Rigetto delle Faglie

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Rigetto delle Faglie"

Transcript

1 Rigetto delle Faglie RVR Rigetto reale dislocazione di un punto noto dalla posizione A alla posizione A Si può scomporre in diversi rigetti parziali: Sul piano di Faglia: RD Rigetto parallelo alla direzione della faglia (Strike Separation) e RP Rigetto pendenza (Dip Separation) Il rigetto pendenza sul piano verticale si scompone in: RV Rigetto verticale e RT Rigetto trasversale Sul piano verticale che contiene il vettore scorrimento (RVR): RH Rigetto orizzontale e RV Rigetto verticale Lo spostamento totale lungo una faglia èdato da una direzione di spostamento e da un verso Direzione di Spostamento Non è determinabile se si osserva solo un piano rigettato! E necessario che si individui una linea Faglia che disloca la cerniera di una piega Rigetto reale (vettore spostamento) Faglia che disloca l intersezione di due piani

2 Aspetto cartografico delle faglie Gli effetti di una faglia in carta sono in genere facilmente osservabili perché: interrompono la continuità dei contatti mettono a contatto formazioni di età diversa causano la ripetizione o la elisione di parti della successione litostratigrafica Talvolta l'effetto della faglia osservato sulla carta o su una sezione verticale può essere ambiguo, vedi caso di una faglia diretta Apparente rigetto orizzontale sinistro Apparente rigetto orizzontale destro Apparente assenza di rigetto Quello che viene determinato in carta è spesso solo un rigetto apparente. La figura a fianco mostra che determinare lo spostamento (rigetto) reale può essere complesso, ma si può capire lo spostamento relativo sia sulla verticale (rigetto verticale), che quello orizzontale (rigetto orizzontale Faglie con rigetto essenzialmente verticale non dislocano contatti verticali, mentre faglie con rigetto orizzontale non dislocano contatti orizzontali e i contatti piani inclinati sono dislocati tutti nella stessa direzione e della stessa entità

3 Aspetto cartografico delle faglie Costruendo le linee di forma della faglia e della struttura geologica dislocata è possibile determinarne l entità del rigetto Ovviamente la giacitura di una faglia è determinabile, come per ogni superficie con la regola della V o costruendo le linee di forma. (da D. Powell, 1996) Le faglie possono aver funzionato (rigiocato) in diversi momenti e con rigetti differenti, questo non èsempre osservabile (o rappresentabile) in carta. Diverse direzioni di movimento possono essere determinate osservando gli indicatori cinematici (slikenside, ecc.) in campagna.

4 Come determinare il rigetto orizzontale e verticale di una faglia in carta (da D. Powell, 1996) Per prima cosa (A) bisogna dunque ricostruire le linee di forma del contatto della faglia e della formazione rigettata. Quindi si individua (B) la intersezione delle linee di forma del contatto basale della formazione con quelle della faglia. In C utilizzando anche le linee di forma del contatto superiore a tetto viene ricostruito l andamento della formazione sul piano della faglia. Il rigetto orizzontale s èperciò determinato semplicemente misurando la distanza che intercorre tra due punti della formazione a tetto ea muro della faglia alla stessa a quota (quindi parallelamente alla linea di forma [orizzontale] della faglia). Il rigetto di pendenza d èdato dalla distanza tra i contatti a tetto e a muro della faglia lungo la linea di massima pendenza (cioè ortogonale alle linee di forma orizzontali della faglia (ovviamente bisogna ricostruire il diagramma della pendenza in quanto su carta misuriamo una distanza orizzontale). In questo modo abbiamo calcolato solo l entità della dislocazione, ma non il verso né la quantità dello spostamento! Abbiamo però individuato l effetto della faglia sulla disposizione in profondità della formazione in esame!

5 Stima del rigetto e della direzione di spostamento di una faglia rappresentata in carta L aspetto cartografico di una struttura dislocata da una faglia dipende dalla sua giacitura rispetto alla faglia. Nei casi A e B il filone ha una giacitura (cioè direzione orizzontale) ortogonale alla superficie della faglia e la direzione di spostamento coincide con la direzione d immersione della faglia (linea di massima pendenza lungo la sua superficie). (da D. Powell, 1996) Il rigetto in carta è apprezzabile solo se si ha un cambiamento di spessore (C). Nel caso D l angolo fra la direzione del filone e quello della faglia èinferiore a 90, e in carta il filone è dislocato in proporzione allo spostamento (E), ma non è possibile determinare il vettore dello spostamento (F).

6 Stima del rigetto e della direzione di spostamento di una faglia rappresentata in carta Nell esempio sotto in carta i filoni mostrano un rigetto apparente sinistro, il rigetto s non èperò lo stesso per i due filoni (B). Per determinare il rigetto reale dobbiamo trovare un elemento lineare dislocato dalla faglia, in questo caso l intersezione dei filoni (C). (da D. Powell, 1996) Il punto w èdato dall intersezione a muro e il punto x a tetto della faglia. Poiché i filoni mostrano in carta lo stesso tipo di rigetto (apparente) sinistro è ipotizzabile che siano stati dislocati contemporaneamente e perciò i punti w e x erano precedentemente adiacenti, per cui la linea che li congiunge èil vettore dello spostamento e conoscendone le quote ne possiamo determinare l entità

7 Esercizio 6 Stima del rigetto e della direzione di spostamento di una faglia (da Powell, 1996) Analizzare la struttura in carta e determinare la quantità e la direzione del rigetto, assumendo che la faglia abbia avuto un solo movimento. Per fare ciò bisogna : 1) ricostruire le linee di forma della faglia; 2) ricostruire linee di forma dei contatti tra mudstone e sandstone e del filone di basalto; 3) Individuare una linea d intersezione continua precedentemente alla faglia

8 Stima del rigetto e della direzione di spostamento di una faglia rappresentata in carta conoscendo la direzione di spostamento Sono noti: la giacitura della faglia e quella della superficie dislocata, e la cinematica della faglia (diretta). Immaginiamo che non vi sia componente orizzontale del rigetto. 1) determinare il pitch dell'intersezione dello strato sul piano di faglia (fig. C) 2) tracciare su un foglio la faglia e lo strato nel blocco sollevato, ed il punto in cui lo strato del blocco ribassato incontra la faglia. 3) tracciamo lo strato sul blocco ribassato considerando il pitch calcolato. 4) misuriamo il il rigetto nella direzione del vettore spostamento. (da Rowland et al., 2007)

Misura della giacitura di un piano o di una linea

Misura della giacitura di un piano o di una linea Misura della giacitura di un piano o di una linea direction), a 90 dalla direzione Per un piano: (a) Direzione (strike) (a); (b) Direzione di immersione (Dip (c) inclinazione (b) (dip) Per una linea: (a)

Dettagli

Sezione geologica in aree con strutture curve

Sezione geologica in aree con strutture curve Sezione geologica in aree con strutture curve Anche la semplice analisi visiva permette immediatamente di riconoscere strutture fortemente curve (in pratica pieghe). Esercizio 7 Quando l andamento curvo

Dettagli

Antiforme con piano assiale verticale ed asse orizzontale (A profilo; B carta) 1/3. area con rilievi

Antiforme con piano assiale verticale ed asse orizzontale (A profilo; B carta) 1/3. area con rilievi Analisi cartografica delle pieghe: Traccia del Piano assiale Se le condizioni di affioramento sono abbastanza buone è possibile determinare la forma e la giacitura di una piega direttamente in campagna.

Dettagli

Capitolo 7 Sezioni geologiche e problemi di stratimetria

Capitolo 7 Sezioni geologiche e problemi di stratimetria Capitolo 7 Sezioni geologiche e problemi di stratimetria Sezione geologica: finalizzata a ricostruire e rappresentare l andamento dei corpi e delle strutture geologiche in profondità Passaggio dalla rappresentazione

Dettagli

Proiezioni stereografiche

Proiezioni stereografiche Università degli Studi di Cagliari Dipartimento di Scienze della Terra Facoltà Scienze Matematiche, Fisiche e Naturali Via Trentino, 51 09127 Cagliari CORSO DI LAUREA IN SCIENZE DELLA TERRA A.A. 2006-2007

Dettagli

Capitolo 6 Rilevamento geologico

Capitolo 6 Rilevamento geologico Capitolo 6 Rilevamento geologico Rilevamento geologico: finalizzato a fornire informazioni sulle caratteristiche geologiche (litologia rocce affioranti, datazione, rapporti spaziali) di una determinata

Dettagli

Prospettiva a quadro verticale

Prospettiva a quadro verticale Prospettiva a quadro verticale Tr 1 P 2 P 1 Rappresentiamo una retta r, posta su π 1 nelle proiezioni ortogonali, un punto P (punto di vista) ed il quadro verticale α. Vogliamo proiettare la retta r sul

Dettagli

Proiezioni Stereografiche in Geologia Strutturale. Chiara Frassi, Rodolfo Carosi e Chiara Montomoli

Proiezioni Stereografiche in Geologia Strutturale. Chiara Frassi, Rodolfo Carosi e Chiara Montomoli Proiezioni Stereografiche in Geologia Strutturale Chiara Frassi, Rodolfo Carosi e Chiara Montomoli Sommario Prefazione 3 1. Orientazione di piani e linee 7 1. Elementi lineari e planari 7 1.1. Misura di

Dettagli

MECCANISMI FOCALI DISPENSA CORSO DI SISMOLOGIA PROF. NUNZIATA

MECCANISMI FOCALI DISPENSA CORSO DI SISMOLOGIA PROF. NUNZIATA MECCANISMI FOCALI DISPENSA CORSO DI SISMOLOGIA PROF. NUNZIATA Una sorgente tipo faglia può essere schematizzata come lo scivolamento relativo tra due blocchi con la dislocazione vincolata ad appartenere

Dettagli

Applicazioni ed esercitazioni

Applicazioni ed esercitazioni Applicazioni ed esercitazioni Università Mediterranea di Reggio Calabria Facoltà di Architettura Corso di DISEGNO Modulo 1 Prof. Franco Prampolini Unità didattica n. 5 Fondamenti di Geometria Descrittiva

Dettagli

Sistemazioni superficiali del terreno (sbancamenti, spianamenti,..) Costruzione di opere a sviluppo longitudinale (strade, canali, )

Sistemazioni superficiali del terreno (sbancamenti, spianamenti,..) Costruzione di opere a sviluppo longitudinale (strade, canali, ) ue sono le tipologie di opere che prevedono movimenti di masse terrose e che, pertanto, richiedono operazioni topografiche finalizzate a determinarne i volumi: istemazioni superficiali del terreno (sbancamenti,

Dettagli

Spinta delle terre Teoria di Coulomb o del prisma di massima spinta

Spinta delle terre Teoria di Coulomb o del prisma di massima spinta Spinta delle terre Teoria di Coulomb o del prisma di massima spinta La valutazione in intensità, verso, punto di applicazione della spinta del terreno su un muro di sostegno presenta tutt ora difficoltà

Dettagli

ASSONOMETRIA ORTOGONALE ISOMETRICA Esempio di rappresentazione

ASSONOMETRIA ORTOGONALE ISOMETRICA Esempio di rappresentazione Università Sapienza di Roma, Facoltà di Architettura Corso di laurea in Gestione del processo edilizio Project Management, a.a. 2014-2015 Corso di Disegno tecnico e automatico Docente: Arch. Jessica Romor

Dettagli

Sequenza sismica in Italia centrale: scarpate di faglia prodotte dall evento del 30 ottobre 2016

Sequenza sismica in Italia centrale: scarpate di faglia prodotte dall evento del 30 ottobre 2016 Sequenza sismica in Italia centrale: scarpate di faglia prodotte dall evento del 30 ottobre 2016 Scritto da Silvia Mattoni 3 novembre 2016 Il terremoto del 30 ottobre in Italia Centrale ha prodotto almeno

Dettagli

j B Dati: ω1=100 rad/s velocità angolare della manovella (1); l = 250 mm (lunghezza della biella 2); r = 100 mm (lunghezza della manovella 1).

j B Dati: ω1=100 rad/s velocità angolare della manovella (1); l = 250 mm (lunghezza della biella 2); r = 100 mm (lunghezza della manovella 1). j B A l 2 1 ω1 r ϑ i Piede di biella Testa di biella Biella Braccio di manovella Siti interessanti sul meccanismo biella-manovella: http://it.wikipedia.org/wiki/meccanismo_biella-manovella http://www.istitutopesenti.it/dipartimenti/meccanica/meccanica/biella.pdf

Dettagli

PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi

PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi PIANO CARTESIANO Il piano cartesiano è individuato da due rette perpendicolari (ortogonali) che si incontrano in un punto O detto origine del piano cartesiano. Si fissa sulla retta orizzontale il verso

Dettagli

Trave isostatica Studio della deformata con il metodo della LINEA ELASTICA

Trave isostatica Studio della deformata con il metodo della LINEA ELASTICA Trave isostatica Studio della deformata con il metodo della LINEA ELASTICA Trave a mensola, di rigidezza flessionale costante pari a EI, soggetta a forza verticale agente all estremo liero. Determinare

Dettagli

La trilaterazione. Obiettivi di apprendimento: Definizione di trilaterazione Risoluzione di un terreno a piano quotato

La trilaterazione. Obiettivi di apprendimento: Definizione di trilaterazione Risoluzione di un terreno a piano quotato La trilaterazione È necessario sapere e saper operare con: Le proporzioni Obiettivi di apprendimento: Definizione di trilaterazione Risoluzione di un terreno a piano quotato La trilaterazione è una tecnica

Dettagli

Cartografia, topografia e orientamento

Cartografia, topografia e orientamento Cartografia, topografia e orientamento Soluzioni delle esercitazioni Mi sono portato la carta UTM, il goniometro, la bussola, l altimetro, lo scalimetro, il righello, il coordinatometro, la matita, ed

Dettagli

Coordinate geografiche

Coordinate geografiche LATITUDINE Coordinate geografiche Dove siamo?? DATE LE COORDINATE.. TROVARE IL PUNTO NAVE Individuare longitudine (asse orizzontale) e latitudine (asse verticale). Riportare i punti individuati sugli assi

Dettagli

Studio di circuiti contenenti diodi Uso di modelli semplificati

Studio di circuiti contenenti diodi Uso di modelli semplificati STUDIO DI CIRCUITI CONTENENTI DIODI USO DI MODELLI SEMPLIFICATI 1 Primo modello 2 Secondo modello 4 Terzo modello 6 La caratteristica e la retta di carico 8 Studio di circuiti contenenti diodi Uso di modelli

Dettagli

Corso Avanzato sul sondaggio termodinamico dell atmosfera

Corso Avanzato sul sondaggio termodinamico dell atmosfera Istituto Tecnico Aeronautico Statale Euclide Seminari di Meteorologia Corso Avanzato sul sondaggio termodinamico Parte IV A cura di Vittorio Villasmunta Previsore del Servizio Meteorologico dell Aeronautica

Dettagli

La prospettiva e i suoi strumenti teorici e tecnici

La prospettiva e i suoi strumenti teorici e tecnici Dispense del Corso di Disegno, tenuto da Riccardo Migliari nella Facoltà di Architettura Ludovico Quaroni della Sapienza Università di Roma nell Anno Accademico 2009 2010 La prospettiva e i suoi strumenti

Dettagli

Misura del campo magnetico terrestre con le bobine di Helmholtz

Misura del campo magnetico terrestre con le bobine di Helmholtz Misura del campo magnetico terrestre con le bobine di Helmholtz Le bobine di Helmholtz sono una coppia di bobine con alcune caratteristiche particolari: hanno entrambe raggio ; hanno una lunghezza L molto

Dettagli

ESERCIZIO n. 2. Soluzione

ESERCIZIO n. 2. Soluzione Economia Internazionale e Politiche Commerciali a.a. 2013/14 ESERCIZIO n. 2 Krugman, Obstfeld e Melitz, Capitolo 4: Problemi n. 2, 3, 4, 5 e 6 (pp. 101 103) Problema 3 domanda d): Calcolate Discutete gli

Dettagli

LABILITA DI STRUTTURE

LABILITA DI STRUTTURE ESERCIZI SVOLTI O CON TRACCIA DI SOLUZIONE SU LAILITA DI STRUTTURE v 0.9 1 1 2 2n-1= 1 A C D 2n = 2 2(n-1) = 2 2n-1= 1 Numero totale di aste N = 2 GdL (gradi di libertà aste libere) = N 3 = 6 GdV (gradi

Dettagli

Le proiezioni Quotate o dei piani quotati. Le proiezioni Quotate

Le proiezioni Quotate o dei piani quotati. Le proiezioni Quotate Le proiezioni Quotate Per una rappresentazione grafica del terreno completa, cioè planoaltimetrica, in una determinata scala di rappresentazione, è necessario usare la teoria delle proiezioni quotate,

Dettagli

Capitolo 5 Elementi fondamentali di tettonica e stratigrafia

Capitolo 5 Elementi fondamentali di tettonica e stratigrafia Capitolo 5 Elementi fondamentali di tettonica e stratigrafia Studia l assetto della crosta terrestre, le dislocazioni che ha subìto attraverso le ere geologiche e le deformazioni delle rocce. Deformazioni

Dettagli

1 Prodotto cartesiano di due insiemi 1. 5 Soluzioni degli esercizi 6

1 Prodotto cartesiano di due insiemi 1. 5 Soluzioni degli esercizi 6 1 PRODOTTO CARTESIANO DI DUE INSIEMI 1 I-4 R 2 ed R 3 Piano e spazio cartesiani Indice 1 Prodotto cartesiano di due insiemi 1 2 Rappresentazione di R 2 sul piano cartesiano 2 3 Sottoinsiemi di R 2 e regioni

Dettagli

Logica figurale. 1 Quanti quadrati contengono la stella? A. 1 B. 2 C. 5 D. 6 E. 9. 2 Quanti triangoli sono rappresentati nella figura?

Logica figurale. 1 Quanti quadrati contengono la stella? A. 1 B. 2 C. 5 D. 6 E. 9. 2 Quanti triangoli sono rappresentati nella figura? Logica figurale 1 Quanti quadrati contengono la stella? A. 1 B. 2 C. 5 D. 6 E. 9 2 Quanti triangoli sono rappresentati nella figura? A. 6 B. 8 C. 9 D. 10 E. 12 3 Quanti sono i quadrati presenti nella seguente

Dettagli

ASSONOMETRIA OBLIQUA MILITARE Esempio di rappresentazione

ASSONOMETRIA OBLIQUA MILITARE Esempio di rappresentazione Università Sapienza di Roma, Facoltà di Architettura Corso di laurea in Gestione del processo edilizio Project Management, a.a. 2014-2015 Corso di Disegno tecnico e automatico Docente: Arch. Jessica Romor

Dettagli

gino copelli lezioni di scienza della rappresentazione appunti 2012

gino copelli lezioni di scienza della rappresentazione appunti 2012 gino copelli lezioni di scienza della rappresentazione appunti 2012 Simbologia Il punto, la linea e la superficie sono enti geometrici fondamentali. I punti si indicano con lettere maiuscole dell alfabeto

Dettagli

Esercizi svolti di geometria delle aree Alibrandi U., Fuschi P., Pisano A., Sofi A. ESERCIZIO n.5

Esercizi svolti di geometria delle aree Alibrandi U., Fuschi P., Pisano A., Sofi A. ESERCIZIO n.5 Esercizi svolti di geometria delle aree Alibrandi U., Fusci P., Pisano A., Sofi A. ESERCZO n.5 Data la sezione riportata in Figura, determinare: a) gli assi principali centrali di inerzia; b) l ellisse

Dettagli

PROIEZIONI ASSONOMETRICHE

PROIEZIONI ASSONOMETRICHE 1 ci permettono di disegnare un solido, che ha 3 dimensioni, su un foglio che ha 2 dimensioni PROIEZIONI ORTOGONALI PROIEZIONI ASSONOMETRICHE PROIEZIONI PROSPETTICHE Libro consigliato: Disegno Laboratorio

Dettagli

Il moto armonico. Comincio a studiare il moto di quando il corpo passa per il punto in figura 2 :

Il moto armonico. Comincio a studiare il moto di quando il corpo passa per il punto in figura 2 : Il moto armonico 1. Definizione di moto armonico Un punto P si muove di moto circolare uniforme lungo la circonferenza Γ in figura, con velocità angolare. Considero uno dei diametri della circonferenza

Dettagli

Esercizi- Risposta in frequenza

Esercizi- Risposta in frequenza esercizi 6, 1 Esercizi- Risposta in frequenza Diagrammi di Nyquist Data una funzione di trasferimento: Vogliamo ottenere la sua rappresentazione nel piano complesso al variare della frequenza. curva parametrizzata

Dettagli

Cartografia, topografia e orientamento

Cartografia, topografia e orientamento Cartografia, topografia e orientamento Esercitazioni Mi sono portato la carta UTM, il goniometro, la bussola, l altimetro, lo scalimetro, il righello, il coordinatometro, la matita, ed ho pure l alpestoc,

Dettagli

RILEVAMENTO GEOLOGICO-STRUTTURALE

RILEVAMENTO GEOLOGICO-STRUTTURALE RILEVAMENTO GEOLOGICO-STRUTTURALE Stage Didattico 4-7 Giugno 2013 Ammasso roccioso fratturato L ammasso roccioso è costituito da masse aventi caratteristico fisico-meccaniche simili (ROCCIA INTATTA), separate

Dettagli

UNITÀ L1. Regole convenzionali di rappresentazione del territorio

UNITÀ L1. Regole convenzionali di rappresentazione del territorio UNITÀ L1 Regole convenzionali di rappresentazione del territorio LE RAPPRESENTAZIONI NATURALI E CONVENZIONALI RAPPRESENTAZIONI 3D - possiamo considerare il terreno come un oggetto tridimensionale, e dovendolo

Dettagli

ESERCIZI SVOLTI O CON TRACCIA DI SOLUZIONE SU STRUTTURE IPERSTATICHE

ESERCIZI SVOLTI O CON TRACCIA DI SOLUZIONE SU STRUTTURE IPERSTATICHE ESERCIZI SVOLTI O CON TRACCIA DI SOLUZIONE SU STRUTTURE IPERSTATICHE 1 PROVA SCRITTA 11 gennaio 2013 - Esercizio 2 Data la struttura di figura, ricavare le equazioni delle azioni interne (M, N, T) e tracciarne

Dettagli

Gradi di libertà e vincoli. Moti del corpo libero

Gradi di libertà e vincoli. Moti del corpo libero Gradi di libertà e vincoli Moti del corpo libero Punto materiale Il punto materiale descrive un corpo di cui interessa individuare solo la sua posizione Nel piano la posizione di un punto si individua

Dettagli

Vettori paralleli e complanari

Vettori paralleli e complanari Vettori paralleli e complanari Lezione n 9 1 (Composizione di vettori paralleli e complanari) Continuando lo studio delle grandezze vettoriali in questa lezione ci interesseremo ancora di vettori. In particolare

Dettagli

Sismica a Rifrazione: fondamenti. Sismica rifrazione - Michele Pipan

Sismica a Rifrazione: fondamenti. Sismica rifrazione - Michele Pipan Sismica a Rifrazione: fondamenti 1 Sismica a Rifrazione: fondamenti Onde P ed S (2) Velocita delle Onde P: Velocita delle Onde S : Definiamo poi il rapporto di Poisson σ come 2 λ Sismica a Rifrazione:

Dettagli

ESERCIZI SVOLTI. Travi. 4 Forze in equilibrio e vincoli 4.2 Vincoli e reazioni vincolari 1

ESERCIZI SVOLTI. Travi. 4 Forze in equilibrio e vincoli 4.2 Vincoli e reazioni vincolari 1 4 Forze in equilibrio e vincoli 4. Vincoli e reazioni vincolari 1 ESERCIZI SVOLTI Travi 1 Si richiede il calcolo grafico e analitico delle reazioni vincolari della trave riportata in figura appoggiata

Dettagli

Analisi del moto dei proietti

Analisi del moto dei proietti Moto dei proietti E il moto di particelle che vengono lanciate con velocità iniziale v 0 e sono soggette alla sola accelerazione di gravità g supposta costante. La pallina rossa viene lasciata cadere da

Dettagli

Cerchio di Mohr. n y. n x

Cerchio di Mohr. n y. n x t nm m t n P n s n Sia P un punto generico del continuo e z una generica retta passante per esso. Fissato un riferimento cartesiano {,, z}, siano n=[n n 0] T ed m=[m m 0] T due versori ortogonali nel piano

Dettagli

il rischio prodotto sulle aree a valle dello sbarramento per effetto della costruzione dell impianto.

il rischio prodotto sulle aree a valle dello sbarramento per effetto della costruzione dell impianto. 1) Definizioni GUIDA ALLA DETERMINAZIONE DELLA CLASSE DELL IMPIANTO E DEL RISCHIO Ai fini della classificazione si definiscono: Altezza dello sbarramento: dislivello tra quota del piano di coronamento

Dettagli

PROVINCIA DI SIENA COMUNE DI SARTEANO PROGETTO DI ESCAVAZIONE E RIPRISTINO DELLA CAVA DENOMINATA SFERRACAVALLI IN LOCALITA MADONNA LA TEA **********

PROVINCIA DI SIENA COMUNE DI SARTEANO PROGETTO DI ESCAVAZIONE E RIPRISTINO DELLA CAVA DENOMINATA SFERRACAVALLI IN LOCALITA MADONNA LA TEA ********** PROVINCIA DI SIENA COMUNE DI SARTEANO PROGETTO DI ESCAVAZIONE E RIPRISTINO DELLA CAVA DENOMINATA SFERRACAVALLI IN LOCALITA MADONNA LA TEA ********** VERIFICHE DI STABILITA Committente: GOSTI S.R.L. Località

Dettagli

LEZIONE N 12 IL CEMENTO ARMATO PRECOMPRESSO IL SISTEMA EQUIVALENTE ALLA PRECOMPRESSIONE (SEP) Uso del sistema equivalente per travi continue

LEZIONE N 12 IL CEMENTO ARMATO PRECOMPRESSO IL SISTEMA EQUIVALENTE ALLA PRECOMPRESSIONE (SEP) Uso del sistema equivalente per travi continue EZIOE 12 I CEMETO ARMATO PRECOMPRESSO I SISTEMA EQUIVAETE AA PRECOMPRESSIOE (SEP) I sistemi i iperstatici ti i precompressi Uso del sistema equivalente per travi continue linea delle pressioni e cavo concordante

Dettagli

Cinematica nello Spazio

Cinematica nello Spazio Cinematica nello Spazio Abbiamo introdotto, nelle precedenti lezioni, le grandezze fisiche: 1) Spostamento; 2) Velocità; 3) Accelerazione; 4) Tempo. Abbiamo ricavato le equazioni per i moti: a) uniforme;

Dettagli

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette Annalisa Amadori e Benedetta Pellacci [email protected] [email protected] Università di Napoli Parthenope Contenuti Nel Piano

Dettagli

TOPOGRAFIA e CARTOGRAFIA

TOPOGRAFIA e CARTOGRAFIA 1. Un ettometro corrisponde a : a. 100 m ; b. 1.000 m ; c. 10.000 m ; 2. Un chilometro corrisponde a : a. 100 m ; b. 1.000 m ; c. 10.000 m ; 3. Un decametro corrisponde a : a. 0,1 m ; b. 0,01 m ; c. 10

Dettagli

ESEMPIO DI RAPPRESENTAZIONE IN PIANTA E ALZATO DEL MODELLO CREATO PER LA PRIMA ESERCITAZIONE

ESEMPIO DI RAPPRESENTAZIONE IN PIANTA E ALZATO DEL MODELLO CREATO PER LA PRIMA ESERCITAZIONE Università Sapienza di Roma, Facoltà di Architettura Corso di laurea in Gestione del processo edilizio Project Management, a.a. 2014-2015 Corso di Disegno tecnico e automatico Docente: Arch. Jessica Romor

Dettagli

Algoritmi e Strutture Dati Geometria Computazionale. Daniele Loiacono

Algoritmi e Strutture Dati Geometria Computazionale. Daniele Loiacono Algoritmi e Strutture Dati Geometria Computazionale Riferimenti 2 T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein Introduction to Algorithms, Second Edition Queste trasparenze sono disponibili su http://dei.polimi.it/upload/loiacono

Dettagli

LA RETTA. La retta è un insieme illimitato di punti che non ha inizio, né fine.

LA RETTA. La retta è un insieme illimitato di punti che non ha inizio, né fine. LA RETTA La retta è un insieme illimitato di punti che non ha inizio, né fine. Proprietà: Per due punti del piano passa una ed una sola retta. Nel precedente modulo abbiamo visto che ad ogni punto del

Dettagli

Appunti di Algebra Lineare. Distanze

Appunti di Algebra Lineare. Distanze Appunti di Algebra Lineare Distanze 1 Indice 1 Distanze nel piano 1.1 Distanza punto-punto................................... 1. Distanza punto-retta.................................... 3 1.3 Distanza

Dettagli

Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri. Classe III C ESERCIZI ESTIVI 2013/14

Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri. Classe III C ESERCIZI ESTIVI 2013/14 Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri Classe III C ESERCIZI ESTIVI 013/14 ALUNNO CLASSE ESEGUI TUTTI GLI ESERCIZI SU UN FOGLIO PROTOCOLLO O UN QUADERNO. Ulteriore

Dettagli

LE SEZIONI TRASVERSALI

LE SEZIONI TRASVERSALI 1 LE SEZIONI TRASVERSALI Rappresentano l intersezione del corpo stradale e del terreno con un piano verticale e normale all asse stradale. Vengono eseguite in corrispondenza di ciascun picchetto d asse.

Dettagli

RETTE E PIANI. ove h R. Determinare i valori di h per cui (1) r h e α sono incidenti ed, in tal caso, determinare l angolo ϑ h da essi formato;

RETTE E PIANI. ove h R. Determinare i valori di h per cui (1) r h e α sono incidenti ed, in tal caso, determinare l angolo ϑ h da essi formato; RETTE E PIANI Esercizi Esercizio 1. Nello spazio con riferimento cartesiano ortogonale Oxyz si considerino la retta r h ed il piano α rispettivamente di equazioni x = 1 + t r h : y = 1 t α : x + y + z

Dettagli

Lezioni di Microeconomia

Lezioni di Microeconomia Lezioni di Microeconomia Lezione 4 Le scelte di consumo, il vincolo di bilancio Lezione 4: le scelte di consumo e il vincolo di bilancio Slide 1 Le scelte di consumo Due assunzioni fondamentali: a) i consumatori

Dettagli

Corso di Fisica. Lezione 2 Scalari e vettori Parte 1

Corso di Fisica. Lezione 2 Scalari e vettori Parte 1 Corso di Fisica Lezione 2 Scalari e vettori Parte 1 Scalari e vettori Consideriamo una libreria. Per determinare quanti libri ci sono su uno scaffale basta individuare lo scaffale in questione e contare

Dettagli

Disegno tecnico e automatico ESEMPIO DI RAPPRESENTAZIONE PROSPETTICA

Disegno tecnico e automatico ESEMPIO DI RAPPRESENTAZIONE PROSPETTICA Università Sapienza di Roma, Facoltà di Architettura Corso di laurea in Gestione del processo edilizio - Project Management, a.a. 2014-2015 Corso di Disegno tecnico e automatico Docente: Arch. Jessica

Dettagli

Per ruotare la figura fino a disporla parallela al occorre individuarne un qualsiasi segmento orizzontale. Per tale segmento, o per una parallela ad e

Per ruotare la figura fino a disporla parallela al occorre individuarne un qualsiasi segmento orizzontale. Per tale segmento, o per una parallela ad e Determinare la forma reale del triangolo rappresentato effettuando il ribaltamento (o la rotazione) del piano a cui appartiene. Nome Cognome Classe Data Per ruotare la figura fino a disporla parallela

Dettagli

PROSPETTIVA CENTRALE A2 B2 A2 A B A LT PV AB

PROSPETTIVA CENTRALE A2 B2 A2 A B A LT PV AB PROSPETTIVA CENTRALE immaginiamo di fare scorrere un segmento AB lungo 2 binari (allonandolo sempre di più dall osservatore). la dimensione del segmento diminuisce seguendo l andamento delle due rette

Dettagli

Elementi costruttivi: le scale

Elementi costruttivi: le scale Elementi costruttivi: le scale Quando si devono mettere in comunicazione spazi giacenti a quote differenti è necessario introdurre elementi costruttivi di collegamento verticale. Essi si dividono in: -

Dettagli

Soluzione di Adriana Lanza

Soluzione di Adriana Lanza Soluzione Dimostriamo che f(x) è una funzione dispari Osserviamo che in quanto in quanto x è una funzione dispari è una funzione dispari in quanto prodotto di una funzione dispari per una pari Pertanto

Dettagli

ESERCIZIO SVOLTO A. P 2 St

ESERCIZIO SVOLTO A. P 2 St ESERCIZIO SVOLTO A Effettuare le verifiche agli stati limite di ribaltamento, di scorrimento e di collasso per carico limite dell insieme fondazione-terreno per il muro di sostegno in calcestruzzo semplice

Dettagli

Capitolo 6. I poligoni. (Ob. 4, 5, 6, 7, 9, 11, 12, 14, 15)

Capitolo 6. I poligoni. (Ob. 4, 5, 6, 7, 9, 11, 12, 14, 15) (Ob. 4, 5, 6, 7, 9, 11, 12, 14, 15) (vertici, lati, diagonali, convessità, angoli, perimetro) 6.2 I triangoli 6.3 I quadrilateri 6.4 I poligoni regolari 6.5 Le altezze 6.6 Le aree Un poligono è la parte

Dettagli

Definizione Dati due insiemi A e B, contenuti nel campo reale R, si definisce funzione reale di variabile reale una legge f : A

Definizione Dati due insiemi A e B, contenuti nel campo reale R, si definisce funzione reale di variabile reale una legge f : A Scopo centrale, sia della teoria statistica che della economica, è proprio quello di esprimere ed analizzare le relazioni, esistenti tra le variabili statistiche ed economiche, che, in linguaggio matematico,

Dettagli

Vettori nel Piano e nello Spazio

Vettori nel Piano e nello Spazio Vettori nel Piano e nello Spazio Caratteristiche di un vettore Componenti di un vettore e Vettore applicato all origine Vettore definito da due punti Operazioni unarie sul vettore Lunghezza di un vettore

Dettagli

ESAME DI MATEMATICA I parte Vicenza, 05/06/2017. x log 2 x?

ESAME DI MATEMATICA I parte Vicenza, 05/06/2017. x log 2 x? A. Peretti Svolgimento dei temi d esame di Matematica A.A. 6/7 ESAME DI MATEMATICA I parte Vicenza, 5/6/7 log? Domanda. Per quali valori di è definita l espressione L espressione è definita se l argomento

Dettagli

Capitolo 2. Statica del corpo rigido. 2.1 Azioni su un corpo rigido

Capitolo 2. Statica del corpo rigido. 2.1 Azioni su un corpo rigido Capitolo 2 Statica del corpo rigido La statica è la parte della meccanica che si occupa dello studio dell equilibrio di corpi in quiete, ossia fermi, o mobili di moto rettilineo uniforme. In effetti applichiamo

Dettagli

Queste note (attualmente, e probabilmente per un bel po ) sono altamente provvisorie e (molto probabilmente) non prive di errori.

Queste note (attualmente, e probabilmente per un bel po ) sono altamente provvisorie e (molto probabilmente) non prive di errori. ËÁËÌ ÅÁ ÈÁ ÆÁ ½ Queste note attualmente e probabilmente per un bel po ) sono altamente provvisorie e molto probabilmente) non prive di errori 41 Sistemi 2D Come abbiamo già detto tipicamente è impossibile

Dettagli

Il disegno archite0onico

Il disegno archite0onico La scala è un elemento edilizio che permette il collegamento fra piani posti a quote diverse tramite una serie di gradini formati da un elemento orizzontale (pedata) e uno verticale (alzata). In particolare,

Dettagli

L errore percentuale di una misura è l errore relativo moltiplicato per 100 ed espresso in percentuale. Si indica con e p e risulta: e ( e 100)%

L errore percentuale di una misura è l errore relativo moltiplicato per 100 ed espresso in percentuale. Si indica con e p e risulta: e ( e 100)% UNITÀ L ELBORZIONE DEI DTI IN FISIC 1. Gli errori di misura.. Errori di sensibilità, errori casuali, errori sistematici. 3. La stima dell errore. 4. La media, la semidispersione e lo scarto quadratico

Dettagli

ESPERIENZA 6 La legge della riflessione

ESPERIENZA 6 La legge della riflessione ESPERIENZA 6 La legge della riflessione 1. Argomenti Determinare la direzione del raggio riflesso sulla superficie di uno specchio piano a diversi angoli di incidenza. Confrontare gli angoli di incidenza

Dettagli

Introduzione alla programmazione

Introduzione alla programmazione Introduzione alla programmazione Risolvere un problema Per risolvere un problema si procede innanzitutto all individuazione Delle informazioni, dei dati noti Dei risultati desiderati Il secondo passo consiste

Dettagli

Come si rappresentano?

Come si rappresentano? DISEGNO TECNICO Come si rappresentano? COSA È? È uno tra i PROIEZIONE ORTOGONALE S I S T E M A di R A P P R E S E N TA Z I O N E G R A F I C A = Insieme di regole Chi disegna deve essere sicuro che anche

Dettagli

GLI ENTI GEOMETRICI NELLO SPAZIO EUCLIDEO

GLI ENTI GEOMETRICI NELLO SPAZIO EUCLIDEO GLI ENTI GEOMETRICI NELLO SPAZIO EUCLIDEO PUNTI Ciò che non ha parte LINEE Linea è ciò che ha lunghezza senza larghezza Estremi di una linea sono punti RETTE Ciò che giace uniformemente rispetto ai suoi

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

La retta nel piano cartesiano

La retta nel piano cartesiano La retta nel piano cartesiano Cominciamo con qualche esempio. I) Rette parallele agli assi cartesiani Consideriamo la retta r in figura: i punti della retta hanno sempre ordinata uguale a 3. P ( ;3) Q

Dettagli

Grandezze geometriche e fisiche. In topografia si studiano le grandezze geometriche: superfici angoli

Grandezze geometriche e fisiche. In topografia si studiano le grandezze geometriche: superfici angoli Topografia la scienza che studia i mezzi e i procedimenti operativi per il rilevamento e la rappresentazione grafica, su superficie piana (un foglio di carta) di una porzione limitata di terreno.... è

Dettagli

Geometria Analitica Domande e Risposte

Geometria Analitica Domande e Risposte Geometria Analitica Domande e Risposte A. Il Piano Cartesiano. Qual è la formula della distanza tra due punti nel piano cartesiano? Per calcolare la formula della distanza tra due punti nel piano cartesiano

Dettagli

Posizioni Atomiche nelle Celle Unitarie Cubiche

Posizioni Atomiche nelle Celle Unitarie Cubiche Posizioni Atomiche nelle Celle Unitarie Cubiche Il sistema di coordinate cartesiane è usato per individuare gli atomi. In una cella unitaria cubica l asse x è la direzione che esce dal foglio. l asse y

Dettagli

Esercitazione di Statica

Esercitazione di Statica Appunti di Elementi di Meccanica Esercitazione di Statica v 1.0 7 ottobre 2008 Figura 1: Scaffale a mensole 1 Problema Lo scaffale è un oggetto di uso quotidiano, presente nella maggior parte delle abitazioni.

Dettagli

UNITÀ DIDATTICA 5 LA RETTA

UNITÀ DIDATTICA 5 LA RETTA UNITÀ DIDATTICA 5 LA RETTA 5.1 - La retta Equazione generica della retta Dalle considerazioni emerse nel precedente capitolo abbiamo compreso come una funzione possa essere rappresentata da un insieme

Dettagli

PREREQUISITI. Rette e piani (parallelismo, perpendicolarità, incidenza) Proiezioni ortogonali Componenti Direzione Seno, coseno e tangente Glossario

PREREQUISITI. Rette e piani (parallelismo, perpendicolarità, incidenza) Proiezioni ortogonali Componenti Direzione Seno, coseno e tangente Glossario Appunti corso di Fisica, Facoltà di Agraria, Docente Ing. Francesca Todisco REREQUISITI Rette e piani (parallelismo, perpendicolarità, incidenza) roiezioni ortogonali Componenti Direzione Seno, coseno

Dettagli

1 Nozioni utili sul piano cartesiano

1 Nozioni utili sul piano cartesiano Nozioni utili sul piano cartesiano Nozioni utili sul piano cartesiano Il piano cartesiano è un sistema di riferimento costituito da due rette perpendicolari (una orizzontale detta asse delle ascisse x

Dettagli

Tettonica a zolle. Gaetano Festa

Tettonica a zolle. Gaetano Festa Tettonica a zolle Gaetano Festa La Terra come sistema La tettonica a zolle è una teoria cinematica Essa tiene conto del momento delle placche ed individua regioni dove la deformazione, la sismicità ed

Dettagli

Coppia di forze LEZIONE N 10. Corso di fisica I Prof. Giuseppe Ciancio

Coppia di forze LEZIONE N 10. Corso di fisica I Prof. Giuseppe Ciancio Coppia di forze LEZIONE N 10 1 Definizione delle coppia di forze: È un sistema di due forze () uguali e opposte agenti su rette d azione parallele distinte. La distanza minima tra le rette d azione delle

Dettagli

Con il termine sezione si intende la figura piana risultante dall intersezione di un solido con un piano.

Con il termine sezione si intende la figura piana risultante dall intersezione di un solido con un piano. cosa è una seione? Con il termine seione si intende la figura piana risultante dall interseione di un solido con un piano. solitamente si indicano le seione colorandole (a matita o utiliando i retini)

Dettagli

Compenetrazione di solidi e intersezioni

Compenetrazione di solidi e intersezioni Compenetrazione di solidi e intersezioni prof. Denis Benasciutti [email protected] A.A. 2017/2018 1 Introduzione Nel disegno di componenti meccanici spesso è necessario determinare la linea di

Dettagli

Richiamo trigonometria

Richiamo trigonometria ESERCIZI Richiamo trigonometria 2 sin Sin, Cos, Tan a y R P α s R R a y P P (x P,y P ) s x P cos a x R P tan a y x P P Richiamo trigonometria 3 c a 2 b 2 a c cosa b b c a sina tana b a sina cosa tana cos

Dettagli

EQUAZIONE DELLA RETTA

EQUAZIONE DELLA RETTA EQUAZIONE DELLA RETTA EQUAZIONE DEGLI ASSI L equazione dell asse x è 0. L equazione dell asse y è 0. EQUAZIONE DELLE RETTE PARALLELE AGLI ASSI L equazione di una retta r parallela all asse x è cioè è uguale

Dettagli

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA FOGLIO DI ESERCIZI 1 GEOMETRIA 2009/10 Esercizio 1.1 (2.2). Determinare l equazione parametrica e Cartesiana della retta dello spazio (a) Passante per i

Dettagli

La Retta Ogni funzione di primo grado rappresenta, graficamente, una retta. L equazione della retta può essere scritta in due modi

La Retta Ogni funzione di primo grado rappresenta, graficamente, una retta. L equazione della retta può essere scritta in due modi La Retta Ogni funzione di primo grado rappresenta, graficamente, una retta. L equazione della retta può essere scritta in due modi Forma implicita Forma esplicita a x b y c 0 y m x q a c y x b b Esempio

Dettagli