GEOMETRIE NON EUCLIDEE. postulati definizioni
|
|
|
- Rita Lillo
- 8 anni fa
- Visualizzazioni
Transcript
1 GEOMETRIE NON EUCLIDEE assiomi Euclide (300 a.c.) Elementi postulati definizioni ssioma: proposizione evidente di per sé che non ha bisogno di essere dimostrata (enunciati matematici di carattere generale). Gli assiomi devono essere: a) un numero limitato b) compatibili, cioè due teoremi dedotti da essi non devono contraddirsi c) completi, cioè da essi si debbono poter dedurre tutti i teoremi del sistema d) indipendenti, cioè nessuno di essi deve essere conseguenza logica di altri 1) Cose che sono uguali a una stessa cosa sono uguali anche tra loro 2) Se cose uguali sono addizionate a cose uguali, le somme sono uguali 3) Se da cose uguali sono sottratte cose uguali, le differenze sono uguali 4) Se cose uguali sono addizionate a cose disuguali, le somme sono disuguali 5) I doppi di una stessa cosa sono uguali tra loro 6) La metà di una stessa cosa sono uguali tra loro 7) Cose che coincidono tra loro tra loro uguali 8) Il tutto è maggiore della parte Definizioni: proposizione che introduce un nuovo concetto in funzione di altre nozioni già note. 1) Punto è ciò che non ha parti 2) Linea è lunghezza senza larghezza 3)... 23) Parallele sono quelle rette che essendo nello stesso piano e venendo prolungata illimitatamente dall una e dall altra parte non si incontrano tra loro da nessuna delle due parti 1
2 Postulato: che si chiede (si postula) di ammettere come vera, per poter fondare su di esso una dimostrazione o qualunque ragionamento deduttivo (concetti strettamente geometrici). Risulti postulato 1) che si possa condurre una linea retta da qualsiasi punto a ogni altro punto 2) che una retta terminata si possa prolungare continuamente in linea retta 3) che si possa descrivere un cerchio con qualsiasi centro e ogni raggio 4) che tutti gli angoli retti sono uguali tra loro 5) che, se una retta venendo a cadere su due rette, r t forma gli angoli interni e dalla stessa parte la cui α α + β < 180 somma sia minore di due retti, le due rette prolungate β illimitatamente verranno ad incontrarsi da quella parte s in cui sono gli angoli la cui somma è minore di due retti ltrimenti si può dire: 5) esiste ed è unica la parallela a una retta data condotta da un punto esterno ad essa. Il 5 postulato di Euclide detto anche postulato delle parallele, svolge un ruolo centrale nella nascita delle geometrie non euclidee. Le due rette r e s formando con la trasversale t, angoli coniugati interni α e β la cui somma è minore di 180, non si incontrano nella parte di piano delimitata. Se consideriamo il piano illimitato cosa accade? Non è possibile rinunciare a tale postulato poiché da esso dipendono numerosi teoremi. Già i contemporanei di Euclide mossero critiche al 5 postulato: mantenerlo come postulato e darne formulazione intuitiva come quelle degli altri postulati, quindi formulazioni che non coinvolgessero l infinito dimostrarlo a partire dagli altri postulati, mostrando che esso è in realtà un teorema si riformula la definizione di parallelismo in modo da rendere superfluo il postulato delle parallele Molti matematici si dedicarono a questo postulato dando diversi contributi formulando anche geometrie alternative. Posidonio (Grecia 1 secolo a.c.) Proclo (arabo ) Naddir-Eddin (arabo ) John-Wallis (Inghilterra ) Giovanni Gerolamo Saccheri (Italia ) Johann Hendrich Lambert (Svizzera ) 2
3 drien Marie Legendre (Francia ) Carl Fredrich Gauss (Germania ) Wolfgang olyai (Ungheria ) Janos olyai (Ungheria ) Nicolaj Ivanovic Lobacevskij (Russia ) ernhard Riemann (Germania ) Eugenio eltrami (Italia ) Felix Klein (Germania ) Henri Poincaré (Francia ) Kurt Godel (Cechia ) I tentativi di dimostrare il quinto postulato di Euclide continuarono con scarsi successi fino al 17 secolo. Padre Saccheri tenta di dimostrare il postulato delle parallele per assurdo. Egli considera una figura geometrica che chiama quadrilatero birettangolo, D C preso un segmento, si traccino i segmenti D e C, a esso perpendicolari δ γ e tra loro congruenti. Si congiungano quindi C e D. Che cosa si può dire degli angoli in C e in D? X X In linea di principio si possono ammettere tre possibilità: 1) Ipotesi dell angolo acuto: δ e γ sono acuti geometria iperbolica: γ + δ < 180 2) Ipotesi dell angolo retto: δ e γ sono retti geometria euclidea: γ + δ = 180 3) Ipotesi dell angolo ottuso: δ e γ sono ottusi geometria sferica: γ + δ > 180 Ipotesi dell angolo retto geometria euclidea geometria piana o a curvatura nulla. 5 postulato: fissati nel piano un punto P e una retta r non passante per P s P esiste ed è unica la retta s passante per P e parallela alla retta prefissata r. r 3
4 Ipotesi dell angolo acuto geometria iperbolica geometria a curvatura negativa (di Lobacevskij, eltrami, olyai, Gauss, Klein) 5 a postulato: esistono almeno due rette s ed s passanti per il punto P e parallele alla retta r prefissata. Questo postulato nega il quinto postulato in relazione all unicità della parallela ad una retta condotta per un punto. Questa geometria sarà non contraddittoria se sarà possibile individuare un modello che soddisfi ai normali postulati descritti da Euclide e anche al postulato 5 a. Il modello cercato esiste e fu ideato da Klein. Come enti primitivi si hanno: il piano di Klein: costituito dalla superficie interna ad una qualunque circonferenza il punto di Klein: costituito da un qualsiasi punto interno al cerchio piano. punto retta incidenti parallele s P la retta di Klein: costituita da una qualunque corda della circonferenza. r s Definizione: diremo che due rette di Klein sono incidenti se si intersecano in un punto di Klein. Definizione: diremo che due rette di Klein sono parallele se non hanno alcun punto di Klein in comune o si incontrano in un punto localizzato sulla circonferenza. Il postulato 5 a è soddisfatto, perché fissato un punto P di Klein, si possono trovare due rette di Klein, s ed s passanti per P e parallele alla retta r (sono le due corde s ed s passanti per P e per gli estremi della corda r). Tutto ciò ci consente di affermare che la geometria non euclidea di olyai-lobacevskij (iperbolica) è non contraddittoria e pertanto valida al pari della geometria euclidea. 4
5 SELL 5
6 Ipotesi dell angolo ottuso geometria sferica geometria a curvatura positiva (di Riemann) 5 b postulato: non esiste alcuna retta s passante per un punto P e parallela ad una retta r prefissata. In altre parole: ogni retta s passante per il punto P incontra sempre la retta prefissata r (1) D il piano di Riemann è costituito da una qualunque superficie sferica. il punto di Riemann è costituito da una qualunque E F coppia di punti diametralmente opposti sulla superficie sferica (1) P (,); P (C,D) C la retta di Riemann è costituita da una qualsiasi circonferenza massima (2). (2) Verifichiamo che questi enti geometrici primitivi soddisfano a tutti i postulati scritti da Euclide escluso il quinto che viene sostituito dal 5 b. Verifichiamo il postulato di Euclide: per due punti del piano passa un unica retta. Fissati due punti diametralmente opposti: P (;), (3) P (C;D) è unica la retta di Riemann, ossia la circonferenza massima passante per essi (3). per un punto del piano passano infinite rette Fissato un punto di Riemann, ossia due punti C D diametralmente opposti, allora per esso passano infinite rette di Riemann ossia infinite circonferenze massime (4). (4) Verifichiamo se è verificato il postulato 5 b. Fissato un punto di Riemann e una retta di Riemann, ossia una coppia (;) di punti diametralmente opposti e una circonferenza massima r, allora ogni altra retta di Riemann passante per (;) interseca sempre la circonferenza massima r, in due punti diametralmente opposti (C;D) ossia in un punto di Riemann (5). Quindi non esiste alcuna retta di Riemann passante per un 6
7 punto di Riemann e parallela ad una prefissata retta di Riemann. Il modello proposto da Riemann soddisfa sia ai normali postulati scritti da Euclide che al postulato 5 b quindi essa è non contraddittoria e pertanto è valida al pari della geometria euclidea. (5) D r C r 7
Introduzione alle geometrie non euclidee
Introduzione alle geometrie non euclidee Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia Il metodo assiomatico della geometria euclidea Gli Elementi di Euclide (III sec. a.c.) si aprono
Gli assiomi. I concetti primitivi
Gli assiomi Per dimostrare che un asserto di tipo matematico è vero, occorre giustificarlo con una serie di ragionamenti logici che lo fanno discendere da altri asserti già ammessi veri. La scrittura A1,
MASTER Comunicazione della Scienza
MASTER 2007-2008 Comunicazione della Scienza Linguaggi e fondamenti concettuali della matematica 2a settimana Euclide 1 Euclide - Elementi Euclide - Elementi La prima proposizione del Libro I degli Elementi
Il punteggio totale della prova è 100/100. La sufficienza si ottiene con il punteggio di 60/100.
ISI Civitali - Lucca CLASSE, Data Nome: Cognome: Nei test a scelta multipla la risposta esatta è unica Ad ogni test viene attribuito il seguente punteggio: 4 punti risposta corretta 1 punto risposta omessa
Il tentativo di dimostrare il V postulato di Euclide e le geometrie non euclidee
Il tentativo di dimostrare il V postulato di Euclide e le geometrie non euclidee Una delle questioni più celebri dell intera storia della matematica è certamente il problema della dimostrabilità del quinto
Nikolai Ivanovic Lobacevskij ( )
Nikolai Ivanovic Lobacevskij (1793-1856) Russo, figlio di un modesto funzionario governativo, Lobacevskij studiò alla Università di Kazan; a Kazan fece carriera universitaria e rimase tutta la vita. Le
Elementi di Euclide. Libro I. Definizioni. 1. Un punto è ciò che non ha parti. 2. Una linea è lunghezza senza larghezza.
Elementi di Euclide Libro I Definizioni 1. Un punto è ciò che non ha parti. 2. Una linea è lunghezza senza larghezza. 3. Gli estremi di una linea sono punti. 4. Una retta è una linea che giace ugualmente
GEOMETRIA EUCLIDEA. segno lasciato dalla punta di una matita appena appoggiata sul foglio. P
GEOMETRIA EUCLIDEA 1) GLI ENTI FONDAMENTALI: PUNTO, RETTA E PIANO Il punto, la retta e il piano sono gli ELEMENTI ( o ENTI ) GEOMETRICI FONDAMENTALI della geometria euclidea; come enti fondamentali non
Progetto Matematica in Rete - Geometria euclidea - Introduzione GEOMETRIA EUCLIDEA. Introduzione. geo (terra) e metron (misura)
GEOMETRIA EUCLIDEA La parola geometria deriva dalle parole greche geo (terra) e metron (misura) ed è nata per risolvere problemi di misurazione dei terreni al tempo degli antichi Egizi nel VI secolo a.c.
Due rette si dicono INCIDENTI se hanno esattamente un punto in comune, altrimenti si dicono PARALLELE.
Riepilogo di Geometria: Assioma A1 Per tutte le coppie di punti P,Q dell insieme S è assegnato un numero reale (=)> 0, che si dice distanza di P da Q e si indica don d(p,q) 1- Se i punti P,Q sono distinti
Geometria euclidea. Alessio del Vigna
Geometria euclidea Alessio del Vigna La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione sono il punto,
GEOMETRIA. Congruenza, angoli e segmenti
GEOMETRIA Per affermare che un triangolo è isoscele o rettangolo oppure che un quadrilatero è un parallelogramma o un rettangolo o un rombo o un quadrato o un trapezio o un trapezio isoscele, c è sempre
Matematica Introduzione alla geometria
Matematica Introduzione alla geometria prof. Vincenzo De Felice 2014 Problema. Si mostri che un triangolo con due bisettrici uguali è isoscele. La matematica è sfuggente. Ziodefe 1 2 Tutto per la gloria
Le geometrie non euclidee
Le geometrie non euclidee Indice 1 Premessa 1 2 L opera di Euclide 1 3 Da Euclide a Saccheri 3 4 L opera di Saccheri 4 5 La nascita delle geometrie non Euclidee 5 6 La geometria iperbolica e la geometria
Il primo libro degli Elementi di Euclide
Il primo libro degli Elementi di Euclide Alessandro Cordelli 1 La struttura logica della geometria Il fondamentale salto di qualità operato dalla matematica greca consiste nel fatto di aver introdotto
FONDAMENTI DI GEOMETRIA
1 FONDAMENTI DI GEOMETRIA (Fundamental geometrical concepts) La geometria [ghè (terra) metron (misura)] è una parte della matematica che studia lo spazio, la forma, l estensione, la trasformazione delle
Alcuni risultati dovuti a Girolamo Saccheri
lcuni risultati dovuti a Girolamo Saccheri 1. efinizione. onsideriamo un quadrilatero Q. Se gli angoli in e in sono entrambi retti e se i lati e sono congruenti, Q si dice quadrilatero birettangolo isoscele
Geometria euclidea. Alessio del Vigna. Lunedì 15 settembre
Geometria euclidea Alessio del Vigna Lunedì 15 settembre La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione
LA GEOMETRIA ELLITTICA
LA GEOMETIA ELLITTICA QUALCHE NOZIONE SULLA GEOMETIA DI IEMANN Consideriamo un modello della geometria di iemann, detto modello sulla sfera. Sia k una sfera arbitraria sullo spazio euclideo. Conveniamo
Lezione introduttiva allo studio della GEOMETRIA SOLIDA
Lezione introduttiva allo studio della GEOMETRIA SOLIDA Geometria solida Lo spazio euclideo è un insieme infinito di elementi detti punti e contiene sottoinsiemi propri ed infiniti : le rette e i piani..
Storia della Matematica
Lezione 3 1 1 Dipartimento di Matematica Sapienza, Università di Roma Roma, 11 Marzo 2014 Il primo libro degli degli elementi Nei primi quattro libri degli elementi si tratta delle proprietà della geometria
Elementi di Euclide (Gela; 323 a.c. 285 a.c) Il libro I degli Elementi di Euclide. L'opera consiste in 13 libri, che trattano:
Elementi di Euclide (Gela; 323 a.c. 285 a.c) L'opera consiste in 13 libri, che trattano: Libro I la teoria dei triangoli, delle parallele e delle aree (ciò che oggi chiamiamo equivalenza di figure piane);
Principali Definizioni e Teoremi di Geometria
Principali Definizioni e Teoremi di Geometria Segmento (definizione) Si dice segmento di estremi A e B l insieme costituito dai punti A e B e da tutti i punti della retta AB compresi tra A e B. Angolo
PARALLELISMO NELLO SPAZIO
1 PARALLELISMO NELLO SPAZIO 3.1 Parallelismo retta piano Def Si dicono paralleli una retta e un piano che non hanno punti in comune Come già sappiamo non è sufficiente una definizione per garantire l esistenza
C5. Triangoli. C5.1 Definizioni. C5.2 Classificazione dei triangoli in base ai lati
5. Triangoli 5.1 efinizioni Un triangolo è un poligono con tre lati. In figura 5.1 i lati sono i segmenti =c, =b e =a. Gli angoli (interni) sono α = ˆ, β = ˆ e γ = ˆ. Si dice che un angolo è opposto a
Un po di GEOMETRIA. Le LINEE
Un po di GEOMETRIA Le LINEE 1) Quante e quali sono le ESTENSIONI o DIMENSIONI delle figure? 1) Le ESTENSIONI o DIMENSIONI delle figure sono tre: LUNGHEZZA, LARGHEZZA, ALTEZZA 2) Quante ESTENSIONI o DIMENSIONI
C6. Quadrilateri - Esercizi
C6. Quadrilateri - Esercizi DEFINIZIONI E COSTRUZIONI 1) Dato il seguente quadrilatero completa al posto dei puntini. I lati AB e BC sono I lati AB e CD sono I lati AD e sono consecutivi I lati AD e sono
Rette perpendicolari
Rette perpendicolari Definizione: due rette incidenti (che cioè si intersecano in un punto) si dicono perpendicolari quando dividono il piano in quattro angoli retti. Per indicare che la retta a è perpendicolare
Introduzione alla geometria iperbolica: come si può ricoprire il piano con piastrelle ottagonali?
Introduzione alla geometria iperbolica: come si può ricoprire il piano con piastrelle ottagonali? Enrico Schlesinger Laboratorio FDS Milano, 13 novembre, 2013 Decorazioni Alhambra Escher Sky and water
Postulati e definizioni di geometria piana
I cinque postulati di Euclide I postulato Adimandiamo che ce sia concesso, che da qualunque ponto in qualunque ponto si possi condurre una linea retta. Tra due punti qualsiasi è possibile tracciare una
Dato un triangolo ABC, è il segmento che partendo dal vertice opposto al lato, incontra il lato stesso formando due angoli retti.
Anno 2014 1 Sommario Altezze, mediane, bisettrici dei triangoli... 2 Altezze relativa a un vertice... 2 Mediane relative a un lato... 2 Bisettrici relativi a un lato... 2 Rette perpendicolari... 3 Teorema
Gli Elementi di Euclide
Gli Elementi di Euclide Negli Elementi di Euclide troviamo raccolto tutto il sapere matematico dell epoca. I 13 libri non sono un opera originale, cioè Euclide non è l autore dei risultati qui raggiunti,
Principali Definizioni e Teoremi di Geometria
Principali Definizioni e Teoremi di Geometria Segmento (definizione) Si dice segmento di estremi A e B l insieme costituito dai punti A e B e da tutti i punti della retta AB compresi tra A e B. Angolo
Geometria degli origami
UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI CORSO DI LAUREA IN MATEMATICA TESI DI LAUREA Geometria degli origami Relatore Candidato Ch.ma Prof.ssa Mariacarmela
Ma cosa si pensava della forma della terra prima delle fotografie?
Ma cosa si pensava della forma della terra prima delle fotografie? Anassimandro (IV sec. a.c.) Omero (VIII sec. a.c.?) Aristotele (384-322 a.c.) riportava due osservazioni a riprova della sfericità della
Le caratteristiche dei poligoni. La relazione tra i lati e gli angoli di un poligono. Definizioni
Le caratteristiche dei poligoni 1. Si dice poligono la parte del piano delimitata da una spezzata chiusa. 2. Il perimetro di un poligono è la somma delle misure del suoi lati, si indica cm 2p. 3. Un poligono
VI a GARA MATEMATICA CITTÀ DI PADOVA 23 MARZO 1991 SOLUZIONI. < 2 0 < 3a + 1 < 4 1 < 3a < < 3a+1. 1 < 1 b < 2 2 < b < 1 1 < b < 2.
VI a GARA MATEMATICA CITTÀ DI PADOVA 23 MARZO 1991 SOLUZIONI 1.- 0 < 3a+1 < 2 0 < 3a + 1 < 4 1 < 3a < 3 1 2 3 1 < 1 b < 2 2 < b < 1 1 < b < 2. 1 < a < 1 3 1 < b < 2 4 < a + b < 3 e, a fortiori, 4 < a +
METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 11
METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA Lezione n 11 In questa lezione percorriamo gli argomenti della geometria che interessano la scuola primaria, in modo essenziale, o meglio ancora
Geometria non euclidea. L idea di spazio matematico
Geometria non euclidea. L idea di spazio matematico Renato Betti Politecnico di Milano Liceo Scientifico E. Vittorini Milano 14 novembre 2007 Il fatto A metà 800 giunge a conclusione il problema delle
Elementi di Geometria euclidea
Elementi di Geometria euclidea Proprietà dei triangoli isosceli Il triangolo isoscele ha almeno due lati congruenti, l eventuale lato non congruente si chiama base, i due lati congruenti si dicono lati
CIRCONFERENZA E CERCHIO. Parti di una circonferenza
CIRCONFERENZ E CERCHIO Circonferenza: è il luogo geometrico dei punti equidistanti da un punto fisso detto centro Raggio: è la distanza tra un qualsiasi punto della circonferenza e il centro Cerchio: è
GEOMETRIA. A cura della Prof.ssa Elena Spera. ANNO SCOLASTICO Classe IC Scuola Media Sasso Marconi. Prof.
GEOMETRIA A cura della Prof.ssa Elena Spera ANNO SCOLASTICO 2007 2008 Classe IC Scuola Media Sasso Marconi Prof.ssa Elena Spera 1 Come consultare l ipertesto l GEOMETRIA Benvenuti! Per navigare e muoversi
I Triangoli e i criteri di congruenza
I Triangoli e i criteri di congruenza 1 Le caratteristiche di un triangolo Un triangolo è un insieme di punti del piano costituito da una poligonale chiusa di tre lati e dai suoi punti interni I punti
METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 10
METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA Lezione n 10 In questa lezione percorriamo gli argomenti della geometria che interessano la scuola primaria, in modo essenziale, o meglio ancora
Rette perpendicolari
Rette perpendicolari Definizione: due rette incidenti (che cioè si intersecano in un punto) si dicono perpendicolari quando dividono il piano in quattro angoli retti. Per indicare che la retta a è perpendicolare
COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA)
COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA) Nel presente documento sono elencati gli esercizi da svolgere nel corso delle vacanze estive 2017 da parte degli studenti
La circonferenza e il cerchio
La circonferenza e il cerchio Def.: Si dice circonferenza una linea piana chiusa formata dall insieme dei punti che hanno la stessa distanza da un punto detto centro. Si dice raggio di una circonferenza
Appunti di geometria euclidea
Appunti di geometria euclidea Il metodo assiomatico Appunti di geometria Euclidea Lezione 1 Prima di esaminare nel dettaglio la Geometria dal punto di vista dei Greci è opportuno fare unrichiamo di Logica.
Gli Elementi di Euclide
Gli Elementi di Euclide (300 a.c.) Ms. d Orville 301, Oxford, Bodleian Library (888 d.c.). Si tratta del più antico esemplare degli Elementi. 1 Struttura degli Elementi Gli Elementi abbracciano quasi totalmente
La somma degli angoli interni di un triangolo è uguale a un angolo piatto (180 ).
Il triangolo (UbiLearning) - 1 Triangoli Un triangolo è un poligono formato da tre lati. Rappresenta la più semplice figura piana formata dal minimo numero di lati utili a chiudere una superficie piana.
Precorso di Matematica
UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTA DI ARCHITETTURA Precorso di Matematica Anna Scaramuzza Anno Accademico 2005-2006 17-24 Ottobre 2005 INDICE 1. GEOMETRIA EUCLIDEA........................ 2 1.1 Triangoli...............................
Enti Fondamentali della Geometria
Enti Fondamentali della Geometria La GEOMETRIA è la scienza che studia la forma, l estensione delle figure e le trasformazioni che queste possono subire. (Un po di storia.) Gli ENTI GEOMETRICI FONDAMENTALI
Assiomi della Geometria elementare
Assiomi della Geometria elementare (D. Hilbert, Grundlagen der Geometrie, 1 a ed. 1899) Si considerano tre sistemi di enti primitivi: gli enti del primo sistema sono detti punti, del secondo rette, e del
SCHEDA1 PARALLELISMO E PERPENDICOLARITA' FRA RETTE
SCHEDA1 PARALLELISMO E PERPENDICOLARITA' FRA RETTE Controllare la correttezza delle seguenti proprietà, controllandola su un esempio e muovendo dinamicamente gli oggetti costruiti. 1. Per due punti passa
Teoremi di geometria piana
la congruenza teoremi sugli angoli γ teorema sugli angoli complementari Se due angoli sono complementari di uno stesso angolo α β In generale: Se due angoli sono complementari di due angoli congruenti
C7. Circonferenza e cerchio
7. irconferenza e cerchio 7.1 Introduzione ai luoghi geometrici Un luogo geometrico è l insieme dei punti del piano che godono di una proprietà detta proprietà caratteristica del luogo geometrico. Esempio
14 Sulle orme di Euclide. Volume 2
PREFAZIONE Il nostro viaggio negli Elementi prosegue con lo studio delle proprietà della circonferenza e dell equivalenza tra poligoni. Le questioni relative alla superficie dei poligoni occupano parte
Una proposizione che si pone alla base di una teoria matematica senza darne una giustificazione. Sono le «regole del gioco».
Ripasso Scheda per il recupero Il metodo assiomatico-deduttivo OMNE he cos è un assioma? he cos è un concetto primitivo? he cos è un teorema? he cosa significa affrontare lo studio della geometria secondo
CONGRUENZE TRA FIGURE DEL PIANO
CONGRUENZE TRA FIGURE DEL PIANO Appunti di geometria ASSIOMI 15. La congruenza tra figure è una relazione di equivalenza 16. Tutte le rette del piano sono congruenti tra loro; così come tutti i piani,
La retta nel piano cartesiano
La retta nel piano cartesiano Se proviamo a disporre, sul piano cartesiano, una retta vediamo che le sue possibili posizioni sono sei: a) Coincidente con l asse delle y; b) Coincidente con l asse delle
La circonferenza e i poligoni inscritti e circoscritti
Liceo Scientifico Isacco Newton - Roma Le lezioni multimediali di GeoGebra Italia efinizioni Luogo Geometrico Insieme di tutti e soli punti del piano che godono di una certa proprietà, detta proprieà caratteristica
APPUNTI DI GEOMETRIA SOLIDA
APPUNTI DI GEOMETRIA SOLIDA Geometria piana: (planimetria) studio delle figure i cui punti stanno tutti su un piano Geometria solida: (stereometria) studio delle figure i cui punti non giacciono tutti
C3. Rette parallele e perpendicolari - Esercizi
C3. Rette parallele e perpendicolari - Esercizi ESERCIZI CON COSTRUZIONI E GRAFICI 1) Disegna la retta passante per A perpendicolare alla retta r contando i quadretti. 2) Disegna la retta passante per
Una avventura millenaria: le geometrie non euclidee
Una avventura millenaria: le geometrie non euclidee Renato Betti Politecnico di Milano San Pellegrino Terme 4 settembre 2006 Il fatto A metà 800 giunge a conclusione il problema delle parallele, originato
LA CIRCONFERENZA DEFINIZIONI. Una circonferenza è l insieme dei punti del piano che hanno distanza assegnata da un punto, detto centro.
LA CIRCONFERENZA DEFINIZIONI Una circonferenza è l insieme dei punti del piano che hanno distanza assegnata da un punto, detto centro. Un cerchio è una figura piana formata dai punti di una circonferenza
Costruzioni inerenti i triangoli
Costruzioni inerenti i triangoli D ora in poi indicheremo con a, b e c i tre lati del triangolo di vertici A, B e C, in modo che a sia opposto al vertice A, b al vertice B e c al vertice C Costruzione
Anno 1. Quadrilateri
Anno 1 Quadrilateri 1 Introduzione In questa lezione impareremo a risolvere i problemi legati all utilizzo dei quadrilateri. Forniremo la definizione di quadrilatero e ne analizzeremo le proprietà e le
La geometria della riga e compasso: Primo incontro
La geometria della riga e compasso: Primo incontro Progetto Lauree Scientifiche A.S. 2010/2011 Università degli Studi di Firenze 23/11/2010 Quando si devono rappresentare disegni geometrici, è importante
La circonferenza e il cerchio
La circonferenza e il cerchio Def. Circonferenza Si dice circonferenza una linea piana chiusa formata dall insieme dei punti che hanno la stessa distanza da un punto detto centro. Si dice raggio di una
CAP. 1 - GLI ELEMENTI PRIMITIVI
CP. 1 - GLI ELEMENTI PRIMITIVI 1 Geometria e realtà 2 Elementi primitivi della geometria 3 Punto 4 Figura geometrica 5 Figure congruenti 6 Linea 7 Retta 8 Proprietà della retta 9 Punti allineati 10 Semiretta
Costruzione 1 Condurre la perpendicolare ad un retta data, passante per un punto della retta stessa.
Costruzioni Costruzioni di rette, segmenti ed angoli Costruzione 1 Condurre la perpendicolare ad un retta data, passante per un punto della retta stessa. Costruzione. Consideriamo la retta r ed un punto
GEOMETRIE NON EUCLIDEE NELLA PRATICA QUOTIDIANA Tesina di Didattica della Geometria. Prof.Biancofiore
GEOMETRIE NON EUCLIDEE NELLA PRATICA QUOTIDIANA Tesina di Didattica della Geometria Di Gianfranco Di Panfilo Gaetano De Michele SSIS IX Ciclo-Università di L Aquila Docente del corso Prof.Biancofiore Fino
Confronto fra angoli La dimensione dell angolo è l ampiezza in base all ampiezza gli angoli si dicono:
Confronto fra angoli La dimensione dell angolo è l ampiezza in base all ampiezza gli angoli si dicono: congruenti (uguali) maggiore minore la somma di due angoli la ottieni portandoli ad essere consecutivi
Indice del vocabolario della Geometria euclidea
Indice del vocabolario della Geometria euclidea 1 Postulati di appartenenza: piano, retta e punto nello spazio Punto, retta, piano nello spazio Punto, retta nel piano Punto nella retta Punto esterno alla
PNI SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1
www.matefilia.it PNI 200 - SESSIONE SUPPLETIVA QUESTIONARIO QUESITO Enunciare il teorema del valor medio o di Lagrange illustrandone il legame con il teorema di Rolle e le implicazioni ai fini della determinazione
LA PERPENDICOLARITA NELLO SPAZIO. Nello spazio si definiscono la perpendicolarità sia tra una retta e un piano sia tra due piani.
1 LA PERPENDICOLARITA NELLO SPAZIO Nello spazio si definiscono la perpendicolarità sia tra una retta e un piano sia tra due piani. 2.1 La perpendicolarità retta piano Nel piano la perpendicolarità tra
ELEMENTI FONDAMENTALI
Il punto Il punto è un elemento geometrico fondamentale privo di dimensioni ed occupa solo una posizione. Come si indica un punto? Un punto si indica (distingue) con una lettera maiuscola dell alfabeto
Corso di Matematica - Geometria. Geometria - 0. Ing. L. Balogh
Geometria - 0 Triangoli qualunque somma degli angoli interni, calcolo del perimetro e dell area Oggetti Vertici Lati Angoli Altezza Raggio Simbolo A, B, C a, b, c,, h S, r Perimetro = + + Somma angoli
Piano cartesiano e retta
Piano cartesiano e retta Il punto, la retta e il piano sono concetti primitivi di cui non si da una definizione rigorosa, essi sono i tre enti geometrici fondamentali della geometria euclidea. Osservazione
I PARALLELOGRAMMI Si dice PARALLELOGRAMMA un quadrilatero avente i lati opposti paralleli a due a due.
I PARALLELOGRAMMI Si dice PARALLELOGRAMMA un quadrilatero avente i lati opposti paralleli a due a due. A D B H C K Una particolarità del parallelogramma è che mantiene le sue caratteristiche anche quando
