ORDINAMENTO SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1
|
|
|
- Susanna Cappelli
- 7 anni fa
- Visualizzazioni
Transcript
1 ORDINAMENTO 00 - SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1 Si consideri la seguente equazione in x, y: x + y + x + y + k = 0, dove k è un parametro reale. La sua rappresentazione in un piano, riferito a un sistema monometrico di assi cartesiani ortogonali: a) È una circonferenza per ogni valore di k; b) è una circonferenza solo per k < 1 ; c) è una circonferenza solo per k < 1 4 ; d) non è una circonferenza qualunque sia k. Una sola alternativa è corretta: individuarla e giustificare la risposta. L equazione x + y + ax + by + c = 0 rappresenta una circonferenza (reale) se: a 4 + b 4 a c 0 in particolare se 4 + b c = 0 la circonferenza ha raggio nullo. 4 L equazione x + y + x + y + k = 0 può essere vista nella forma: x + y + 1 x + 1 y + k = 0 Essa rappresenta una circonferenza (reale) quando: k 0, 1 8 k, k 1 4 Ipotizzando che la richiesta faccia riferimento ad una circonferenza di raggio non nullo, la risposta corretta è la c). QUESITO Considerata la funzione di variabile reale: f(x) = x x, dire se esiste il limite di f (x) per x tendente a 1 e giustificare la risposta. La funzione è definita solo se x=1, dove vale 0: non ha senso il limite per x che tende ad 1, poiché la definizione di limite per x che tende a c presuppone che c sia un punto di accumulazione per il dominio della funzione; nel nostro caso x=1 è un punto isolato. 1/ 7
2 QUESITO 3 Sia f (x) una funzione reale di variabile reale. Si sa che: f (x) è derivabile su tutto l asse reale; f (x)=0 solo per x=0; f (x) 0 per x ± ; f (x)=0 soltanto per x=- e x=1; f(-)=1 ed f(1)=-. Dire, dandone esauriente spiegazione, se le informazioni suddette sono sufficienti per determinare gli intervalli in cui la funzione è definita, quelli in cui è continua, quelli in cui è positiva, quelli in cui è negativa, quelli in cui cresce, quelli in cui decresce. Si può dire qualcosa circa i flessi di f (x)? Se la funzione è derivabile su tutto R allora è definita e continua su tutto R. Siccome la funzione è sempre derivabile e gli unici punti a tangente orizzontale sono x=- e x=1, con f(-)=1 ed f(1)=-, inoltre la funzione si annulla solo in x=0, possiamo concludere che f (x) 0 + se x e che f (x) 0 se x + e quindi la funzione è positiva se x<0 e negativa se x>0; cresce se x<- vel x>1, decresce se -<x<1. Per quanto riguarda i flessi possiamo affermare che esistono ALMENO TRE FLESSI: un flesso per x<-, un secondo flesso per -<x<1 ed un terzo flesso per x>1. QUESITO 4 Sia f (x) una funzione di variabile reale definita nel modo seguente: 1 f(x) = { a sen x per 0 < x < π 1 + a per π sen x < x < 0 dove a è un parametro reale non nullo. Stabilire se esiste un valore di a per il quale il dominio della funzione possa essere prolungato anche nel punto x=0. Si tratta di stabilire se esiste un valore di a per il quale la funzione ha in x=0 una discontinuità eliminabile; questo avviene se il limite sinistro ed il limite destro della funzione per x che tende a zero esistono finiti e sono uguali. 1 + a lim f(x) = lim x 0 x 0 sen x = finito = 0 solo se a = 1 lim f(x) = lim x 0 + x sen x = 0 a se a = 1 Quindi la funzione ha in x=0 una discontinuità eliminabile se a=-1; per tale valore di a il dominio della funzione può essere prolungato anche ne punto x=0. Il prolungamento continuo della funzione è il seguente: / 7
3 f (x) = { 0 per π < x 0 sen x per 0 < x < π QUESITO 5 Un titolo di borsa ha perso ieri l x % del suo valore. Oggi quel titolo, guadagnando l y %, è ritornato al valore che aveva ieri prima della perdita. Esprimere y in funzione di x. T = valore iniziale del titolo T x x T = (100 ) T = valore del titolo dopo la perdita x y x ( ) T + [(100 ) T] = valore del titolo dopo il guadagno Dopo il guadagno il titolo è tornato al valore iniziale, quindi: 100 x ( 100 ) T + y 100 x x [(100 ) T] = T, ( ) + y x [( )] = 1, 1 x y(100 x) y(100 x) + = 1, x = , y = 100 x 100 x con 0 < x 100 (il grafico di tale funzione è una parte di funzione omografica): 3/ 7
4 QUESITO 6 Come si sa, la condizione che la funzione reale di variabile reale f (x) sia continua in un intervallo chiuso e limitato [a; b] è sufficiente per concludere che f (x) è integrabile su [a; b]. Fornire due esempi, non concettualmente equivalenti, che dimostrino come la condizione non sia necessaria. Dobbiamo fornire due esempi di funzione definita in un intervallo chiuso e limitato che sia integrabile ma non continua: questo dimostra che una funzione per essere integrabile non è necessario che sia continua. Un primo semplice esempio è dato da una funzione continua in tutti i punti di un intervallo chiuso e limitato tranne che in punto, dove c è una discontinuità eliminabile: x se 1 < x f(x) = { se x = 1 La funzione è chiaramente integrabile nell intervallo [1;] e l integrale vale 1.5, ma non è continua in tale intervallo (in x=1 abbiamo una discontinuità di terza specie). Un secondo esempio è la funzione seguente: 1 se 1 x < f(x) = { se < x 3 La funzione è chiaramente integrabile nell intervallo [1;3] e l integrale vale 3, ma non è continua in tale intervallo (in x= abbiamo una discontinuità di prima specie). 4/ 7
5 QUESITO 7 Una primitiva della funzione f(x) = 1 x + 1 x+4 è: [A] ln x x + ; [B] ln x + x ; [C] ln x + x ; [D] ln x + x. Una sola alternativa è corretta: individuarla e fornire una spiegazione della scelta operata. Cerchiamo una primitiva della funzione data: ( 1 x + 1 x + 4 ) dx = 1 1 x dx + 1 x + 4 dx = 1 ln x + 1 ln x C = = 1 ln x + 1 (ln x + ) + C = 1 ln x + 1 ln + 1 ln x + + C = = 1 ln x + 1 ln x + + (1 ln + C) = ln x(x + ) + K Una primitiva di f(x), supponendo x>0, è quindi ln x + x : la risposta corretta è la [C]. QUESITO 8 S n rappresenta la somma dei primi n numeri naturali dispari. La successione di termine generale a n tale che a n =, è: S n n [A] costante ; [B] crescente ; [C] decrescente. Una sola alternativa è corretta: individuarla e fornire una spiegazione della scelta operata. S n = (n 1), con n = 1,,, n Si tratta della somma dei primi n termini di una progressione aritmetica di ragione e primo termine 1, pertanto: S n = (n 1) = (s 1 + s n ) n = (1 + (n 1)) n = n (allo stesso risultato si può pervenire applicando il Principio di induzione matematica). 5/ 7
6 Abbiamo quindi: a n = S n n = n n = 1 La risposta esatta è quindi la [A]. QUESITO 9 Dato un tetraedro regolare, si consideri il quadrilatero avente per vertici i punti medi degli spigoli di due facce. Dimostrare che si tratta di un quadrato. Per una nota proprietà dei triangoli (la congiungente i punti medi di due lati di un triangolo è parallela al terzo lato ed uguale alla sua metà) KN ed LO son paralleli a BC ed uguali alla sua metà, quindi sono tra di loro uguali e paralleli; in modo analogo KL ed NO sono uguali alla meta di AD e ad esso paralleli; siccome gli spigoli del tetraedro sono tra di loro uguali, concludiamo che il quadrilatero richiesto KLON è un rombo (lati opposti paralleli e lati tutti uguali tra di loro). Per dimostrare che il quadrilatero è un quadrato dimostriamo che le diagonali KO ed LN sono uguali. Per l evidente simmetria della figura, la distanza di K da O (cioè del punto medio di uno spigolo dal punto medio dello spigolo non complanare) è uguale alla distanza di N da L (K sta nella posizione di N come O sta nella posizione di L); concludiamo che le diagonali KO ed LN sono uguali, quindi il quadrilatero KLON (rombo) è un quadrato. QUESITO 10 Di due rette a, b assegnate nello spazio ordinario si sa soltanto che entrambe sono perpendicolari a una stessa retta p. a) È possibile che le rette a, b siano parallele? b) È possibile che le rette a, b siano ortogonali? c) Le rette a, b sono comunque parallele? d) Le rette a, b sono comunque ortogonali? Per ciascuna delle quattro domande motivare la relativa risposta. 6/ 7
7 a) Sì, a e b possono essere parallele, basta che a, b e p appartengano allo stesso piano. b) Sì, per esempio a e b possono essere perpendicolari se incontrano p nello stesso punto: si immagini un sistema di assi cartesiani ortogonali x,y,z e si consideri a coincidente con l asse x, b con l asse z e p con l asse y; in tal caso a e b sono perpendicolari nell origine O degli assi cartesiani. c) No, per esempio nel caso b) sono perpendicolari. d) No, abbiamo visto nel caso a) che possono essere parallele. Con la collaborazione di Angela Santamaria 7/ 7
ESAME DI STATO DI LICEO SCIENTIFICO Sessione suppletiva
ESAME DI STATO DI LICEO SCIENTIFICO Sessione suppletiva 00 Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PROBLEMA Se il polinomio f () si divide per si
M557 - ESAME DI STATO DI LICEO SCIENTIFICO
Pag. 1/1 Sessione ordinaria 2001 $$$$$.2.1/1 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1. Si consideri la seguente relazione tra le variabili
SIMULAZIONE - 29 APRILE QUESITI
www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione
PNI SESSIONE SUPPLETIVA QUESITO 1
www.matefilia.it PNI 26 - SESSIONE SUPPLETIVA QUESITO Si considerino il rettangolo ABCD e la parabola avente l asse di simmetria parallelo alla retta AD, il vertice nel punto medio del lato AB e passante
SIMULAZIONE - 29 APRILE QUESITI
www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione
PNI SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1
www.matefilia.it PNI 200 - SESSIONE SUPPLETIVA QUESTIONARIO QUESITO Enunciare il teorema del valor medio o di Lagrange illustrandone il legame con il teorema di Rolle e le implicazioni ai fini della determinazione
ORDINAMENTO SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1
www.matefilia.it ORDINAMENTO 2003 - SESSIONE SUPPLETIVA QUESTIONARIO QUESITO Tra i rettangoli aventi la stessa area di 6 m 2 trovare quello di perimetro minimo. Indicate con x ed y le misure della base
Liceo Scientifico di ordinamento anno ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO anno PROBLEMA 1
Liceo Scientifico di ordinamento anno 00-00 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO anno 00-00 PROBLEMA Punto a Indicati rispettivamente con V ed S il volume e l area totale di T e con
ORDINAMENTO SESSIONE SUPPLETIVA QUESITO 1
www.matefilia.it ORDINAMENTO 2005 - SESSIONE SUPPLETIVA QUESITO 1 È dato un trapezio rettangolo, in cui le bisettrici degli angoli adiacenti al lato obliquo si intersecano in un punto del lato perpendicolare
ORDINAMENTO 2014 SESSIONE SUPPLETIVA - PROBLEMA 1
www.matefilia.it ORDINAMENTO 20 SESSIONE SUPPLETIVA - PROBLEMA Sono dati un quarto di cerchio AOB e la tangente t ad esso in A. Dal punto O si mandi una semiretta che intersechi l arco AB e la tangente
Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04/11/ 13
Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04// 3 Esercizio. Si consideri la funzione ) se 0 f) e se 0. e si verifichi che non è continua in 0. Che tipo di discontinuità presenta in
Esame di Stato di Liceo Scientifico Corso di Ordinamento
Corso di Ordinamento Soluzione dei Temi di Matematica proposti nella Sessione Ordinaria 006 Sessione Ordinaria 006 Corso di Ordinamento Sommario Problema Punto a) Punto b) Punto c) Punto Finale 4 Problema
SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1
www.matefilia.it SESSIONE SUPPLETIVA 216 - QUESTIONARIO QUESITO 1 Si consideri questa equazione differenziale: y + 2y + 2y = x. Quale delle seguenti funzioni ne è una soluzione? Si giustifichi la risposta.
COMUNICAZIONE OPZIONE SPORTIVA QUESTIONARIO QUESITO 1
www.matefilia.it COMUNICAZIONE OPZIONE SPORTIVA 7 - QUESTIONARIO QUESITO Definito il numero E come: E = xe x dx, dimostrare che risulta: x e x dx = e E esprimere x e x dx in termini di e ed E. Cerchiamo
ESAME DI STATO DI LICEO SCIENTIFICO Sessione suppletiva
ESAME DI STATO DI LICEO SCIENTIFICO Sessione suppletiva PROBLEMA Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. Si consideri la funzione reale f m di variabile
QUESITO 1 = 49 [ (25 3) = QUESITO 2
www.matefilia.it Scuole italiane all estero (Europa) 008 Quesiti QUESITO 1 La regione R delimitata dal grafico di y = 7 x, dall asse x e dalla retta x= è la base di un solido S le cui sezioni, ottenute
1) Ricava il dominio di ciascuna delle due funzioni e scrivilo attraverso intervalli
1) Ricava il dominio di ciascuna delle due funzioni e scrivilo attraverso intervalli A) 1 2 B) [ A) 2 x 1; B) (-, - 3) ( - 3, 0) ( 0, + ) ] 2) Riferendoti al grafico rappresentato completa a) Il dominio
PNI SESSIONE SUPPLETIVA QUESITO 1
www.matefilia.it PNI 8 - SESSIONE SUPPLETIVA QUESITO Si determinino le costanti a e b in modo tale che la funzione: ax + b per x f(x) = { e x per x > x risulti continua e derivabile nel punto x=. Per essere
Scuole italiane all estero (Calendario australe) 2007 Suppletiva QUESITO 1
www.matefilia.it Scuole italiane all estero (Calendario australe) 2007 Suppletiva QUESITO 1 Si vuole che delle due radici dell equazione x 2 + 2(h + 1)x + m 2 h 2 = 0 una risulti doppia dell altra. Quale
Esame di Stato di Liceo Scientifico Corso di Ordinamento
Corso di Ordinamento Soluzione dei Temi di Matematica proposti nella Sessione Ordinaria 8 Sessione Ordinaria 8 Corso di Ordinamento Sommario Problema Punto a) Punto b) Punto c) Punto d) 5 Problema 6 Punto
ORDINAMENTO SESSIONE SUPPLETIVA QUESITO 1
www.matefilia.it ORDINAMENTO 0 - SESSIONE SUPPLETIVA QUESITO Si sa che certi uccelli, durante la migrazione, volano ad un altezza media di 60 metri. Un ornitologa osserva uno stormo di questi volatili,
PNI 2004 SESSIONE STRAORDINARIA - QUESITI QUESITO 1
www.matefilia.it PNI 004 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 Calcolare l ampiezza dell angolo diedro formato da due facce consecutive di un ottaedro regolare, espressa in gradi sessagesimali e approssimata
ORDINAMENTO 2014 SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1
www.matefilia.it ORDINAMENTO 2 SESSIONE SUPPLETIVA QUESTIONARIO QUESITO Si determini il dominio della funzione f(x) = e 2x 3e x + 2 e 2x 3e x + 2 e x, e x 2 x, x ln2 DOMINIO: < x, ln2 x < + QUESITO 2 3
LICEO SCIENTIFICO QUESTIONARIO QUESITO 1
www.matefilia.it LICEO SCIENTIFICO 7 - QUESTIONARIO QUESITO Definito il numero E come: E = e d, dimostrare che risulta: e d = e E esprimere e d in termini di e ed E. Cerchiamo una primitiva di e integrando
SESSIONE SUPPLETIVA PNI QUESTIONARIO QUESITO 1
www.matefilia.it SESSIONE SUPPLETIVA PNI 2003 - QUESTIONARIO QUESITO 1 Nota lunghezza di una corda di un cerchio di dato raggio, calcolare quella della corda sottesa dall angolo al centro uguale alla metà
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2006 Sessione suppletiva
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 006 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PROBLEMA Nel piano, riferito
LICEO SCIENTIFICO SESSIONE STRAORDINARIA PROBLEMA 2
1\ www.matefilia.it LICEO SCIENTIFICO SESSIONE STRAORDINARIA 16 - PROBLEMA La funzione f: R R è così definita: f(x) = sen(x) x cos (x) 1) Dimostra che f è una funzione dispari, che per x ], ] si ha f(x)
PRIMA SIMULAZIONE - 10 DICEMBRE QUESITI
www.matefilia.it PRIMA SIMULAZIONE - 0 DICEMBRE 05 - QUESITI Q Lanciando una coppia di dadi cinque volte qual è la probabilità che si ottenga un punteggio totale maggiore di sette almeno due volte? Calcoliamo
Y557 - ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PIANO NAZIONALE INFORMATICA Tema di: MATEMATICA ( ) 2
Sessione straordinaria LS_PNI 7 Y557 - ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PIANO NAZIONALE INFORMATICA Tema di: MATEMATICA Problema Si consideri la funzione: a y ( dove a è un parametro
CALENDARIO BOREALE 2 AMERICHE 2015 QUESITO 1
www.matefilia.it Indirizzi: LI0, EA0 SCIENTIFICO; LI0 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE AMERICHE 0 QUESITO Determinare il volume del solido generato dalla rotazione attorno alla
LICEO SCIENTIFICO SESSIONE STRAORDINARIA 2017 QUESTIONARIO QUESITO 1. = lim. = lim QUESITO 2
www.matefilia.it LICEO SCIENTIFICO SESSIONE STRAORDINARIA 217 QUESTIONARIO QUESITO 1 Calcolare la derivata della funzione f(x) = ln(x), adoperando la definizione di derivata. Ricordiamo che la definizione
ORDINAMENTO SESSIONE SUPPLETIVA QUESITO 1
www.matefilia.it ORDINAMENTO 8 - SESSIONE SUPPLETIVA QUESITO Si determini la distanza delle due rette parallele: 3x + y 3, 6x + y + 5 La distanza richiesta è data dalla distanza di un punto di una delle
Matematica classe 5 C a.s. 2012/2013
Matematica classe 5 C a.s. 2012/2013 Asintoti e grafici 1) Una funzione y = f(x) gode delle seguenti caratteristiche: D / 4, y 0 se x 0 x 2, lim, 3. Rappresentare un grafico qualitativo della funzione.
SIMULAZIONE SECONDA PROVA SCRITTA 02 APRILE Tema di MATEMATICA e FISICA PROBLEMA 2
www.matefilia.it SIMULAZIONE SECONDA PROVA SCRITTA 2 APRILE 29 Tema di MATEMATICA e FISICA PROBLEMA 2 Assegnato un numero reale positivo k, considerare le funzioni f e g così definite: f(x) = x (k x) g(x)
LICEO SCIENTIFICO SESSIONE STRAORDINARIA 2016 QUESTIONARIO QUESITO 1. lim. = lim cos(x) = 1 2 QUESITO 2
www.matefilia.it LICEO SCIENTIFICO SESSIONE STRAORDINARIA 6 QUESTIONARIO QUESITO Calcolare il limite: sen(cos(x) ) lim x ln (cos (x)) Ricordiamo che, se f(x) tende a zero, risulta: senf(x)~f(x) ed ln (
ORDINAMENTO SESSIONE SUPPLETIVA QUESITO 1
www.matefilia.it ORDINAMENTO 010 - SESSIONE SUPPLETIVA QUESITO 1 In cima ad una roccia a picco sulla riva di un fiume è stata costruita una torretta d osservazione alta 11 metri. Le ampiezze degli angoli
Problema ( ) = 0,!
Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente
PNI 2010 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 QUESITO 2
www.matefilia.it PNI 2010 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 Due osservatori si trovano ai lati opposti di un grattacielo, a livello del suolo. La cima dell edificio dista 1600 metri dal primo
ORDINAMENTO 2007 SESSIONE STRAORDINARIA - QUESITI QUESITO 1
www.matefilia.it ORDINAMENTO 2007 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 Si determini il campo di esistenza della funzione y = (x 2 3x) 1 x 4. Ricordiamo che il campo di esistenza di una funzione del
Esame di maturità scientifica, corso di ordinamento a. s
Problema 1 Esame di maturità scientifica, corso di ordinamento a. s. -4 Sia f la funzione definita da: f()=- Punto 1 Disegnate il grafico G di f()=-. La funzione f()=- è una funzione polinomiale (una cubica).
PROGRAMMA DI MATEMATICA APPLICATA Classe III SIA sez. A A.S. 2015/2016
PROGRAMMA DI MATEMATICA APPLICATA Classe III SIA sez. A A.S. 2015/2016 LE DISEQUAZIONI 1. Le disequazioni di primo e secondo grado 2. Le disequazioni di grado superiore al secondo e le disequazioni fratte
ORDINAMENTO 2009 SESSIONE STRAORDINARIA - QUESITI QUESITO 1
www.matefilia.it ORDINAMENTO 009 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 Si inscriva in una semisfera di raggio R il tronco di cono di massima superficie laterale, avente la base maggiore coincidente
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 Sessione straordinaria
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Sessione straordinaria Il candidato risolva uno dei due problemi a dei 0 quesiti in cui si articola il questionario. PROBLEMA In un piano è
( ) 2. Determina il resto della divisione fra il polinomio P ( x) 2 2x. 3. Per quale valore del parametro m il polinomio P(
ALGEBRA E ANALITICA. Determina il resto della divisione fra il polinomio P ( ) e il binomio D ( ). [ R ( ) ] + + + ( ) Detto D() il polinomio divisore, Q() il polinomio quoziente, R() il resto, il polinomio
PNI SESSIONE SUPPLETIVA QUESITO 1
www.matefilia.it PNI - SESSIONE SUPPLETIVA QUESITO Si sa che certi uccelli, durante la migrazione, volano ad un altezza media di 6 metri. Un ornitologa osserva uno stormo di questi volatili, mentre si
ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I Sessione suppletiva
ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 006 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PROBLEMA Nel piano,
Esame di MATEMATICA CORSO BASE del
Esame di MATEMATICA CORSO BASE del Cognome Matricola Nome Esercizio. Si consideri il seguente sistema x 3y + z =5 x ky +z = k kx y z = Si trovino il numero delle soluzioni al variare del parametro k e
AMERICHE QUESTIONARIO QUESITO 1
www.matefilia.it AMERICHE 26 - QUESTIONARIO QUESITO Tre circonferenze di raggio sono tangenti esternamente una all altra. Qual è l area della regione interna che esse delimitano? Osserviamo che il triangolo
ORDINAMENTO 2006 SESSIONE STRAORDINARIA - QUESITI QUESITO 1
www.matefilia.it ORDINAMENTO 2006 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 È assegnato un pentagono regolare di lato lungo L. Recidendo opportunamente, in esso, cinque triangoli congruenti, si ottiene
Indirizzo: Tema di Il candidato risolva uno dei due problemi e 4 quesiti del questionario. PROBLEMA 1 PROBLEMA 2
Sessione ordinaria all estero (EUROPA) 8-9 ESAMI DI STATO DI LICEO SCIENTIFICO SCUOLE ITALIANE ALL ESTERO: EUROPA CORSO DI ORDINAMENTO Indirizzo: SCIENTIFICO Tema di: MATEMATICA Il candidato risolva uno
la velocità degli uccelli è di circa (264:60= 4.4) m/s)
QUESTIONARIO 1. Si sa che certi uccelli, durante la migrazione, volano ad un altezza media di 260 metri. Un ornitologa osserva uno stormo di questi volatili, mentre si allontana da lei in linea retta,
ORDINAMENTO SESSIONE SUPPLETIVA QUESITO 1
www.matefilia.it ORDINAMENTO 7 - SESSIONE SUPPLETIVA QUESITO 1 Si calcoli il ite della funzione x cosx x sen x, quando x tende a. x cosx x x sen x = [F. I. ] x x cosx x (1 sen x x ) x cosx 1 sen x x =
il discriminante uguale a zero; sviluppando i calcoli si ottiene che deve essere
Macerata maggio 0 classe M COMPITO DI MATEMATICA RECUPERO ASSENTI QUESITO Considera il fascio di curve di equazione: x y (.) = k + k 6 a) Trova per quali valori di k si hanno delle ellissi. Deve essere
12 Simulazione di prova d Esame di Stato
2 Simulazione di prova d Esame di Stato Problema Risolvi uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario È assegnata la funzione = f() =( +2)e 2 +, essendo una variabile reale.
Scuole italiane all estero (Calendario australe) 2008 Suppletiva QUESITO 1
www.matefilia.it Scuole italiane all estero (Calendario australe) 2008 Suppletiva QUESITO 1 Le misure dei lati di un triangolo sono 30, 70 e 90 cm. Si calcolino, con l aiuto di una calcolatrice, le ampiezze
ORDINAMENTO 2012 SESSIONE STRAORDINARIA - QUESITI QUESITO 1
www.matefilia.it ORDINAMENTO 22 SESSIONE STRAORDINARIA - QUESITI QUESITO Alcuni ingegneri si propongono di costruire una galleria rettilinea che colleghi il paese A, situato su un versante di una collina,
Si tratta di una funzione definita a tratti, il cui intervallo di definizione è suddiviso in 4 intervalli, AO-OB-BC- CD.
PROBLEMA 1 Sia una funzione continua sull intervallo chiuso [-4, 6]. Il suo grafico, riportato in figura, passa per i punti A(-4;0), O(0,0),B(2;2), C(4;2), D(6;0) e consiste della semicirconferenza di
1) Qual è il parallelogrammo di area massima tra quelli di lati assegnati? Giustificare la risposta.
TEMA PROBLEMA k Sono assegnate le funzioni di equazione y = e, essendo k un numero reale. a. stabilire al variare di k il numero di punti stazionari e la loro natura b. stabilire per quali valori di k
FUNZIONI REALI DI UNA VARIABILE REALE
FUNZIONI REALI DI UNA VARIABILE REALE INTERVALLI Per definire il campo di esistenza (o dominio) di una funzione reale di variabile reale y=f()si devono indicare talvolta insiemi di numeri reali che su
Verifiche di matematica classe 3 C 2012/2013
Verifiche di matematica classe 3 C 2012/2013 1) È assegnato il punto P 1 (3; 1), calcolare le coordinate dei punti: P 2 simmetrico di P 1 rispetto alla bisettrice del primo e terzo quadrante P 3 simmetrico
ORDINAMENTO SESSIONE SUPPLETIVA QUESITO 1
www.matefilia.it ORDINAMENTO 2009 - SESSIONE SUPPLETIVA QUESITO 1 Una piramide, avente area di base B e altezza h, viene secata con un piano parallelo alla base. Si calcoli a quale distanza dal vertice
CORREZIONE DEL COMPITO IN CLASSE DI MATEMATICA
CORREZIONE DEL COMPITO IN CLASSE DI MATEMATICA n. (8 dicembre 009) PROBLEMA Punto a b = ( f '( ) = 0 a( b( (*) = a( b( da cui: a b a 9b = = 5 5 5 5 a 9 5 passaggio per, a 5 = 5 5 5 6 f ' uguale a zero
Soluzione di Adriana Lanza
Soluzione Dimostriamo che f(x) è una funzione dispari Osserviamo che in quanto in quanto x è una funzione dispari è una funzione dispari in quanto prodotto di una funzione dispari per una pari Pertanto
ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA
ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA PRIMA PARTE Intervallo limitato di numeri reali Dati due numeri reali a e b, con a
QUESITO 1. Lanciando due dadi, qual è il numero che ha maggiore probabilità di uscita? Qual è la probabilità che esca un numero primo?
www.matefilia.it PNI 29 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 Lanciando due dadi, qual è il numero che ha maggiore probabilità di uscita? Qual è la probabilità che esca un numero primo? Nel lancio
PNI 2013 SESSIONE STRAORDINARIA - QUESITI QUESITO 1
www.matefilia.it PNI 203 SESSIONE STRAORDINARIA - QUESITI QUESITO Un ufficiale della guardia di finanza, in servizio lungo un tratto rettilineo di costa, avvista una motobarca di contrabbandieri che dirige
ORDINAMENTO 2011 QUESITO 1
www.matefilia.it ORDINAMENTO 0 QUESITO Consideriamo la sezione della sfera e del cilindro con un piano passante per l asse del cilindro: Indicando con x il diametro di base del cilindro, con y la sua altezza
4 Simulazione di prova d Esame di Stato
Simulazione di prova d Esame di Stato Problema Risolvi uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario Si consideri una sfera di centro O e raggio R; sia SS un suo diametro. Un
Soluzioni dei problemi della maturità scientifica A.S. 2007/2008
Soluzioni dei problemi della maturità scientifica A.S. 007/008 Nicola Gigli Sunra J.N. Mosconi 19 giugno 008 Problema 1 (a) Determiniamo in funzione di a i lati del triangolo. Essendo l angolo BĈA retto
QUESITO 1. Quante sono tutte le funzioni iniettive da un insieme A di n elementi in un insieme B di m elementi?
www.matefilia.it Quesiti QUESITO Quante sono tutte le funzioni iniettive da un insieme A di n elementi in un insieme B di m elementi? Ad ogni elemento di A deve corrispondere uno ed un solo elemento di
1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.
Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente
8 Simulazione di prova d Esame di Stato
8 Simulazione di prova d Esame di Stato Problema Risolvi uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario Si consideri la famiglia di funzioni f α () = a e a con a parametro reale
