SESSIONE SUPPLETIVA PROBLEMA 1
|
|
|
- Muzio Costanzo
- 9 anni fa
- Visualizzazioni
Transcript
1 SESSIONE SUPPLETIVA PROBLEMA 1 Sei stato incaricato di progettare una pista da ballo all esterno di un locale in costruzione in una zona balneare. Il progetto prevede, oltre alla pista, delle zone verdi e una tettoia che consenta l uso della pista anche in caso di pioggia. La pista da ballo viene rappresentata, in un sistema di riferimento cartesiano Oxy in cui l unità di misura corrisponde a 1 metro, all interno del rettangolo avente come vertici i punti di coordinate (-4, ), (4, ), (-4, 25) e (4, 25); nella scelta della sagoma della pista va rispettato il vincolo urbanistico che stabilisce che essa non può occupare più del 6% della superficie di tale rettangolo. Un tuo collaboratore predispone due soluzioni: la prima è rappresentata dalla parte di piano compresa tra l asse x e la curva di equazione, y = x2 + 25, x [ 4; 4], la seconda dalla parte di piano compresa tra l asse x, la curva di equazione y = 1 4+x 2 e le rette x =, x = 2. 1) Studia le due soluzioni, e traccia il grafico di entrambe nel riferimento cartesiano Oxy. Individua in particolare le caratteristiche delle due funzioni che sono più rilevanti nella fase di costruzione della pista: eventuali punti di massimo e di minimo, di flesso, angolosi. Studiamo la prima soluzione. y = x rappresenta una parabola con asse coincidente con l asse y, vertice nel punto V = (; 25), con la concavità rivolta verso il basso; per x = ±4 abbiamo y =. Suppletiva Problema 1 1/ 6
2 La prima soluzione per la pista è rappresentata nella figura seguente: La funzione proposta per la prima soluzione ha un massimo (assoluto) nel punto V=(,25), non ha punti di flesso, né punti angolosi (se consideriamo il contorno della pista abbiamo due punti angolosi in (4;) e (-4;). Studiamo la seconda soluzione. y = x 2 Questa funzione è definita su tutto l asse reale, è pari, sempre positiva ed ha un massimo assoluto per x=, pari a 25. Per x che tende a ± la funzione tende a +. Studiamo la derivata prima: y = 2x (x 2 + 4) 2, se x la funzione è crescente se x< e decrescente se x>; come già osservato in x= abbiamo un massimo relativo (e assoluto), di valore 25. Studiamo la derivata seconda: y = 6x2 8 (x 2 + 4) se 6x 2 8, x 2 4 x 2 or x 2 Il grafico della funzione ha quindi la concavità verso l alto se x < 2 or x > 2 e verso il basso se 2 2. Abbiamo due flessi per x = ±, di ordinata 75 4 = < x < 2 La funzione non presenta punti angolosi (se consideriamo il contorno della pista abbiamo dei punti angolosi in E, F, G, H). Suppletiva Problema 1 2/ 6
3 La seconda soluzione per la pista è rappresentata nella figura seguente: Il proprietario del locale sceglie la seconda soluzione, che ritiene più elegante, ma ti chiede di realizzare due aiuole nelle porzioni di terreno comprese tra le due curve che gli hai proposto. 2) Determina l area della soluzione scelta e verifica che essa rispetti i vincoli urbanistici, in modo da poter poi procedere all acquisto del materiale necessario per la costruzione della pista. L area della soluzione scelta (la seconda) si ottiene calcolando il seguente integrale: Suppletiva Problema 1 / 6
4 Area(pista 2) = x 2 dx = x 2 dx Calcoliamo il seguente integrale indefinito: x 2 dx = (1 + ( x 2 )2 ) dx = ( x dx = 5 ) ( x dx = )2 2 = 5 arctg ( x 2 ) + c Quindi: 2 1 Area(pista 2) = x 2 dx = 2 [5 arctg ( x 2 )] 2 = 1[arctg( ) ] = = 1 π m m 2 che è minore del massimo previsto di 12 m 2 : sono quindi rispettati i vincoli urbanistici. Poiché lo scavo effettuato ai lati della pista ha reso il terreno scosceso, hai fatto eseguire delle misure e hai verificato che sia per x [; ] che per x [; 2 ] la profondità dello scavo stesso varia con la legge lineare rappresentata dalla funzione f(x) = x + 1 ; è dunque necessario acquistare del terreno per riempire lo scavo e realizzare le aiuole richieste. ) Calcola quanti metri cubi di terreno vegetale sono necessari per riempire l aiuola delimitata dalle suddette curve nell'intervallo [; ]. Dobbiamo determinare il volume dell aiuola situata nel secondo quadrante, tenendo presente come varia la profondità dello scavo. Il volume richiesto può essere visto come somma di infiniti rettangoli di dimensioni (a(x) b(x)) ed f(x), somma estesa all intervallo [; ], dove: a(x) = x2 + 25, b(x) = 1 4+x2, f(x) = x + 1 Tale volume si calcola quindi mediante il seguente integrale definito (per le intersezioni tra a(x) e b(x) vedi la nota): [a(x) b(x)] f(x)dx Suppletiva Problema 1 4/ 6
5 V(scavo aiuola secondo quadrante) = [a(x) b(x)] f(x)dx = = [ x x2] ( x + 1)dx = = [ x x2] ( x + 1)dx = = [ x 25x + 1x 4 + x x x2] dx = V Cerchiamo una primitiva di 1x 4+x 2 : 1x 2x dx = x2 4 + x 2 dx = 5 ln (4 + x2 ) Risulta pertanto: V = [ x x2 + 5 ln(4 + x 2 ) x + 25x 5 arctg ( x 2 )] = = 5 ln(4) ( ln(16) arctg( )) = 48 = (5 ln(4) ln(16) π) m = = ( ln(4) π) m 7.27 m 7 m V(scavo aiuola) Per riempire l aiuola indicata occorrono circa 7 m di terreno vegetale. Nota L intersezione delle due curve proposte per il contorno delle piste, appartenente al secondo quadrante si ottiene risolvendo il seguente sistema: y = 25 { 16 x y = 1 16 x = x 2 x 1 = x 2 =, x =, x 4 = x 2 Suppletiva Problema 1 5/ 6
6 Per realizzare la tettoia, è necessario usare un piano leggermente inclinato, per favorire il deflusso della pioggia. Nel sistema di riferimento cartesiano Oxyz, tale piano deve passare per i punti (-4,, 5), (4,, 5) e (, 25, 4), in modo che la quota vari gradualmente dai 5 metri in corrispondenza dell inizio della pista, ai 4 metri in corrispondenza della fine della pista stessa. 4) Determina l equazione del piano prescelto. L equazione del piano prescelto si ottiene imponendo alla generica equazione del piano: ax + by + cz + d = il passaggio per i punti di coordinate (-4,, 5), (4,, 5) e (, 25, 4); quindi: 4a + 5c + d = { 4a + 5c + d = 25b + 4c + d = sommando le prime due equazioni otteniamo: d = 5c Sottraendo le prime due equazioni otteniamo: a = Dalla terza equazione si ottiene: 25b + 4c 5c = da cui c = 25b; quindi: a = { b = b c = 25b il piano ha quindi equazione: by + 25bz 125b =, d = 5c = 125b y + 25z 125 = : equazione del piano della tettoia. Con la collaborazione di Angela Santamaria Suppletiva Problema 1 6/ 6
PROBLEMA 1 -Suppletiva
PROBLEMA 1 -Suppletiva Sei stato incaricato di progettare una pista da ballo all esterno di un locale in costruzione in una zona balneare. Il progetto prevede, oltre alla pista, delle zone verdi e una
SESSIONE SUPPLETIVA PROBLEMA 1
www.matefilia.it SESSIONE SUPPLETIVA - 15 PROBLEMA 1 Sei stato incaricato di progettare una pista da ballo all esterno di un locale in costruzione in una zona balneare. Il progetto prevede, oltre alla
SIMULAZIONE - 29 APRILE QUESITI
www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione
SIMULAZIONE - 29 APRILE QUESITI
www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione
ORDINAMENTO 2014 SESSIONE SUPPLETIVA - PROBLEMA 1
www.matefilia.it ORDINAMENTO 20 SESSIONE SUPPLETIVA - PROBLEMA Sono dati un quarto di cerchio AOB e la tangente t ad esso in A. Dal punto O si mandi una semiretta che intersechi l arco AB e la tangente
CALENDARIO BOREALE 2 AMERICHE 2015 QUESITO 1
www.matefilia.it Indirizzi: LI0, EA0 SCIENTIFICO; LI0 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE AMERICHE 0 QUESITO Determinare il volume del solido generato dalla rotazione attorno alla
ORDINAMENTO SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1
www.matefilia.it ORDINAMENTO 2003 - SESSIONE SUPPLETIVA QUESTIONARIO QUESITO Tra i rettangoli aventi la stessa area di 6 m 2 trovare quello di perimetro minimo. Indicate con x ed y le misure della base
ORDINAMENTO 2006 SESSIONE SUPPLETIVA - PROBLEMA 2
www.matefilia.it ORDINAMENTO 2006 SESSIONE SUPPLETIVA - PROBLEMA 2 Nel piano, riferito ad un sistema monometrico di assi cartesiani ortogonali (Oxy), sono assegnate le curve di equazione: x + k y, dove
SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1
www.matefilia.it SESSIONE SUPPLETIVA 216 - QUESTIONARIO QUESITO 1 Si consideri questa equazione differenziale: y + 2y + 2y = x. Quale delle seguenti funzioni ne è una soluzione? Si giustifichi la risposta.
ORDINAMENTO 2014 SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1
www.matefilia.it ORDINAMENTO 2 SESSIONE SUPPLETIVA QUESTIONARIO QUESITO Si determini il dominio della funzione f(x) = e 2x 3e x + 2 e 2x 3e x + 2 e x, e x 2 x, x ln2 DOMINIO: < x, ln2 x < + QUESITO 2 3
Scuole italiane all estero (Europa suppletiva) 2003 Quesiti QUESITO 1
www.matefilia.it Scuole italiane all estero (Europa suppletiva) 200 Quesiti QUESITO Cosa si intende per funzione periodica? Quale è il Periodo della funzione f(x) = tan(2x) + cos 2x? Una funzione f(x)
CALENDARIO BOREALE 1 EUROPA 2015 PROBLEMA 1
www.matefilia.it Indirizzi: LI2, EA2 SCIENTIFICO; LI - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE 1 EUROPA 21 PROBLEMA 1 Sei il responsabile del controllo della navigazione della nave indicata
LICEO SCIENTIFICO SESSIONE STRAORDINARIA 2016 QUESTIONARIO QUESITO 1. lim. = lim cos(x) = 1 2 QUESITO 2
www.matefilia.it LICEO SCIENTIFICO SESSIONE STRAORDINARIA 6 QUESTIONARIO QUESITO Calcolare il limite: sen(cos(x) ) lim x ln (cos (x)) Ricordiamo che, se f(x) tende a zero, risulta: senf(x)~f(x) ed ln (
ORDINAMENTO SESSIONE SUPPLETIVA QUESITO 1
www.matefilia.it ORDINAMENTO 010 - SESSIONE SUPPLETIVA QUESITO 1 In cima ad una roccia a picco sulla riva di un fiume è stata costruita una torretta d osservazione alta 11 metri. Le ampiezze degli angoli
ORDINAMENTO SESSIONE SUPPLETIVA QUESITO 1
www.matefilia.it ORDINAMENTO 8 - SESSIONE SUPPLETIVA QUESITO Si determini la distanza delle due rette parallele: 3x + y 3, 6x + y + 5 La distanza richiesta è data dalla distanza di un punto di una delle
PNI SESSIONE SUPPLETIVA QUESITO 1
www.matefilia.it PNI 8 - SESSIONE SUPPLETIVA QUESITO Si determinino le costanti a e b in modo tale che la funzione: ax + b per x f(x) = { e x per x > x risulti continua e derivabile nel punto x=. Per essere
SIMULAZIONE - 29 APRILE PROBLEMA 1
www.matefilia.it SIMULAZIONE - 29 APRILE 26 - PROBLEMA Le centraline di controllo del Po a Pontelagoscuro (FE) registrano il valore della portata dell'acqua, ovvero il volume d'acqua che attraversa una
LICEO SCIENTIFICO SESSIONE STRAORDINARIA PROBLEMA 2
1\ www.matefilia.it LICEO SCIENTIFICO SESSIONE STRAORDINARIA 16 - PROBLEMA La funzione f: R R è così definita: f(x) = sen(x) x cos (x) 1) Dimostra che f è una funzione dispari, che per x ], ] si ha f(x)
Prova di matematica proposta dal Ministero Seconda proposta
Matematica per la nuova maturità scientifica A. Bernardo M. Pedone 89 Problema Prova di matematica proposta dal Ministero Seconda proposta Della parabola f ( x) = ax bx c si hanno le seguenti informazioni,
LICEO SCIENTIFICO PROBLEMA 2
www.matefilia.it LICEO SCIENTIFICO 2018 - PROBLEMA 2 Consideriamo f k (x): R R così definita: f k (x) = x + kx + 9, con k Z 1) Detto Γ k il grafico della funzione, verifica che per qualsiasi valore del
CALENDARIO BOREALE 1 EUROPA 2015 QUESITO 1
www.matefilia.it Indirizzi: LI0, EA0 SCIENTIFICO; LI0 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE EUROPA 05 QUESITO La funzione f(x) è continua per x [ 4; 4] il suo grafico è la spezzata
ORDINAMENTO 2012 SESSIONE STRAORDINARIA - QUESITI QUESITO 1
www.matefilia.it ORDINAMENTO 22 SESSIONE STRAORDINARIA - QUESITI QUESITO Alcuni ingegneri si propongono di costruire una galleria rettilinea che colleghi il paese A, situato su un versante di una collina,
LICEO SCIENTIFICO PROBLEMA 1
www.matefilia.it LICEO SCIENTIFICO 216 - PROBLEMA 1 L amministratore di un piccolo condominio deve installare un nuovo serbatoio per il gasolio da riscaldamento. Non essendo soddisfatto dei modelli esistenti
ORDINAMENTO SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1
www.matefilia.it ORDINAMENTO 00 - SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1 Si consideri la seguente equazione in x, y: x + y + x + y + k = 0, dove k è un parametro reale. La sua rappresentazione in un
Maturità scientifica 1983 sessione ordinaria
Maturità scientifica 198 sessione ordinaria Soluzione a cura di Francesco Daddi 1 Si studi la funzione y = a x 1 e se ne disegni il grafico Si determinino le intersezioni della curva da essa rappresentata
QUESITO 1. Lanciando due dadi, qual è il numero che ha maggiore probabilità di uscita? Qual è la probabilità che esca un numero primo?
www.matefilia.it PNI 29 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 Lanciando due dadi, qual è il numero che ha maggiore probabilità di uscita? Qual è la probabilità che esca un numero primo? Nel lancio
PNI 2014 SESSIONE STRAORDINARIA - QUESITI QUESITO 1
www.matefilia.it PNI 0 SESSIONE STRAORDINARIA - QUESITI QUESITO Un gruppo di attivisti antinucleari ha organizzato una marcia di protesta verso un sito scelto per la costruzione di una centrale termonucleare.
Soluzioni dei problemi della maturità scientifica A.S. 2012/2013
Soluzioni dei problemi della maturità scientifica A.S. / Nicola Gigli Sun-Ra Mosconi June, Problema. Il teorema fondamentale del calcolo integrale garantisce che Quindi f (x) = cos x +. f (π) = cos π +
ORDINAMENTO SESSIONE SUPPLETIVA QUESITO 1
www.matefilia.it ORDINAMENTO 7 - SESSIONE SUPPLETIVA QUESITO 1 Si calcoli il ite della funzione x cosx x sen x, quando x tende a. x cosx x x sen x = [F. I. ] x x cosx x (1 sen x x ) x cosx 1 sen x x =
In un piano, riferito ad uni sistema cartesiano ortogonale Oxy, si considerino le parabole di equazione:
Maturità scientifica 966/967 Sessione estiva In un piano, riferito ad uni sistema cartesiano ortogonale Oy, si considerino le parabole di equazione: y m m essendo m un parametro diverso da zero. (a) Si
PNI SESSIONE SUPPLETIVA QUESITO 1
www.matefilia.it PNI 010 - SESSIONE SUPPLETIVA QUESITO 1 In cima ad una roccia a picco sulla riva di un fiume è stata costruita una torretta d osservazione alta 11 metri. Le ampiezze degli angoli di depressione
Matematica classe 5 C a.s. 2012/2013
Matematica classe 5 C a.s. 2012/2013 Asintoti e grafici 1) Una funzione y = f(x) gode delle seguenti caratteristiche: D / 4, y 0 se x 0 x 2, lim, 3. Rappresentare un grafico qualitativo della funzione.
LICEO SCIENTIFICO SESSIONE STRAORDINARIA 2017 QUESTIONARIO QUESITO 1. = lim. = lim QUESITO 2
www.matefilia.it LICEO SCIENTIFICO SESSIONE STRAORDINARIA 217 QUESTIONARIO QUESITO 1 Calcolare la derivata della funzione f(x) = ln(x), adoperando la definizione di derivata. Ricordiamo che la definizione
LICEO SCIENTIFICO 2016 - QUESTIONARIO QUESITO 1
www.matefilia.it LICEO SCIENTIFICO 2016 - QUESTIONARIO QUESITO 1 È noto che e x2 dx = π. Stabilire se il nmero reale, tale che e x2 dx = 1, è positivo o negativo. Determinare inoltre i valori dei segenti
Soluzione di Adriana Lanza
Soluzione Dimostriamo che f(x) è una funzione dispari Osserviamo che in quanto in quanto x è una funzione dispari è una funzione dispari in quanto prodotto di una funzione dispari per una pari Pertanto
, per cui le due curve f( x)
DAL GRAFICO DI F(X) AL GRAFICO DI G(X) Pagina di 9 eas matematica http://spazioinwind.libero.it/adolscim DAL GRAFICO DI F(X) AL GRAFICO DI G(X) Dal grafico della funzione f( x ) al grafico della funzione
M557- Esame di Stato di Istruzione Secondaria Superiore
Problema Ministero dell Istruzione, dell Università e della Ricerca M557- Esame di Stato di Istruzione Secondaria Superiore Indirizzi: LI, EA SCIENTIFICO LI3, EA9 SCIENTIFICO Opzione Scienze Applicate
PNI SESSIONE SUPPLETIVA QUESITO 1
www.matefilia.it PNI - SESSIONE SUPPLETIVA QUESITO Si sa che certi uccelli, durante la migrazione, volano ad un altezza media di 6 metri. Un ornitologa osserva uno stormo di questi volatili, mentre si
SIMULAZIONE SECONDA PROVA SCRITTA 02 APRILE Tema di MATEMATICA e FISICA PROBLEMA 2
www.matefilia.it SIMULAZIONE SECONDA PROVA SCRITTA 2 APRILE 29 Tema di MATEMATICA e FISICA PROBLEMA 2 Assegnato un numero reale positivo k, considerare le funzioni f e g così definite: f(x) = x (k x) g(x)
Problema 1. SECONDA PROVA DI MATEMATICA E FISICA 20 giugno Svolgimento
giugno 9 Svolgimento Problema A La funzione gx è il prodotto di una funzione polinomiale e una funzione esponenziale, quindi ha come dominio tutto R, è continua e derivabile indefinitamente per ogni valore
COMUNICAZIONE OPZIONE SPORTIVA QUESTIONARIO QUESITO 1
www.matefilia.it COMUNICAZIONE OPZIONE SPORTIVA 7 - QUESTIONARIO QUESITO Definito il numero E come: E = xe x dx, dimostrare che risulta: x e x dx = e E esprimere x e x dx in termini di e ed E. Cerchiamo
ORDINAMENTO 2007 SESSIONE STRAORDINARIA - QUESITI QUESITO 1
www.matefilia.it ORDINAMENTO 2007 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 Si determini il campo di esistenza della funzione y = (x 2 3x) 1 x 4. Ricordiamo che il campo di esistenza di una funzione del
ORDINAMENTO SESSIONE SUPPLETIVA QUESITO 1
www.matefilia.it ORDINAMENTO 2005 - SESSIONE SUPPLETIVA QUESITO 1 È dato un trapezio rettangolo, in cui le bisettrici degli angoli adiacenti al lato obliquo si intersecano in un punto del lato perpendicolare
Secondo parziale di Matematica per l Economia (esempio)
Corso di Laurea in Economia e Management Secondo parziale di Matematica per l Economia (esempio) lettere E-Z, a.a. 206 207 prof. Gianluca Amato Regole generali Si svolga il primo esercizio e, a scelta
Esame di Stato di Liceo Scientifico Corso di Ordinamento
Corso di Ordinamento Soluzione dei Temi di Matematica proposti nella Sessione Ordinaria 006 Sessione Ordinaria 006 Corso di Ordinamento Sommario Problema Punto a) Punto b) Punto c) Punto Finale 4 Problema
DERIVATE E LORO APPLICAZIONE
DERIVATE E LORO APPLICAZIONE SIMONE ALGHISI 1. Applicazione del calcolo differenziale 1 Abbiamo visto a lezione che esiste un importante legame tra la continuità di una funzione y = f(x) in un punto x
ESERCITAZIONE 9 : FUNZIONI QUADRATICHE
ESERCITAZIONE 9 : FUNZIONI QUADRATICHE e-mail: [email protected] web: www.dm.unipi.it/ tommei Ricevimento: Martedi 16-18 Dipartimento di Matematica, piano terra, studio 126 4 Dicembre 2012 L espressione
SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 2016
SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 2016 1. Le funzioni proposte per ciascuna famiglia sono tutte simmetriche rispetto all asse y, per ogni intero positivo k. Affinché una funzione
ORDINAMENTO 2014 SESSIONE STRAORDINARIA - QUESITI QUESITO 1
www.matefilia.it ORDINAMENTO 0 SESSIONE STRAORDINARIA - QUESITI QUESITO Un gruppo di attivisti antinucleari ha organizzato una marcia di protesta verso un sito scelto per la costruzione di una centrale
{ x + 2y = 3 αx + 2y = 1 αx + y = 0. f(x) = e x 2 +3x+4 x 5. f(x) = x 3 e 7x.
0 Gennaio 006 Teoria: Definizione di derivata puntuale e suo significato geometrico Esercizio Determinare l equazione del piano contenente i vettori u = (,, 3 e v = (,, e passante per P o = (,, Scrivere
COMUNICAZIONE OPZIONE SPORTIVA QUESTIONARIO QUESITO 1
www.matefilia.it COMUNICAZIONE OPZIONE SPORTIVA 2016 - QUESTIONARIO QUESITO 1 È noto che e x2 dx = π. Stabilire se il nmero reale, tale che e x2 dx = 1, è positivo o negativo. Determinare inoltre i valori
PNI 2010 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 QUESITO 2
www.matefilia.it PNI 2010 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 Due osservatori si trovano ai lati opposti di un grattacielo, a livello del suolo. La cima dell edificio dista 1600 metri dal primo
SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1
www.matefilia.it SESSIONE SUPPLETIVA 015 - QUESTIONARIO x QUESITO 1 Data la funzione integrale ln(t) dt, determinare per quali valori di x il suo grafico 1 incontra la retta di equazione y = x + 1. Calcoliamo
LICEO SCIENTIFICO QUESTIONARIO QUESITO 1
www.matefilia.it LICEO SCIENTIFICO 7 - QUESTIONARIO QUESITO Definito il numero E come: E = e d, dimostrare che risulta: e d = e E esprimere e d in termini di e ed E. Cerchiamo una primitiva di e integrando
1) Nel piano, riferito ad un sistema di assi cartesiani ortogonali (Oxy), è assegnata la curva
Sessione ordinaria 994 Liceo di ordinamento ) Nel piano, riferito ad un sistema di assi cartesiani ortogonali (Oy), è assegnata la curva k di equazione y + ln +. Disegnarne un andamento approssimato dopo
Risoluzione dei problemi
Risoluzione dei problemi Il dominio della generica funzione è:! a a) Scriviamo l espressione della funzione in forma di equazione raccogliendo separatamente i termini contenenti il parametro a e quelli
Liceo Scientifico Paritario R. Bruni Padova, loc. Ponte di Brenta, 15/01/2019. Verifica scritta di Matematica Classe V
Liceo Scientifico Paritario R. Bruni Padova, loc. Ponte di Brenta, 15/01/2019 Verifica scritta di Matematica Classe V Soluzione Risolvi 4 degli 8 quesiti proposti. Ogni quesito vale 25 p.ti. 1. Un corpo
AMERICHE PROBLEMA 1
www.matefilia.it AMERICHE 16 - PROBLEMA 1 Considerata la funzione G: R R è così definita: svolgi le richieste che seguono. 1) x G(x) = e t sen (t)dt Discuti campo di esistenza, continuità e derivabilità
ORDINAMENTO SESSIONE SUPPLETIVA QUESITO 1
www.matefilia.it ORDINAMENTO 0 - SESSIONE SUPPLETIVA QUESITO Si sa che certi uccelli, durante la migrazione, volano ad un altezza media di 60 metri. Un ornitologa osserva uno stormo di questi volatili,
LA PARABOLA E LA SUA EQUAZIONE
LA PARABOLA E LA SUA EQUAZIONE Prof. Giovanni Ianne CHE COS È LA PARABOLA DEFINIZIONE Parabola Scegliamo sul piano un punto F e una retta d. Possiamo tracciare sul piano i punti equidistanti da F e da
LICEO SCIENTIFICO QUESTIONARIO QUESITO 1
www.matefilia.it LICEO SCIENTIFICO 015 - QUESTIONARIO QUESITO 1 y = f() ; il suo grafico è tangente alla retta y = + 5 nel secondo quadrante ed inoltre risulta: f () = + 6. Determinare l equazione y =
QUESITO 1. Una strada rettilinea in salita supera un dislivello di 150 m con un percorso di 3 km. Quale è la sua inclinazione?
www.matefilia.it Scuole italiane all estero (Americhe) 008 Quesiti QUESITO 1 Una strada rettilinea in salita supera un dislivello di 150 m con un percorso di 3 km. Quale è la sua inclinazione? Detto α
a) Rappresentiamo il quadrato ABCD e il punto P sul prolungamento del lato AB.
VERIFICA DI MATEMATICA SIMULAZIONE GLI INTEGRALI DEFINITI - SOLUZIONI Problema : a) Rappresentiamo il quadrato ABCD e il punto P sul prolungamento del lato AB. Per determinare la posizione di P, affinché
SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO
ANNO SCOLASTICO 2012-13 SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO INDIRIZZO: SCIENTIFICO CORSO DI ORDINAMENTO Risoluzione Problema 1 a) Poiché per ogni valore di a l espressione analitica
ANNO SCOLASTICO SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO INDIRIZZO: SCIENTIFICO CORSI SPERIMENTALI. della funzione y ln( x e)
ANNO SCOLASTICO 009-0 SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO INDIRIZZO: SCIENTIFICO CORSI SPERIMENTALI PROBLEMA Si consideri la funzione: ln( x e) se e x 0 f ( x) x ( x bx) e a se x
