Studio di una funzione razionale fratta
|
|
|
- Eduardo Di Gregorio
- 9 anni fa
- Visualizzazioni
Transcript
1 Studio di una funzione razionale fratta Nella figura è rappresentata la funzione 1. Quale tra gli insiemi proposti è il suo CDE? 2. La funzione presenta un asintoto verticale di equazione... x = 0 x = 1 interseca l'asse x nel punto (-1/2,0) interseca l'asse x nel punto (1/2,0) interseca l'asse x nel punto (0,0) 4. In quale tra gli insiemi proposti, la funzione risulta positiva?
2 Nella figura è rappresentata la funzione 1. Quale tra gli insiemi proposti è il suo Dominio? 2. La funzione presenta un asintoto verticale di equazione... x = 0 x = -1 interseca l'asse x solo nel punto (1/2,0) interseca l'asse x nei punti (1,0) e (3/2,0) interseca l'asse x nel punto (0,0) 4. In quale tra gli insiemi proposti, la funzione risulta positiva?
3 Nella figura è rappresentata la funzione 1. Quale tra gli insiemi proposti è il suo dominio? 2. La funzione presenta un asintoto verticale nel punto x=0 VERO FALSO interseca l'asse x nel punto (0,0) interseca l'asse x nel punto (1,0) interseca l'asse x nel punto (-1,0) 4. In quale tra gli intervalli proposti, la funzione risulta positiva? 5. A quale valore corrisponde il limite infinito della funzione: 0
4 Nella figura è rappresentata la funzione 1. Quale tra gli insiemi proposti è il suo dominio? 2. La funzione presenta un asintoto verticale nel punto x = - 5 VERO FALSO interseca l'asse x nel punto (- 4,0) interseca l'asse x nel punto (4,0) interseca l'asse x nel punto (- 4,0) e (4,0) d) non ínterseca l'asse x 4. In quale tra gli insiemi proposti, la funzione risulta positiva? nessuno dei precedenti d) 5. A quale valore corrisponde il limite destro della funzione: 0 nessuno dei precedenti d)
5 Nella figura è rappresentato un ramo della funzione 1. Quale tra gli insiemi proposti è il suo dominio? d) 2. La funzione presenta un asintoto verticale nel punto x = 3 VERO FALSO interseca l'asse x nel punto (- 3,0) interseca l'asse x nel punto (3,0) interseca l'asse x nel punto (- 3,0) e (3,0) 4. In quale tra gli insiemi proposti, la funzione risulta negativa? mai sempre 5. A quale valore corrisponde il limite sinistro della funzione: 3
6 STUDIO DI FUNZIONE RAZIONALE FRATTA Passo dopo passo y = g( x) CALCOLO CAMPO D ESISTENZA Il campo di esistenza è sempre x R { g( x) = 0} Quindi la prima cosa da fare è porre g( x) 0 e trovare le soluzioni che non si annullano. Queste soluzioni vanno inserite nella parentesi graffa POSITIVITA DELLA FUNZIONE ( y >0) Bisogna porre tutta la funzione y = >0. g( x) Poiché è una fratta, allora bisogna applicare la regola del segno e cioè > 0 g( x) > 0 Conosciute le soluzioni delle due singoli funzioni, si mettono insieme tali soluzioni e si vede dove la funzione y = ha segno positivo (positività della funzione) e dove invece ha segno meno g( x) (funzione che passa per il campo negativo) LIMITI Bisogna calcolare i seguenti limiti: 1. lim y =... x + 2. lim y =... x Ricorda che per x ± devo vedere il grado delle funzioni e g( x ) Se il grado della funz. f è maggiore del grado della funz. g allora il limite è ± Se il grado della funz. f è minore della funz. g allora il limite è 0 Se i gradi delle funzioni sono uguali allora si prende il coefficiente (numero) che sta davanti alla x di grado maggiore (della funz. f) e quello che sta davanti alla x di grado maggiore (della funz. g). Il risultato è il numero che è rapporto dei due coefficienti. 3. lim y =... x punti _ discontinuità Ricorda che: + n + + = + = + + = = 0 0n 0n 0n
7 ASINTOTI 1. Se il limite lim y = n (cioè la x va a ± mentre il risultato è un numero) x ± Allora la funzione ha un ASINTOTO ORIZZONTALE (la retta orizzontale y=n) 2. Se il limite lim y x n = ± (cioè la x -> numero n mentre il risultato è ± ) Allora la funzione ha un ASINTOTO VERTICALE (x= n) 3. Se non esiste asintoto orizzontale, dobbiamo cercare un eventuale ASINTOTO OBLIQUO. Se il limite: lim = m e mx = q (con m finito 0 e q finito) x ± x g( x) xlim ± g ( x ) Allora la retta y = mx + q è un asintoto obliquo MASSIMI E MINIMI ( y ' >0) (crescenza e decrescenz Si calcola la derivata prima della funzione fratta (derivata del rapporto) e si pone il g( x ) risultato >0. Con la regola del segno, si vede dove la funzione y ' è positiva (crescenza ) e dove è negativa (decrescenza ). Il punto valle è il minimo, il punto monte è il max. FLESSI ( y '' >0) (concavità e convessità) Si calcola la derivata seconda della funzione fratta (derivata del rapporto) e si pone il g( x ) risultato >0. Con la regola del segno, si vede dove la funzione y '' è positiva (convessità ) e dove è negativa (concavità ). Il punto valle o il punto monte è il flesso.
ESERCIZI SULLO STUDIO DI FUNZIONI
ESERCIZI SULLO STUDIO DI FUNZIONI 0 novembre 206 Esercizi Esercizio n. Si consideri la funzione f(x) = 7 x 2 + 3 Dominio: R Intersezioni con gli assi: Intersezioni con l asse x: { y = 0 y = 7 x 2 + 3.
Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 2005/2006
Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 005/006 Antonella Ballabene SOLUZIONI -14 marzo 006- SCHEMA per lo STUDIO di FUNZIONI 1. Dominio della funzione f)..
Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 25 Gennaio Studio di Funzione
Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 25 Gennaio 2017 Studio di Funzione 1. Si consideri la funzione reale di variabile reale così definita f() = 2 + 4. (a) Determinare
Matematica 2. Derivate Esercizi. y=sen( x 4 3x) y' =cos(x 4 3x)(4x 3 3) y=logsen( x x) y' = sen(x 4 +3x) cos(x4 +3x)(4x 3 +3)
Matematica 2 Derivate Esercizi y=sen( 4 3) y' =cos( 4 3)(4 3 3) y=logsen( 4 1 3) y' = sen( 4 +3) cos(4 +3)(4 3 +3) y=sen 2 ( 4 3) y' =2sen( 4 3 )cos( 4 3)(4 3 3) Funzioni ad una sola variabile y=f() è
francesca fattori speranza - versione febbraio 2018 { y > 0 4) DETERMINAZIONE DEL TIPO DI FUNZIONE (PARI, DISPARI, PERIODICA)
STUDIO DI FUNZIONE francesca fattori speranza - versione febbraio 2018 1) DOMINIO O CONDIZIONE DI ESISTENZA 2) INTERSEZIONE CON GLI ASSI y f (x) intersezione asse x : { y 0 y f (x) intersezione asse y
Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)
Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f é crescente nell intervallo (a, b) se
SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7
SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7 Esercizio. Funzione da studiare: log( 3).. Dominio: dobbiamo richiedere che il denominatore non si annulli e che il logaritmo sia ben definito. Quindi le condizioni
ESERCIZI DA SVOLGERE PER MAGGIO (la parte in verde, il resto lo dovreste avere già svolto).
ESERCIZI DA SVOLGERE PER MAGGIO (la parte in verde, il resto lo dovreste avere già svolto). 1. Data la funzione : x 2 e x minimo e di massimo. Determinare inoltre gli eventuali flessi e gli intervalli
ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012
ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 1. Esercizi 3 1. Studiare la seguente funzione FINO alla derivata prima, con tracciamento di grafico ed indicazione
STUDIO di FUNZIONE. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 1
STUDIO di FUNZIONE c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 1 Punti di estremo: punto di massimo assoluto Def. Sia 0 dom(f) = D. Si dice che 0 è un punto di massimo
ASINTOTI. Si chiama ASINTOTO di una funzione una retta alla quale la funzione si avvicina senza mai toccarla.
ASINTOTI Si chiama ASINTOTO di una funzione una retta alla quale la funzione si avvicina senza mai toccarla. Ad esempio: La funzione y=e x ha un asintoto orizzontale: l asse x, cioè la retta y=0. La funzione
In un piano, riferito ad uni sistema cartesiano ortogonale Oxy, si considerino le parabole di equazione:
Maturità scientifica 966/967 Sessione estiva In un piano, riferito ad uni sistema cartesiano ortogonale Oy, si considerino le parabole di equazione: y m m essendo m un parametro diverso da zero. (a) Si
Gli asintoti. Richiami ed esempi
Gli asintoti Richiami ed esempi Scheda asintoti Definizioni generali di asintoto orizzontale, verticale e obliquo Scrivere l equazione di una funzione di una variabile dotata di due asintoti, uno orizzontale
Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)
Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f è crescente nell intervallo (a, b) se
STUDIO DEL GRAFICO DI UNA FUNZIONE
STUDIO DEL GRAFICO DI UNA FUNZIONE PROF.SSA ROSSELLA PISCOPO 2 di 35 Indice 1 SCHEMA PER LO STUDIO DEL GRAFICO DI FUNZIONE... 4 2 ESEMPI... 11 2.1 2.2 2.3 2.4 2.5 2.6 FUNZIONE ESPONENZIALE... 11 FUNZIONE
Tema 1: esercizi. 1. Studiare la funzione seguente e tracciarne un grafico qualitativo. + = Soluzione 1) Dominio x ( ) { }
Tema : esercizi. Studiare la funzione seguente e tracciarne un grafico qualitativo. ) Dominio ( ) { } R \ f Dom ) Intersezione con gli assi impossibile per il dominio ± e si ottiene ancora ( ) ; e ( )
Chi non risolve esercizi non impara la matematica.
6 iti Per ricercare gli eventuali asintoti verticali dobbiamo calcolare i iti della funzione agli estremi finiti degli intervalli che costituiscono il dominio. In questo caso, quindi, dobbiamo calcolare
Studiamo adesso il comportamento di f(x) alla frontiera del dominio. Si. x 0 lim f(x) = lim. x 2 +
Esercizi del 2//09. Data la funzione f(x) = ln(x 2 2x) (a) trovare il dominio, gli eventuali asintoti e gli intervalli in cui la funzione cresce o decresce. Disegnare il grafico della funzione. (b) Scrivere
STUDIO di FUNZIONE. c Paola Gervasio - Analisi Matematica 1 - A.A. 2018/19 Studio di funzione cap6b.pdf 1
STUDIO di FUNZIONE c Paola Gervasio - Analisi Matematica 1 - A.A. 2018/19 Studio di funzione cap6b.pdf 1 Punti di estremo: punto di massimo assoluto Def. Sia 0 dom(f) = D. Si dice che 0 è un punto di massimo
G5. Studio di funzione - Esercizi
G5 Studio di funzione - Esercizi Tracciare il grafico delle seguenti funzioni I grafici delle seguenti funzioni sono al termine degli esercizi Per gli esercizi con l asterisco non è richiesta, date le
Esercizi di Matematica. Studio di Funzioni
Esercizi di Matematica Studio di Funzioni CONSIDERAZIONI GENERALI Ad ogni funzione corrisponde un grafico, quindi studiare una funzione significa determinare il suo grafico. Per le conoscenze fin qui acquisite,
CORREZIONE DEL COMPITO IN CLASSE DI MATEMATICA
CORREZIONE DEL COMPITO IN CLASSE DI MATEMATICA n. (8 dicembre 009) PROBLEMA Punto a b = ( f '( ) = 0 a( b( (*) = a( b( da cui: a b a 9b = = 5 5 5 5 a 9 5 passaggio per, a 5 = 5 5 5 6 f ' uguale a zero
Argomento 7 - Studi di funzioni Soluzioni Esercizi
Argomento 7 - Studi di funzioni Soluzioni Esercizi Sol. E. 7. f() = log + 4 Insieme di definizione : Limiti : 4 log + = + 0 + (confronto tra infiniti in cui prevale la potenza) 4 log + = log = + + + Notiamo
LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI
Autore: Enrico Manfucci - 6/05/0 LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI PREMESSA Per Studio di funzione si intende disegnare il grafico di una funzione data la sua espressione analitica. Questo significa
Istituto d Istruzione Superiore A. Tilgher Ercolano (Na)
LO STUDIO DI FUNZIONE Lo studio di funzione è una delle parti più interessanti dell analisi perché permette di utilizzare le numerose conoscenze acquisite nel corso degli anni in un unico elaborato. Se
Studio di funzione appunti
Studio di unzioni algebriche ratte Studio di unzione appunti 1. Ricerca del dominio (C.E.);. Intersezioni con gli assi cartesiani; 3. Ricerca degli intervalli di positività (Studio del segno S.D.S.); 4.
Esame di Matematica Generale 7 Febbraio Soluzione Traccia E
Esame di Matematica Generale 7 Febbraio 013 - Soluzione Traccia E ESERCIZIO 1. Si consideri la funzione f : R R f(x) = x + 1 x. (a) Determinare il dominio di f ed eventuali simmetrie (3 punti). Dominio.
PROGRAMMAZIONE DIDATTICA ANNUALE
PROGRAMMAZIONE DIDATTICA ANNUALE Anno Scolastico: 2015 / 2016 Dipartimento (1) : MATEMATICA Coordinatore (1) : TRIMBOLI SILVIA Classe: 5H Indirizzo: Servizi Socio-Sanitari Serale Ore di insegnamento settimanale:
STUDIO DEL GRAFICO DI UNA FUNZIONE
STUDIO DEL GRAFICO DI UNA FUNZIONE 1 Richiami Teorema 1 (Test di monotonia). Sia f : (a, b) R una funzione derivabile. Allora f è monotona crescente (risp. decrescente) in (a, b) se e solo se f () 0 (risp.
Istituto Tecnico Statale per il Turismo "Francesco Algarotti" Classe: 3 Sez. A A. S. 2017/18 PROGRAMMA DI MATEMATICA
Classe: 3 Sez. A A. S. 2017/18 Libro di testo: Bergamini Trifone Barozzi Matematica.bianco (2 vol.) Bergamini Trifone Barozzi Matematica.rosso (vol. 3s) Volume 2 Ripasso. Scomposizione in fattori primi
1) Nel piano, riferito ad un sistema di assi cartesiani ortogonali (Oxy), è assegnata la curva
Sessione ordinaria 994 Liceo di ordinamento ) Nel piano, riferito ad un sistema di assi cartesiani ortogonali (Oy), è assegnata la curva k di equazione y + ln +. Disegnarne un andamento approssimato dopo
Concavità verso il basso (funzione concava) Si dice che in x0 il grafico della funzione f(x) abbia la concavità rivolta verso il basso, se esiste
CONCAVITA E CONVESSITA DI UNA FUNZIONE. FLESSI. SCHEMA GENERALE PER LO STUDIO DI FUNZIONE. FUNZIONI RAZIONALI E IRRAZIONALI INTERE E FRATTE. TEOREMA DI DE L HOSPITAL CON APPLICAZIONI AI LIMITI. 1 Concavit{
Richiami sullo studio di funzione
Richiami sullo studio di funzione Per studiare una funzione y = f() e disegnarne un grafico approssimativo, possiamo procedere in ordine secondo i seguenti passi:. determinare il campo di esistenza (o
Liceo Classico D. Alighieri A.S Studio di Funzione. Prof. A. Pisani. Esempio
Liceo Classico D. Alighieri A.S. 0-3 y Data la funzione: Studio di Funzione tracciatene il grafico nel piano cartesiano. Prof. A. Pisani Esempio ) Tipo e grado della funzione La funzione è analitica, data
Studio di funzione. Studio di funzione: i passi iniziali
Studio di funzioni Studio di funzione Si dice che una variabile dipendente y è funzione di una variabile indipendente x quando esiste un legame di natura qualsiasi che ad ogni valore di x faccia corrispondere
Ricerca di massimi e minimi col metodo della derivata prima
Massimi e minimi con la derivata prima pag. 1 di 6 Ricerca di massimi e minimi col metodo della derivata prima Ricordiamo che il significato geometrico della derivata prima è quello di coefficiente angolare
SOLUZIONE COMMENTATA TEST DI AUTOVALUTAZIONE
SLUZINE CMMENTATA TEST DI AUTVALUTAZINE CRS DI MATEMATICA PER L ECNMIA III MDUL ) Individuare il campo di esistenza della seguente funzione polinomiale: = + 5+ 6 6, 6 Poiché la funzione data è polinomiale,
Studio di funzione. Studio di funzione: i passi iniziali
Studio di funzione Si dice che una variabile dipendente y è funzione di una variabile indipendente quando esiste un legame di natura qualsiasi che ad ogni valore di faccia corrispondere uno e uno solo
Analisi Matematica 1 - a.a. 2017/ Quarto appello
Analisi Matematica - a.a. 07/08 - Quarto appello Soluzione del test Test A E C B B C A D C C D Test B C B C E B A E E D B Test C A A D B E C A C D D Test D D B A A B E A E B D Soluzione della parte di
Esercizi di Matematica per le Scienze Studio di funzione
Esercizi di Matematica per le Scienze Studio di funzione A.M. Bigatti e G. Tamone Esercizi Studio di funzione Esercizio 1. Disegnare il grafico di una funzione continua f che soddisfi tutte le seguenti
Consorzio Nettuno - Corso di Matematica 1 Schede di lavoro guidato per le esercitazioni
Consorzio Nettuno - Corso di Matematica 1 Schede di lavoro guidato per le esercitazioni A cura di Sebastiano Cappuccio SCHEDA N 20 ARGOMENTO: Grafici di funzioni numeriche reali Asintoti orizzontali, verticali,
Massimi e minimi di una funzione razionale fratta Francesco Daddi - 18 maggio 2010
Francesco Daddi - 18 maggio 2010 Esempio 1. Studiare la funzione f x 4 x 8 x 2 3 x 3. R (si osservi che il denominatore non si annulla mai); la funzione ha uno zero in x 2. La funzione è positiva per x
ESERCITAZIONE 6: STUDIO DI FUNZIONI
ESERCITAZIONE 6: STUDIO DI FUNZIONI Tiziana Raparelli 31/03/009 1 ESERCIZI ESERCIZIO 1 Studiare le seguenti funzioni, discuterne l uniforme continuità e tracciarne un grafico qualitativo. (a) f() = log(
LICEO LINGUISTICO NINNI CASSARÁ. Classe VA. Studio di Funzioni. prof. Alessio Cangemi
LICEO LINGUISTICO NINNI CASSARÁ Classe VA Studio di Funzioni prof. Alessio Cangemi Di seguito saranno schematizzati gli step fondamentali per tracciare il grafico probabile di una funzione f(x). 1 Ricerca
FUNZIONI REALI DI UNA VARIABILE REALE
FUNZIONI REALI DI UNA VARIABILE REALE INTERVALLI Per definire il campo di esistenza (o dominio) di una funzione reale di variabile reale y=f()si devono indicare talvolta insiemi di numeri reali che su
Argomento 7. Studio di funzione
Argomento 7 Studio di funzione Studiare una funzione significa ottenere, mediante strumenti analitici (iti, derivate, ecc.) informazioni utili a disegnare un grafico qualitativo della funzione data. I
FACOLTA' DI FARMACIA Corso di Laurea in CTF Prova scritta di Matematica e Informatica II appello Febbraio x x. calcolare i limiti: c) lim 3(
FACOLTA' DI FARMACIA Corso di Laurea in CTF Prova scritta di Matematica e Informatica II appello Febbraio 0 Cognome e Nome: ) Calcolare il dominio e il segno delle funzioni: f( ) ( ) ln( ) Data la funzione:
