PNI 2014 SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1
|
|
|
- Carmelo Mele
- 8 anni fa
- Visualizzazioni
Transcript
1 PNI 4 SESSIONE SUPPLETIVA QUESTIONARIO QUESITO Si determini il dominio della funzione f(x) = e x 3e x + e x 3e x + e x, e x x, x ln DOMINIO: < x, ln x < + QUESITO 3 La funzione: f(x) = sen x è evidentemente continua nel punto x=. Si dimostri che nello stesso punto non è derivabile. La derivata non esiste in x= ed è in particolare: lim x f (x) = + Quindi in x= abbiamo un flesso a tangente verticale.
2 QUESITO 3 Si scriva l equazione della tangente al diagramma della funzione: nel punto P di ascissa x = π. f(x) = x 3 ( + sen x ) Risulta: f ( π ) = 3π La derivata f (x) della funzione è: f ( π ) = 4 3π La tangente in P ha quindi equazione: y 3π = 4 3π (x π ) y = 4 3π x 3π QUESITO 4 Data la parte finita di piano compresa tra le rette x+y-= e x-= ed il grafico della funzione y = e x, si determini la sua area ed il volume del solido ottenuto facendola ruotare di un giro completo attorno all asse x. L area della parte di piano richiesta è data da: A(S) = (e x ( x + ))dx = [e x + x x] = (e 3 ) u. u Il volume richiesto si ottiene sottraendo al volume V ottenuto dalla rotazione attorno all asse x del trapezoide ABCD il volume V del cono ottenuto dalla rotazione attorno all asse x del triangolo T (che ha raggio AD= e altezza AB=). V = π (e x ) dx = π e x dx = π [ ex ] = π ( e ) = π (e )
3 V = 3 π = 3 π V V = π (e ) 3 π = π 6 (3e 5) u 3 QUESITO 5 Un osservatore posto sulla riva di un lago a 36 m sopra il livello dell acqua, vede un aereo sotto un angolo di elevazione α di 4,4 e la sua immagine riflessa sull acqua sotto un angolo di depressione β di 46,5. Si trovi l altezza dell aereo rispetto all osservatore. BB è perpendicolare alla linea dell orizzonte o e risulta BF=B F (B è il simmetrico di B rispetto alla superficie del lago. L altezza richiesta è h=bd. AD = h cotg α = h cotg 4.4 AD = B D cotg β (h + 47) cotg 46.5 Quindi: h cotg 4.4 = (h + 47) cotg 46.5, da cui : h = 47 cotg 46.5 cotg 4.4 cotg m L altezza dell aereo rispetto all osservatore è di circa 364 metri. N.B. Non abbiamo tenuto conto della rifrazione del raggio B A nel passaggio acqua-aria. 3
4 QUESITO 6 Si disegni il grafico della funzione: f (x) = distanza di x dal più prossimo intero. Si dica se f (x) è una funzione periodica e si calcoli l area della regione di piano delimitata da, dall asse x e dalla retta x = 9 9 nell intervallo [, ]. Se x è intero f(x) = Se x = + k, con k Z: f(x) = Risulta chiaramente: f(x) Se < x < l intero più vicino ad x è, quindi f(x) = x Analizziamo gli x positivi: Se < x < 3 Se 3 < x < 5 l intero più vicino ad x è, quindi f(x) = x l intero più vicino ad x è, quindi f(x) = x In generale, per ogni intero n 4
5 Se n+ < x < n+3 l intero più vicino ad x è n +, quindi f(x) = n + x Analizziamo gli x negativi: Se 3 < x < Se 5 < x < 3 l intero più vicino ad x è -, quindi f(x) = + x l intero più vicino ad x è -, quindi f(x) = + x In generale, per ogni intero n Se n+3 < x < n+ l intero più vicino ad x è n, quindi f(x) = n + + x Notiamo che la funzione è simmetrica rispetto all asse y e che è periodica di periodo. Calcoliamo l area della regione S di piano delimitata da, dall asse x e dalla retta x = 9 nell intervallo [, 9 ]. L area della regione richiesta (AFLM) si può facilmente ottenere sottraendo all area del triangolo AFN l area del triangolo LMN. A(AFN) = = 4 LM = MN = 9 = A(LMN) = = Pertanto: 5
6 A(AFLM) = A(AFN) A(LMN) = 4 = 49 =.45 u QUESITO 7 Utilizzando uno dei metodi di integrazione numerica studiati, si calcoli un valore approssimato dell area della superficie piana delimitata dalla curva di equazione Φ(x) = x e dall asse x nell intervallo x π e Trattandosi di una funzione pari, l area richiesta è data da: π e x dx = π e x dx = π e x dx Consideriamo la funzione g(x) = e x e l intervallo [;]; calcoliamo l integrale I = e x dx utilizzando il metodo dei trapezi. Dividiamo l intervallo in n=5 parti. e x dx h [ g(x ) + g(x 5 ) + g(x ) + g(x ) + g(x 3 ) + g(x 4 )] Dove: h = 5 = 5 =. x =, x = + h =., x =.4, x 3 =.6, x 4 =.8, x 5 = e x dx g() + g(). [ + g(.) + g(.4) + g(.6) + g(.8)] = 6
7 =. [ + e + e 5 + e e e 6 5] = N.B. π e x dx = π e x dx = π e x dx La funzione Φ(x) = π e x è la distribuzione normale standard (σ =, μ = ). L area richiesta rappresenta la probabilità che la variabile aleatoria X assuma valori tra - e (tra σ e + σ) e tale probabilità, come è noto, è del 68%. QUESITO 8 Si consideri l equazione log x e x =. Si dimostri che essa ammette una soluzione reale appartenente all intervallo x e se ne calcoli un valore approssimato con due cifre decimali esatte. L equazione può essere vista nella forma: log x = e x. Confrontiamo graficamente le due funzioni y = log x e y = e x. Dal confronto grafico segue chiaramente che l equazione ammette una ed una sola soluzione tra - e -. Cerchiamo una valore approssimato con due cifre decimali esatte della soluzione. Utilizziamo il metodo di bisezione nell intervallo [a, b] = [, ]. f(x) = ln x e x. 7
8 Servono 8 iterazioni per arrivare all approssimazione richiesta: x =. 3 diagramma di convergenza Usando il metodo delle tangenti, sono sufficienti iterazioni per arrivare alla precisione richiesta (.3). 8
9 f(a) = f( ) = ln() e > f(b) = f( ) = e < f (x) = x ex f (x) = x ex < in [a, b] = [, ] Essendo f(a) f (x) < in [a, b] = [, ] dobbiamo assumere come punto iniziale di iterazione x = b =. x n+ = x n f(x n) f (x n ) x = x f(x ) f (x ) f( ) = = e f ( ) =.69 e x = x f(x ) ln(.69) e.69 f =.69 (x ) e.69 x 3 = x f(x ) ln(.39) e.39 f =.39 (x ) e.39 Quindi la radice approssimata con due cifre decimali è x Diagramma di iterazione: QUESITO 9 Un mazzo di tarocchi è costituito da 78 carte: carte figurate, dette Arcani maggiori, 4 carte di bastoni, 4 di coppe, 4 di spade e 4 di denari. Estraendo a caso da tale mazzo, l una dopo l altra con reinserimento, 4 carte, qual è la probabilità che almeno una di esse sia un Arcano maggiore? Determiniamo la probabilità q che nessuna sia un Arcano maggiore : q = ( ) 4 9
10 La probabilità p che almeno una carta sia un Arcano maggiore è: p = q = ( ) % QUESITO Nel poscritto al suo racconto Il Mistero di Marie Rogêt, Edgar Allan Poe sostiene che, avendo un giocatore di dadi fatto doppio sei per due volte consecutive, vi è una ragione sufficiente per scommettere che gli stessi sei non usciranno ad un terzo tentativo. Ha ragione? Si motivi esaurientemente la risposta. No, Edgar Allan Poe NON ha ragione. La probabilità che esca un doppio 6 al terzo tentativo (.8%) è indipendente dal fatto 36 che sia già uscito un doppio 6 le due volte precedenti; tale probabilità è comunque bassa, quindi scommettendo si ha un alta probabilità di vincere (circa 97.%), ma non perché il doppio 6 è già uscito le due volte precedenti! Con la collaborazione di Angela Santamaria, Simona Scoleri e Stefano Scoleri
11
ORDINAMENTO 2014 SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1
www.matefilia.it ORDINAMENTO 2 SESSIONE SUPPLETIVA QUESTIONARIO QUESITO Si determini il dominio della funzione f(x) = e 2x 3e x + 2 e 2x 3e x + 2 e x, e x 2 x, x ln2 DOMINIO: < x, ln2 x < + QUESITO 2 3
A T T E N Z I O N E. Ministero dell Istruzione, dell Università e della Ricerca
Pag. 1/6 Sessione suppletiva 014 A T T E N Z I O N E Il plico relativo a questa prova contiene due temi: il primo destinato ai corsi sperimentali, il secondo ai corrispondenti corsi di ordinamento e ai
PNI SESSIONE SUPPLETIVA QUESITO 1
www.matefilia.it PNI 8 - SESSIONE SUPPLETIVA QUESITO Si determinino le costanti a e b in modo tale che la funzione: ax + b per x f(x) = { e x per x > x risulti continua e derivabile nel punto x=. Per essere
PNI 2014 SESSIONE STRAORDINARIA - QUESITI QUESITO 1
www.matefilia.it PNI 0 SESSIONE STRAORDINARIA - QUESITI QUESITO Un gruppo di attivisti antinucleari ha organizzato una marcia di protesta verso un sito scelto per la costruzione di una centrale termonucleare.
QUESITO 1 QUESITO 2. quando x tende a 0 +.
www.matefilia.it PNI 0 SESSIONE STRAORDINARIA - QUESITI QUESITO Una fotografa naturalista individua un uccello raro appollaiato su un albero. L angolo di elevazione è di e il telemetro dell apparecchio
PNI SESSIONE SUPPLETIVA QUESITO 1
www.matefilia.it PNI - SESSIONE SUPPLETIVA QUESITO Si sa che certi uccelli, durante la migrazione, volano ad un altezza media di 6 metri. Un ornitologa osserva uno stormo di questi volatili, mentre si
PNI 2010 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 QUESITO 2
www.matefilia.it PNI 2010 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 Due osservatori si trovano ai lati opposti di un grattacielo, a livello del suolo. La cima dell edificio dista 1600 metri dal primo
ORDINAMENTO SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1
www.matefilia.it ORDINAMENTO 2003 - SESSIONE SUPPLETIVA QUESTIONARIO QUESITO Tra i rettangoli aventi la stessa area di 6 m 2 trovare quello di perimetro minimo. Indicate con x ed y le misure della base
PNI 2013 SESSIONE STRAORDINARIA - QUESITI QUESITO 1
www.matefilia.it PNI 203 SESSIONE STRAORDINARIA - QUESITI QUESITO Un ufficiale della guardia di finanza, in servizio lungo un tratto rettilineo di costa, avvista una motobarca di contrabbandieri che dirige
ORDINAMENTO SESSIONE SUPPLETIVA QUESITO 1
www.matefilia.it ORDINAMENTO 8 - SESSIONE SUPPLETIVA QUESITO Si determini la distanza delle due rette parallele: 3x + y 3, 6x + y + 5 La distanza richiesta è data dalla distanza di un punto di una delle
ORDINAMENTO SESSIONE SUPPLETIVA QUESITO 1
www.matefilia.it ORDINAMENTO 010 - SESSIONE SUPPLETIVA QUESITO 1 In cima ad una roccia a picco sulla riva di un fiume è stata costruita una torretta d osservazione alta 11 metri. Le ampiezze degli angoli
PNI SESSIONE SUPPLETIVA QUESITO 1
www.matefilia.it PNI 26 - SESSIONE SUPPLETIVA QUESITO Si considerino il rettangolo ABCD e la parabola avente l asse di simmetria parallelo alla retta AD, il vertice nel punto medio del lato AB e passante
PNI SESSIONE SUPPLETIVA QUESITO 1
www.matefilia.it PNI 010 - SESSIONE SUPPLETIVA QUESITO 1 In cima ad una roccia a picco sulla riva di un fiume è stata costruita una torretta d osservazione alta 11 metri. Le ampiezze degli angoli di depressione
SIMULAZIONE - 29 APRILE QUESITI
www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione
PNI SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1
www.matefilia.it PNI 200 - SESSIONE SUPPLETIVA QUESTIONARIO QUESITO Enunciare il teorema del valor medio o di Lagrange illustrandone il legame con il teorema di Rolle e le implicazioni ai fini della determinazione
ORDINAMENTO SESSIONE SUPPLETIVA QUESITO 1
www.matefilia.it ORDINAMENTO 7 - SESSIONE SUPPLETIVA QUESITO 1 Si calcoli il ite della funzione x cosx x sen x, quando x tende a. x cosx x x sen x = [F. I. ] x x cosx x (1 sen x x ) x cosx 1 sen x x =
ORDINAMENTO 2007 SESSIONE STRAORDINARIA - QUESITI QUESITO 1
www.matefilia.it ORDINAMENTO 2007 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 Si determini il campo di esistenza della funzione y = (x 2 3x) 1 x 4. Ricordiamo che il campo di esistenza di una funzione del
PNI SESSIONE SUPPLETIVA QUESITO 1
www.matefilia.it PNI 009 - SESSIONE SUPPLETIVA QUESITO 1 Nel gioco del lotto, qual è la probabilità dell estrazione di un numero assegnato? Quante estrazioni occorre effettuare perché si possa aspettare,
ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2007 Sessione suppletiva
ESAME DI STAT DI LIE SIENTIFI RS SPERIMENTALE P.N.I. 7 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PRLEMA Si consideri la funzione
SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1
www.matefilia.it SESSIONE SUPPLETIVA 015 - QUESTIONARIO x QUESITO 1 Data la funzione integrale ln(t) dt, determinare per quali valori di x il suo grafico 1 incontra la retta di equazione y = x + 1. Calcoliamo
ORDINAMENTO SESSIONE SUPPLETIVA QUESITO 1
www.matefilia.it ORDINAMENTO 2009 - SESSIONE SUPPLETIVA QUESITO 1 Una piramide, avente area di base B e altezza h, viene secata con un piano parallelo alla base. Si calcoli a quale distanza dal vertice
A T T E N Z I O N E. Ministero dell Istruzione, dell Università e della Ricerca
Pag. 1/5 Sessione suppletiva 01 $$$$$..1/1 Seconda prova scritta *$$$$$1115* *$$$$$1115* *$$$$$1115* *$$$$$1115* A T T E N Z I O N E Il plico relativo a questa prova contiene due temi: il primo destinato
LICEO SCIENTIFICO QUESTIONARIO QUESITO 1
www.matefilia.it LICEO SCIENTIFICO 015 - QUESTIONARIO QUESITO 1 y = f() ; il suo grafico è tangente alla retta y = + 5 nel secondo quadrante ed inoltre risulta: f () = + 6. Determinare l equazione y =
LICEO SCIENTIFICO QUESTIONARIO QUESITO 1
www.matefilia.it LICEO SCIENTIFICO 7 - QUESTIONARIO QUESITO Definito il numero E come: E = e d, dimostrare che risulta: e d = e E esprimere e d in termini di e ed E. Cerchiamo una primitiva di e integrando
ORDINAMENTO 2011 QUESITO 1
www.matefilia.it ORDINAMENTO 0 QUESITO Consideriamo la sezione della sfera e del cilindro con un piano passante per l asse del cilindro: Indicando con x il diametro di base del cilindro, con y la sua altezza
PRIMA SIMULAZIONE - 10 DICEMBRE QUESITI
www.matefilia.it PRIMA SIMULAZIONE - 0 DICEMBRE 05 - QUESITI Q Lanciando una coppia di dadi cinque volte qual è la probabilità che si ottenga un punteggio totale maggiore di sette almeno due volte? Calcoliamo
A T T E N Z I O N E. Ministero dell Istruzione, dell Università e della Ricerca
Pag. 1/6 Sessione suppletiva 013 A T T E N Z I O N E Il plico relativo a questa prova contiene due temi: il primo destinato ai corsi sperimentali, il secondo ai corrispondenti corsi di ordinamento e ai
COMUNICAZIONE OPZIONE SPORTIVA QUESTIONARIO QUESITO 1
www.matefilia.it COMUNICAZIONE OPZIONE SPORTIVA 7 - QUESTIONARIO QUESITO Definito il numero E come: E = xe x dx, dimostrare che risulta: x e x dx = e E esprimere x e x dx in termini di e ed E. Cerchiamo
LICEO SCIENTIFICO SESSIONE STRAORDINARIA 2016 QUESTIONARIO QUESITO 1. lim. = lim cos(x) = 1 2 QUESITO 2
www.matefilia.it LICEO SCIENTIFICO SESSIONE STRAORDINARIA 6 QUESTIONARIO QUESITO Calcolare il limite: sen(cos(x) ) lim x ln (cos (x)) Ricordiamo che, se f(x) tende a zero, risulta: senf(x)~f(x) ed ln (
QUESITO 1. Quante sono tutte le funzioni iniettive da un insieme A di n elementi in un insieme B di m elementi?
www.matefilia.it Quesiti QUESITO Quante sono tutte le funzioni iniettive da un insieme A di n elementi in un insieme B di m elementi? Ad ogni elemento di A deve corrispondere uno ed un solo elemento di
Problema ( ) = 0,!
Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente
Scuole italiane all estero (Calendario australe) 2008 Suppletiva QUESITO 1
www.matefilia.it Scuole italiane all estero (Calendario australe) 2008 Suppletiva QUESITO 1 Le misure dei lati di un triangolo sono 30, 70 e 90 cm. Si calcolino, con l aiuto di una calcolatrice, le ampiezze
Esame di stato - liceo scientifico P.N.I. - Matematica - a.s Giovanni Torrero
Esame di stato - liceo scientifico P.N.I. - Matematica - a.s. 2008-2009 Giovanni Torrero E-mail address: [email protected] CAPITOLO 1 Problemi 1.1. Primo problema Testo: Sia f la funzione definita
CALENDARIO BOREALE 1 EUROPA 2015 QUESITO 1
www.matefilia.it Indirizzi: LI0, EA0 SCIENTIFICO; LI0 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE EUROPA 05 QUESITO La funzione f(x) è continua per x [ 4; 4] il suo grafico è la spezzata
Esame di maturità scientifica, corso di ordinamento a. s
Problema 1 Esame di maturità scientifica, corso di ordinamento a. s. -4 Sia f la funzione definita da: f()=- Punto 1 Disegnate il grafico G di f()=-. La funzione f()=- è una funzione polinomiale (una cubica).
AMERICHE QUESTIONARIO QUESITO 1
www.matefilia.it AMERICHE 26 - QUESTIONARIO QUESITO Tre circonferenze di raggio sono tangenti esternamente una all altra. Qual è l area della regione interna che esse delimitano? Osserviamo che il triangolo
SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1
www.matefilia.it SESSIONE SUPPLETIVA 216 - QUESTIONARIO QUESITO 1 Si consideri questa equazione differenziale: y + 2y + 2y = x. Quale delle seguenti funzioni ne è una soluzione? Si giustifichi la risposta.
ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE
ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE 1 Scrivi l equazione della retta tangente al grafico di f(x) = (1 + 2x) 4 nel suo punto di intersezione con l asse y 2 Scrivi l equazione della retta tangente
SESSIONE SUPPLETIVA PROBLEMA 1
www.matefilia.it SESSIONE SUPPLETIVA - 15 PROBLEMA 1 Sei stato incaricato di progettare una pista da ballo all esterno di un locale in costruzione in una zona balneare. Il progetto prevede, oltre alla
CALENDARIO BOREALE 2 AMERICHE 2015 QUESITO 1
www.matefilia.it Indirizzi: LI0, EA0 SCIENTIFICO; LI0 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE AMERICHE 0 QUESITO Determinare il volume del solido generato dalla rotazione attorno alla
Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.
Esercizi svolti 1. Sia sin(x ) f(x) = x ( 1 + x 1 ) se x > 0 a x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.. Scrivere l equazione della retta tangente nel punto di ascissa
QUESITO 1. Una strada rettilinea in salita supera un dislivello di 150 m con un percorso di 3 km. Quale è la sua inclinazione?
www.matefilia.it Scuole italiane all estero (Americhe) 008 Quesiti QUESITO 1 Una strada rettilinea in salita supera un dislivello di 150 m con un percorso di 3 km. Quale è la sua inclinazione? Detto α
8 Simulazione di prova d Esame di Stato
8 Simulazione di prova d Esame di Stato Problema Risolvi uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario Si consideri la famiglia di funzioni f α () = a e a con a parametro reale
Per il progetto di una piscina, un architetto si ispira alle funzioni f e g definite, per tutti gli x reali, da:
PROBLEMA 2 PNI Per il progetto di una piscina, un architetto si ispira alle funzioni f e g definite, per tutti gli x reali, da: 1. Si studino le funzioni f e g e se ne disegnino i rispettivi grafici in
ANNO SCOLASTICO SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO INDIRIZZO: SCIENTIFICO CORSI SPERIMENTALI. della funzione y ln( x e)
ANNO SCOLASTICO 009-0 SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO INDIRIZZO: SCIENTIFICO CORSI SPERIMENTALI PROBLEMA Si consideri la funzione: ln( x e) se e x 0 f ( x) x ( x bx) e a se x
ANNO SCOLASTICO SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO INDIRIZZO: SCIENTIFICO CORSI SPERIMENTALI
ANNO SCOLASTICO 009-0 SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO INDIRIZZO: SCIENTIFICO CORSI SPERIMENTALI PROBLEMA Si consideri la funzione: ln( + e) se e < < 0 f ( ) = ( + b) e + a se
la velocità degli uccelli è di circa (264:60= 4.4) m/s)
QUESTIONARIO 1. Si sa che certi uccelli, durante la migrazione, volano ad un altezza media di 260 metri. Un ornitologa osserva uno stormo di questi volatili, mentre si allontana da lei in linea retta,
SESSIONE ORDINARIA 2007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE
SESSIONE ORDINARIA 007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE PROBLEMA Si consideri la funzione f definita da f ( x) x, il cui grafico è la parabola.. Si trovi il luogo geometrico dei
Soluzione Problema 1
Soluzione Problema 1 1. Ricordiamo che una funzione h(x) è derivabile in un punto c se esiste finita la sua derivata nel punto c. Per il significato geometrico della derivata ciò significa che esiste ed
Corso di ordinamento- Sessione ordinaria all estero (EUROPA) - a.s Soluzione di De Rosa Nicola
Corso di ordinamento- Sessione ordinaria all estero (EUROPA - a.s. 007-008 MINISTERO DELLA PUBBLICA ISTRUZIONE SCUOLE ITALIANE ALL ESTERO (EUROPA ESAMI DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria
A T T E N Z I O N E. Ministero dell Istruzione, dell Università e della Ricerca
Pag /7 Sessione straordinaria 03 A T T E N Z I O N E Il plico relativo a questa prova contiene due temi: il primo destinato ai corsi sperimentali, il secondo ai corrispondenti corsi di ordinamento e ai
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2007 Sessione suppletiva
ESAME DI STAT DI LIE SIENTIFI RS DI RDINAMENT 7 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PRBLEMA Rispetto a un sistema di assi cartesiani
Esame di Matematica - Prima parte A.A Parma, 6 Dicembre 2004
- Prima parte A.A. 2004-2005 Parma, 6 Dicembre 2004 1) [3 punti] Risolvete le seguenti disequazioni: a) x 2 < 36 ; b) 5 x x 2 1. 2) [4 punti] Risolvete le seguenti disequazioni: a) x(2 x)( x 4) < 0 ; b)
ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I Sessione ordinaria
ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 00 Sessione ordinaria Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PROBLEMA Sia AB un segmento
Scuole italiane all estero (Calendario australe) 2007 Suppletiva QUESITO 1
www.matefilia.it Scuole italiane all estero (Calendario australe) 2007 Suppletiva QUESITO 1 Si vuole che delle due radici dell equazione x 2 + 2(h + 1)x + m 2 h 2 = 0 una risulti doppia dell altra. Quale
RISOLUZIONE APPROSSIMATA DI UN EQUAZIONE
RISOLUZIONE APPROSSIMATA DI UN EQUAZIONE Introduzione Si vogliano individuare, se esistono, le radici o soluzioni dell equazione f(x)=0. Se f(x) è un polinomio di grado superiore al secondo o se è una
Un serbatoio ha la stessa capacità del cilindro di massimo volume inscritto in una sfera di raggio 60 cm. Quale è la capacità in litri del serbatoio?
Quesiti ord 011 Pagina 1 di 6 a cura dei Prof. A. Scimone, G. Florio,. R. Sofia Quesito 1 Un serbatoio ha la stessa capacità del cilindro di massimo volume inscritto in una sfera di raggio 60 cm. Quale
PNI QUESITO 1 QUESITO 2
www.matefilia.it PNI 0014 QUESITO 1 Per il teorema dei seni risulta: = da cui sen α = Quindi α = arcsen ( ) che porta alle due soluzioni: α 41,810 41 49 α 138 11 QUESITO I poliedri regolari (solidi platonici)
5 Simulazione di prova d Esame di Stato
5 Simulazione di prova d Esame di Stato Problema Risolvi uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario Tra le parabole di equazione k, individuare la parabola γ tangente alla
ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I Sessione suppletiva
ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 006 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PROBLEMA Nel piano,
SIMULAZIONE - 29 APRILE PROBLEMA 1
www.matefilia.it SIMULAZIONE - 29 APRILE 26 - PROBLEMA Le centraline di controllo del Po a Pontelagoscuro (FE) registrano il valore della portata dell'acqua, ovvero il volume d'acqua che attraversa una
Soluzioni dei quesiti della maturità scientifica A.S. 2009/2010
Soluzioni dei quesiti della maturità scientifica AS 009/010 Nicola Gigli Sun-Ra Mosconi giugno 010 Quesito 1 Un generico polinomio di grado n si può scrivere nella forma p(x) a 0 + a 1 x + + a n x n dove
ORDINAMENTO 2006 SESSIONE STRAORDINARIA - QUESITI QUESITO 1
www.matefilia.it ORDINAMENTO 2006 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 È assegnato un pentagono regolare di lato lungo L. Recidendo opportunamente, in esso, cinque triangoli congruenti, si ottiene
12 Simulazione di prova d Esame di Stato
2 Simulazione di prova d Esame di Stato Problema Risolvi uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario È assegnata la funzione = f() =( +2)e 2 +, essendo una variabile reale.
a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.
1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2006 Sessione suppletiva
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 006 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PROBLEMA Nel piano, riferito
SESSIONE SUPPLETIVA PNI QUESTIONARIO QUESITO 1
www.matefilia.it SESSIONE SUPPLETIVA PNI 2003 - QUESTIONARIO QUESITO 1 Nota lunghezza di una corda di un cerchio di dato raggio, calcolare quella della corda sottesa dall angolo al centro uguale alla metà
QUESITO 1 QUESITO 2. La somma di due numeri è s; determinate i due numeri in modo che la somma dei loro cubi sia minima.
www.matefilia.it Scuole italiane all estero (Calendario australe) 2006 QUESITO 1 Si vogliono colorare, con colori diversi, le facce di un tetraedro e le facce di un cubo. In quanti modi ciò è possibile
Soluzioni dei problemi della maturità scientifica A.S. 2012/2013
Soluzioni dei problemi della maturità scientifica A.S. / Nicola Gigli Sun-Ra Mosconi June, Problema. Il teorema fondamentale del calcolo integrale garantisce che Quindi f (x) = cos x +. f (π) = cos π +
{ x + 2y = 3 αx + 2y = 1 αx + y = 0. f(x) = e x 2 +3x+4 x 5. f(x) = x 3 e 7x.
0 Gennaio 006 Teoria: Definizione di derivata puntuale e suo significato geometrico Esercizio Determinare l equazione del piano contenente i vettori u = (,, 3 e v = (,, e passante per P o = (,, Scrivere
ESAME DI STATO 2017 TEMA DI MATEMATICA. Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario.
ESAME DI STATO 217 TEMA DI MATEMATICA Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. Problema 1 Si può pedalare agevolmente su una bicicletta a ruote quadrate? A New
ESAME DI STATO MATEMATICA PNI
ESAME DI STATO 2008 - MATEMATICA PNI Giovanni Torrero [email protected] Indice Capitolo 1. Problemi 5 1.1. Problema 1 5 1.2. Problema 2 14 Capitolo 2. QUESTIONARIO 21 2.1. Domanda n 1 21 2.2. Domanda
Liceo Scientifico di ordinamento anno ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO anno PROBLEMA 1
Liceo Scientifico di ordinamento anno 00-00 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO anno 00-00 PROBLEMA Punto a Indicati rispettivamente con V ed S il volume e l area totale di T e con
Corso di Matematica per la Chimica. Dott.ssa Maria Carmela De Bonis a.a
Dott.ssa Maria Carmela De Bonis a.a. 2013-14 Risoluzione di Equazioni non lineari Sia F C 0 ([a, b]), cioé F è una funzione continua in un intervallo [a, b] R, tale che F(a)F(b) < 0 1.5 1 F(b) 0.5 0 a
1) Ricava il dominio di ciascuna delle due funzioni e scrivilo attraverso intervalli
1) Ricava il dominio di ciascuna delle due funzioni e scrivilo attraverso intervalli A) 1 2 B) [ A) 2 x 1; B) (-, - 3) ( - 3, 0) ( 0, + ) ] 2) Riferendoti al grafico rappresentato completa a) Il dominio
ORDINAMENTO 2009 SESSIONE STRAORDINARIA - QUESITI QUESITO 1
www.matefilia.it ORDINAMENTO 009 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 Si inscriva in una semisfera di raggio R il tronco di cono di massima superficie laterale, avente la base maggiore coincidente
SESSIONE SUPPLETIVA PROBLEMA 1
www.matefilia.it SESSIONE SUPPLETIVA - 215 PROBLEMA 1 Sei stato incaricato di progettare una pista da ballo all esterno di un locale in costruzione in una zona balneare. Il progetto prevede, oltre alla
LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA
LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA PROGRAMMA DI MATEMATICA Classe VB Anno Scolastico 014-015 Insegnante: Prof.ssa La Salandra Incoronata 1 Nozioni di topologia su Intervalli; Estremo superiore
ESAMI DI STATO DI LICEO SCIENTIFICO SPERIMENTAZIONI AUTONOME 1. Tema di MATEMATICA
Sessione suppletiva Sperimentazioni Autonome ESAMI DI STATO DI LICEO SCIENTIFICO SPERIMENTAZIONI AUTONOME SECONDA PROVA SCRITTA Tema di MATEMATICA PROBLEMA Nel piano rierito a coordinate cartesiane ortogonali
CONTINUITÀ E DERIVABILITÀ Esercizi risolti
CONTINUITÀ E DERIVABILITÀ Esercizi risolti. Determinare [cos x] x kπ/ al variare di k in Z. Ove tale ite non esista, discutere l esistenza dei iti laterali. Identificare i punti di discontinuità della
ESAME DI STATO LICEO SCIENTIFICO MATEMATICA 2011
ESAME DI STATO LICEO SCIENTIFICO MATEMATICA PROBLEMA La funzione f ( ) ( )( ) è una funzione dispari di terzo grado Intercetta l asse nei punti ;, ; e ; Risulta f per e per è invece f per e per f ' risulta
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2005
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 5 Il candidato risolva uno dei due problemi e cinque quesiti scelti nel questionario. PROBLEMA Nel primo quadrante del sistema di riferimento Oy,
Gli integrali definiti
Gli integrali definiti Sia f : [a, b] ℝ una funzione continua definita in un intervallo chiuso e limitato e supponiamo che 0 [, ]. Consideriamo la regione T delimitata dal grafico di f(x), dalle rette
SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO. Il candidato risolva uno dei problemi e risponda a 5 quesiti del questionario.
Simulazione 06/7 ANNO SCOLASTICO 06/7 SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO PER IL LICEO SCIENTIFICO Il candidato risolva uno dei problemi e risponda a 5 quesiti del questionario. Problema
SIMULAZIONE - 10 DICEMBRE PROBLEMA 2: IL GHIACCIO
www.matefilia.it SIMULAZIONE - 10 DICEMBRE 015 - PROBLEMA : IL GHIACCIO Il tuo liceo, nell'ambito dell'alternanza scuola lavoro, ha organizzato per gli studenti del quinto anno un attività presso lo stabilimento
AMERICHE PROBLEMA 1
www.matefilia.it AMERICHE 16 - PROBLEMA 1 Considerata la funzione G: R R è così definita: svolgi le richieste che seguono. 1) x G(x) = e t sen (t)dt Discuti campo di esistenza, continuità e derivabilità
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2003 Sessione suppletiva
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO Sessione suppletiva Il candidato risolva uno dei due problemi e dei 1 quesiti in cui si articola il questionario. PROBLEMA 1 Del triangolo ABC si
SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 2017
SOLUZIONE DEL PROBLEMA TEMA DI MATEMATICA ESAME DI STATO 7. Studiamo la funzione f() per verificare che il suo grafico sia compatibile con il profilo della pedana. Dominio della funzione. R Eventuali simmetrie
Matematica classe 5 C a.s. 2012/2013
Matematica classe 5 C a.s. 2012/2013 Asintoti e grafici 1) Una funzione y = f(x) gode delle seguenti caratteristiche: D / 4, y 0 se x 0 x 2, lim, 3. Rappresentare un grafico qualitativo della funzione.
I quesiti dal 2008 al 2011 a cura di Daniela Valenti
I quesiti dal 28 al 211 a cura di Daniela Valenti Geometria del piano e dello spazio, trigonometria [28, ORD] Si consideri la seguente proposizione: Se due solidi hanno uguale volume, allora, tagliati
Versione di Controllo
Università degli Studi di Trento test di ammissione ai corsi di laurea in Fisica - Matematica - Informatica Ingegneria dell Informazione e Organizzazione d Impresa Ingegneria dell Informazione e delle
Proposta di soluzione della prova di matematica Liceo scientifico PNI
Proposta di soluzione della prova di matematica Liceo scientifico PNI - 14 Problema 1 Punto a) In A e O, g non è derivabile in quanto la tangente risulta verticale (punto di cuspide). Stesso dicasi per
Funzioni derivabili (V. Casarino)
Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente
