE SUPPLETIVA QUESITO 1
www.matefilia.it ORDINAMENTO 2009 - SESSIONE SUPPLETIVA QUESITO 1 Una piramide, avente area di base B e altezza h, viene secata con un piano parallelo alla base. Si calcoli a quale distanza dal vertice
ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2007 Sessione suppletiva
ESAME DI STAT DI LIE SIENTIFI RS SPERIMENTALE P.N.I. 7 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PRLEMA Si consideri la funzione
LICEO SCIENTIFICO QUESTIONARIO QUESITO 1
www.matefilia.it LICEO SCIENTIFICO 015 - QUESTIONARIO QUESITO 1 y = f() ; il suo grafico è tangente alla retta y = + 5 nel secondo quadrante ed inoltre risulta: f () = + 6. Determinare l equazione y =
QUESITO 1. Lanciando due dadi, qual è il numero che ha maggiore probabilità di uscita? Qual è la probabilità che esca un numero primo?
www.matefilia.it PNI 29 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 Lanciando due dadi, qual è il numero che ha maggiore probabilità di uscita? Qual è la probabilità che esca un numero primo? Nel lancio
Scuole italiane all estero (Calendario australe) 2008 Suppletiva QUESITO 1
www.matefilia.it Scuole italiane all estero (Calendario australe) 2008 Suppletiva QUESITO 1 Le misure dei lati di un triangolo sono 30, 70 e 90 cm. Si calcolino, con l aiuto di una calcolatrice, le ampiezze
ORDINAMENTO 2009 SESSIONE STRAORDINARIA - QUESITI QUESITO 1
www.matefilia.it ORDINAMENTO 009 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 Si inscriva in una semisfera di raggio R il tronco di cono di massima superficie laterale, avente la base maggiore coincidente
ORDINAMENTO SESSIONE SUPPLETIVA QUESITO 1
www.matefilia.it ORDINAMENTO 010 - SESSIONE SUPPLETIVA QUESITO 1 In cima ad una roccia a picco sulla riva di un fiume è stata costruita una torretta d osservazione alta 11 metri. Le ampiezze degli angoli
ORDINAMENTO 2012 SESSIONE STRAORDINARIA - QUESITI QUESITO 1
www.matefilia.it ORDINAMENTO 22 SESSIONE STRAORDINARIA - QUESITI QUESITO Alcuni ingegneri si propongono di costruire una galleria rettilinea che colleghi il paese A, situato su un versante di una collina,
SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1
www.matefilia.it SESSIONE SUPPLETIVA 015 - QUESTIONARIO x QUESITO 1 Data la funzione integrale ln(t) dt, determinare per quali valori di x il suo grafico 1 incontra la retta di equazione y = x + 1. Calcoliamo
ORDINAMENTO 2006 SESSIONE SUPPLETIVA - PROBLEMA 2
www.matefilia.it ORDINAMENTO 2006 SESSIONE SUPPLETIVA - PROBLEMA 2 Nel piano, riferito ad un sistema monometrico di assi cartesiani ortogonali (Oxy), sono assegnate le curve di equazione: x + k y, dove
1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.
Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente
ORDINAMENTO 2014 SESSIONE STRAORDINARIA - QUESITI QUESITO 1
www.matefilia.it ORDINAMENTO 0 SESSIONE STRAORDINARIA - QUESITI QUESITO Un gruppo di attivisti antinucleari ha organizzato una marcia di protesta verso un sito scelto per la costruzione di una centrale
QUESITO 1. Si dimostri che fra tutti i triangoli rettangoli aventi la stessa ipotenusa, quello isoscele ha l area massima.
www.matefilia.it Scuole italiane all estero (Americhe) 7 Quesiti QUESITO Si dimostri che fra tutti i triangoli rettangoli aventi la stessa ipotenusa, quello isoscele ha l area massima. Il triangolo può
COMUNICAZIONE OPZIONE SPORTIVA QUESTIONARIO QUESITO 1
www.matefilia.it COMUNICAZIONE OPZIONE SPORTIVA 7 - QUESTIONARIO QUESITO Definito il numero E come: E = xe x dx, dimostrare che risulta: x e x dx = e E esprimere x e x dx in termini di e ed E. Cerchiamo
Y557 - ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PIANO NAZIONALE INFORMATICA Tema di: MATEMATICA ( ) 2
Sessione straordinaria LS_PNI 7 Y557 - ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PIANO NAZIONALE INFORMATICA Tema di: MATEMATICA Problema Si consideri la funzione: a y ( dove a è un parametro
ESAME DI STATO DI LICEO SCIENTIFICO Sessione suppletiva
ESAME DI STATO DI LICEO SCIENTIFICO Sessione suppletiva PROBLEMA Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. Si consideri la funzione reale f m di variabile
SIMULAZIONE - 29 APRILE QUESITI
www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione
ORDINAMENTO 2002 QUESITO 1
www.matefilia.it ORDINAMENTO QUESITO B= base maggiore, b= base minore, h= altezza, B= 4b Consideriamo il solido ottenuto facendo ruotare il trapezio di un giro completo intorno alla base maggiore: Il suo
ORDINAMENTO SESSIONE SUPPLETIVA QUESITO 1
www.matefilia.it ORDINAMENTO 8 - SESSIONE SUPPLETIVA QUESITO Si determini la distanza delle due rette parallele: 3x + y 3, 6x + y + 5 La distanza richiesta è data dalla distanza di un punto di una delle
QUESITO 1. Una strada rettilinea in salita supera un dislivello di 150 m con un percorso di 3 km. Quale è la sua inclinazione?
www.matefilia.it Scuole italiane all estero (Americhe) 008 Quesiti QUESITO 1 Una strada rettilinea in salita supera un dislivello di 150 m con un percorso di 3 km. Quale è la sua inclinazione? Detto α
Esame di Stato di Liceo Scientifico Corso di Ordinamento
Corso di Ordinamento Soluzione dei Temi di Matematica proposti nella Sessione Ordinaria 8 Sessione Ordinaria 8 Corso di Ordinamento Sommario Problema Punto a) Punto b) Punto c) Punto d) 5 Problema 6 Punto
Esercitazioni di Matematica
Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +
Risoluzione dei problemi
Risoluzione dei problemi Il dominio della generica funzione è:! a a) Scriviamo l espressione della funzione in forma di equazione raccogliendo separatamente i termini contenenti il parametro a e quelli
Scuole italiane all estero (Calendario australe) 2008 Quesiti QUESITO 1
www.matefilia.it Scuole italiane all estero (Calendario australe) 2008 Quesiti QUESITO Le misure dei lati di un triangolo sono 0, 24 e 26 cm. Si calcolino, con l aiuto di una calcolatrice, le ampiezze
PNI 2014 SESSIONE STRAORDINARIA - QUESITI QUESITO 1
www.matefilia.it PNI 0 SESSIONE STRAORDINARIA - QUESITI QUESITO Un gruppo di attivisti antinucleari ha organizzato una marcia di protesta verso un sito scelto per la costruzione di una centrale termonucleare.
LICEO SCIENTIFICO SESSIONE STRAORDINARIA PROBLEMA 2
1\ www.matefilia.it LICEO SCIENTIFICO SESSIONE STRAORDINARIA 16 - PROBLEMA La funzione f: R R è così definita: f(x) = sen(x) x cos (x) 1) Dimostra che f è una funzione dispari, che per x ], ] si ha f(x)
ORDINAMENTO 2013 SESSIONE SUPPLETIVA QUESITO 1
www.matefilia.it ORDINAMENTO 2013 SESSIONE SUPPLETIVA QUESITO 1 E dato il settore circolare AOB, di centro O, raggio e ampiezza. Si inscriva in esso il rettangolo PQMN, con M ed N sul raggio OB, Q sull
a) Rappresentiamo il quadrato ABCD e il punto P sul prolungamento del lato AB.
VERIFICA DI MATEMATICA SIMULAZIONE GLI INTEGRALI DEFINITI - SOLUZIONI Problema : a) Rappresentiamo il quadrato ABCD e il punto P sul prolungamento del lato AB. Per determinare la posizione di P, affinché
PNI SESSIONE SUPPLETIVA QUESITO 1
www.matefilia.it PNI 010 - SESSIONE SUPPLETIVA QUESITO 1 In cima ad una roccia a picco sulla riva di un fiume è stata costruita una torretta d osservazione alta 11 metri. Le ampiezze degli angoli di depressione
LICEO SCIENTIFICO SESSIONE STRAORDINARIA 2017 QUESTIONARIO QUESITO 1. = lim. = lim QUESITO 2
www.matefilia.it LICEO SCIENTIFICO SESSIONE STRAORDINARIA 217 QUESTIONARIO QUESITO 1 Calcolare la derivata della funzione f(x) = ln(x), adoperando la definizione di derivata. Ricordiamo che la definizione
LICEO SCIENTIFICO QUESTIONARIO QUESITO 1
www.matefilia.it LICEO SCIENTIFICO 7 - QUESTIONARIO QUESITO Definito il numero E come: E = e d, dimostrare che risulta: e d = e E esprimere e d in termini di e ed E. Cerchiamo una primitiva di e integrando
SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1
www.matefilia.it SESSIONE SUPPLETIVA 216 - QUESTIONARIO QUESITO 1 Si consideri questa equazione differenziale: y + 2y + 2y = x. Quale delle seguenti funzioni ne è una soluzione? Si giustifichi la risposta.
SIMULAZIONE - 29 APRILE QUESITI
www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione
PNI 2014 SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1
www.matefilia.it PNI 4 SESSIONE SUPPLETIVA QUESTIONARIO QUESITO Si determini il dominio della funzione f(x) = e x 3e x + e x 3e x + e x, e x x, x ln DOMINIO: < x, ln x < + QUESITO 3 La funzione: f(x) =
Problema ( ) = 0,!
Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente
ESERCIZI SULLO STUDIO DI FUNZIONI
ESERCIZI SULLO STUDIO DI FUNZIONI 0 novembre 206 Esercizi Esercizio n. Si consideri la funzione f(x) = 7 x 2 + 3 Dominio: R Intersezioni con gli assi: Intersezioni con l asse x: { y = 0 y = 7 x 2 + 3.
8 Simulazione di prova d Esame di Stato
8 Simulazione di prova d Esame di Stato Problema Risolvi uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario Si consideri la famiglia di funzioni f α () = a e a con a parametro reale
PNI SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1
www.matefilia.it PNI 200 - SESSIONE SUPPLETIVA QUESTIONARIO QUESITO Enunciare il teorema del valor medio o di Lagrange illustrandone il legame con il teorema di Rolle e le implicazioni ai fini della determinazione
Liceo Scientifico di ordinamento anno ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO anno PROBLEMA 1
Liceo Scientifico di ordinamento anno 00-00 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO anno 00-00 PROBLEMA Punto a Indicati rispettivamente con V ed S il volume e l area totale di T e con
ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA
ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA PRIMA PARTE Intervallo limitato di numeri reali Dati due numeri reali a e b, con a
Funzioni derivabili (V. Casarino)
Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente
Continuità e derivabilità. Calcola la derivata delle seguenti funzioni
ESERCIZI SUL CALCOLO DIFFERENZIALE Continuità e derivabilità Si studi la continuità e la derivabilità delle seguenti funzioni nel punto indicato a fianco { Si trovi, se possibile, a e b in modo che le
Problemi di massimo e minimo
Problemi di massimo e minimo Supponiamo di avere una funzione continua in Per il teorema di Weierstrass esistono il massimo assoluto M e il minimo assoluto m I problemi di massimo e minimo sono problemi
ORDINAMENTO 2006 SESSIONE STRAORDINARIA - QUESITI QUESITO 1
www.matefilia.it ORDINAMENTO 2006 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 È assegnato un pentagono regolare di lato lungo L. Recidendo opportunamente, in esso, cinque triangoli congruenti, si ottiene
5 Simulazione di prova d Esame di Stato
5 Simulazione di prova d Esame di Stato Problema Risolvi uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario Tra le parabole di equazione k, individuare la parabola γ tangente alla
SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO
ANNO SCOLASTICO 2012-13 SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO INDIRIZZO: SCIENTIFICO CORSO DI ORDINAMENTO Risoluzione Problema 1 a) Poiché per ogni valore di a l espressione analitica
Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.
Esercizi svolti 1. Sia sin(x ) f(x) = x ( 1 + x 1 ) se x > 0 a x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.. Scrivere l equazione della retta tangente nel punto di ascissa
AMERICHE PROBLEMA 1
www.matefilia.it AMERICHE 16 - PROBLEMA 1 Considerata la funzione G: R R è così definita: svolgi le richieste che seguono. 1) x G(x) = e t sen (t)dt Discuti campo di esistenza, continuità e derivabilità
Laurea in Informatica Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile
Laurea in Informatica Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Docente: Anna Valeria Germinario Università di Bari A.V.Germinario (Università di Bari) Analisi Matematica
2. Calcola, enunciando, descrivendo e applicando la definizione, la derivata della 2
Domande di matematica per l esame di stato per il liceo classico Analisi matematica 1. Spiega quando una funzione è un infinitesimo e quando è un infinito per x che tende a x 0. Quali sono i possibili
Maturità scientifica 1983 sessione ordinaria
Maturità scientifica 198 sessione ordinaria Soluzione a cura di Francesco Daddi 1 Si studi la funzione y = a x 1 e se ne disegni il grafico Si determinino le intersezioni della curva da essa rappresentata
Studiamo adesso il comportamento di f(x) alla frontiera del dominio. Si. x 0 lim f(x) = lim. x 2 +
Esercizi del 2//09. Data la funzione f(x) = ln(x 2 2x) (a) trovare il dominio, gli eventuali asintoti e gli intervalli in cui la funzione cresce o decresce. Disegnare il grafico della funzione. (b) Scrivere
SESSIONE ORDINARIA 2007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE
SESSIONE ORDINARIA 007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE PROBLEMA Si consideri la funzione f definita da f ( x) x, il cui grafico è la parabola.. Si trovi il luogo geometrico dei
Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 2005/2006
Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 005/006 Antonella Ballabene SOLUZIONI -14 marzo 006- SCHEMA per lo STUDIO di FUNZIONI 1. Dominio della funzione f)..
SESSIONE SUPPLETIVA PROBLEMA 1
www.matefilia.it SESSIONE SUPPLETIVA - 15 PROBLEMA 1 Sei stato incaricato di progettare una pista da ballo all esterno di un locale in costruzione in una zona balneare. Il progetto prevede, oltre alla
QUESITO 1. Per un approfondimento sul Metodo dei gusci cilindrici si veda la seguente pagina di Matefilia:
www.matefilia.it Scuole italiane all estero (Americhe) 11 Quesiti QUESITO 1 Sia W il solido ottenuto facendo ruotare attorno all asse y la parte di piano compresa, per x [; π ], fra il grafico di y = senx
CONTINUITÀ E DERIVABILITÀ Esercizi risolti
CONTINUITÀ E DERIVABILITÀ Esercizi risolti. Determinare [cos x] x kπ/ al variare di k in Z. Ove tale ite non esista, discutere l esistenza dei iti laterali. Identificare i punti di discontinuità della
Compito di matematica Classe III ASA 23 aprile 2015
Compito di matematica Classe III ASA 3 aprile 015 A. Descrivere mediante un opportuno sistema di disequazioni nelle variabili x e y la parte di piano colorata: A1 A A1: y 1 x + x 1 4 x y 0 A: x 4 + y 9
ORDINAMENTO SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1
www.matefilia.it ORDINAMENTO 00 - SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1 Si consideri la seguente equazione in x, y: x + y + x + y + k = 0, dove k è un parametro reale. La sua rappresentazione in un
