D = v x t (legge del moto rettilineo uniforme) Per t = 1 s abbiamo D = 6,4 x 1 Km = 6,4 km A(6,4 Km;1s)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "D = v x t (legge del moto rettilineo uniforme) Per t = 1 s abbiamo D = 6,4 x 1 Km = 6,4 km A(6,4 Km;1s)"

Transcript

1

2 Nelle Prealpi Craniche si registrano velocità delle onde P pari a 6,4 Km/s. Dopo aver tracciato la curva che descrive l evento in un diagramma distanza tempo utilizzala per trovare dopo quanto tempo viene raggiunta la distanza di 40 Km D = v x t (legge del moto rettilineo uniforme) Per t = 1 s abbiamo D = 6,4 x 1 Km = 6,4 km A(6,4 Km;1s) Per t = 2s abbiamo D = 6,4 x 2 Km = 6,8 km B(12,8 Km;2s) Siccome fra tempo e distanza esiste una proporzionalità diretta la curva è una retta e avendo 2 punti siamo in condizione di tracciarla(trascurando i valori negativi che non interessano abbiamo una semiretta) A questo punto da 20 km tracciamo la parallela a t che incontra la retta in F Da F tracciamo la parallela a D e avremo il valore cercato

3 Nella Germania meridionale si registrano velocità delle onde P pari a 7,1 km/s. Dopo aver tracciato la curva che descrive l evento in un diagramma distanza tempo utilizzala per trovare la distanza raggiunta dopo 3,8 s Appennino meridionale si registrano velocità delle onde P pari a 6,38 km/s. Dopo aver tracciato la curva che descrive l evento in un diagramma distanza tempo utilizzala per trovare la distanza raggiunta dopo 2,8 s Nel Tirolo si registrano velocità delle onde P pari a 6,7 km/s. Dopo aver tracciato la curva che descrive l evento in un diagramma distanza tempo utilizzala per trovare dopo quanto l evento viene avvertito a 50 km di distanza

4 Nelle Prealpi Craniche si registrano velocità delle onde S pari a 3,6 Km/s. Dopo aver tracciato la curva che descrive l evento in un diagramma distanza tempo utilizzala per trovare dopo quanto tempo viene raggiunta la distanza di 40 Km D = v x t (legge del moto rettilineo uniforme) Per t = 2 s abbiamo D = 3,6 x 2 Km = 7,2 km A(7,2 Km;2s) Per t = 4s abbiamo D = 3,6 x 4 Km = 14,4 km B(14,4 Km;4s) Siccome fra tempo e distanza esiste una proporzionalità diretta la curva è una retta e avendo 2 punti siamo in condizione di tracciarla(trascurando i valori negativi che non interessano abbiamo una semiretta) A questo punto da 20 km tracciamo la parallela a t che incontra la retta in F Da F tracciamo la parallela a D e avremo il valore cercato

5 Nella Germania meridionale si registrano velocità delle onde S pari a 3,7 km/s. Dopo aver tracciato la curva che descrive l evento in un diagramma distanza tempo utilizzala per trovare la distanza raggiunta dopo 3,8 s Appennino meridionale si registrano velocità delle onde S pari a 3,45 km/s. Dopo aver tracciato la curva che descrive l evento in un diagramma distanza tempo utilizzala per trovare la distanza raggiunta dopo 2,8 s Nel Tirolo si registrano velocità delle onde P pari a 3,5 km/s. Dopo aver tracciato la curva che descrive l evento in un diagramma distanza tempo utilizzala per trovare dopo quanto l evento viene avvertito a 50 km di distanza

6 Se prendiamo in considerazione questo esercizio scopriremo qualcosa di interessante Nelle Prealpi Craniche si registrano velocità delle onde P pari a 6,4 Km/s e 3,7 Km/s. Dopo aver tracciato le curve che descrive l evento in un diagramma distanza tempo utilizzala per trovare dopo quanto tempo viene raggiunta la distanza di 40 Km Senza ripetere ciò che abbiamo fatto presentiamo direttamente i risultati Come si vede dopo 40 km la differenza di arrivo fra le onde p e quelle s è di t = 11,1 s 6,3 s = 4,8 s

7 Ma perché questo dato è particolarmente importante? Se noi osserviamo attentamente la figura ci rendiamo conto che all epicentro questa differenza è zero poi aumenta linearmente con la distanza Questo lo possiamo vedere se andiamo a trovare graficamente questa differenza alla distanza di 80 km (se ciò che ho scritto è vero debbo aspettarmi un t di 9,6 s nei limiti dell errore grafico) Vediamo cosa troviamo t = 22,2 s 12,5 s = 9,7s Esattamente ciò che ci si aspettava (se prendevamo anche la seconda decimale l errore sarebbe stato inferiore Questo ci consentirà di tracciare una retta nel diagramma D - t che rappresenta la distanza del terremoto in funzione della differenza dei tempi di arrivo delle onde sismiche

8 Prendiamo in considerazione un diagramma cartesiano D - t Per tracciare la nostra retta avremmo bisogno di due punti, uno è l origine degli assi infatti dove si origina il sisma la differenza di arrivo delle onde p ed s è 0 Per l altro punto possiamo prendere la distanza di 80 km in cui la differenza di arrivo fra le onde p e le onde s è di 9,8 Km Perciò abbiamo il punto O (0km; 0s) E il punto A (80 km; 9,8 s) A questo punto tracciamo la nostra semiretta che rappresenta la curva di lavoro

9 L utilizzo è molto semplice, ciascuna zona ha la sua retta (quella trovata corrisponde alle Prealpi Carniche) Supponiamo che una stazione sismica di questa zona a seguito di un evento sismico si registri una differenza t= 15s e voglia sapere a che distanza è avvenuto il sisma Dal punto t = 15 s si traccia una parallela all asse D che incontra la retta nel punto B Dal punto B si traccia la parallela alla asse t che incontra l asse D nel punto C Qui abbiamo un valore in km che rappresenta la distanza cercata

10 Nella Germania meridionale si registrano velocità delle onde P pari a 7,1 km/s e S pari a 3,7 km/s. Dopo aver tracciato la curva di lavoro trovare a che distanza è avvenuto un sisma se la differenza di arrivo fra le onde s e le onde p è di 10 s Appennino meridionale si registrano velocità P pari a 6,38 km/s e delle onde S pari a 3,45 km/s. Dopo aver tracciato la curva di lavoro trovare a che distanza è avvenuto un sisma se la differenza di arrivo fra le onde s e le onde p è di 8,5 s Nel Tirolo si registrano velocità delle onde P pari a 6,7 km/s delle onde S pari a 3,5 km/s. Dopo aver tracciato la curva di lavoro trovare a che distanza è avvenuto un sisma se la differenza di arrivo fra le onde s e le onde p è di 10 s

La retta nel piano cartesiano

La retta nel piano cartesiano La retta nel piano cartesiano Cominciamo con qualche esempio. I) Rette parallele agli assi cartesiani Consideriamo la retta r in figura: i punti della retta hanno sempre ordinata uguale a 3. P ( ;3) Q

Dettagli

6. IL MOTO Come descrivere un moto.

6. IL MOTO Come descrivere un moto. 6. IL MOTO Per definire il movimento di un corpo o il suo stato di quiete deve sempre essere individuato un sistema di riferimento e ogni movimento è relativo al sistema di riferimento in cui esso avviene.

Dettagli

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0.

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0. . Rette in R ; circonferenze. In questo paragrafo studiamo le rette e le circonferenze in R. Ci sono due modi per descrivere una retta in R : mediante una equazione cartesiana oppure mediante una equazione

Dettagli

La retta nel piano cartesiano

La retta nel piano cartesiano La retta nel piano cartesiano Se proviamo a disporre, sul piano cartesiano, una retta vediamo che le sue possibili posizioni sono sei: a) Coincidente con l asse delle y; b) Coincidente con l asse delle

Dettagli

Lezione 3: come si descrive il moto dei corpi

Lezione 3: come si descrive il moto dei corpi Lezione 3 - pag.1 Lezione 3: come si descrive il moto dei corpi 3.1. Correlare posizione e tempo Quando diciamo che un corpo si muove intendiamo dire che la sua posizione, misurata rispetto al sistema

Dettagli

Equilibrio dei corpi. Leggi di Newton e momento della forza, τ

Equilibrio dei corpi. Leggi di Newton e momento della forza, τ Equilibrio dei corpi Leggi di Newton e momento della forza, τ Corpi in equilibrio 1. Supponiamo di avere due forze di modulo uguale che agiscono lungo la stessa direzione, ma che siano rivolte in versi

Dettagli

FISICA. Fai un esempio di...: a)...un corpo in moto per il quale siano negative sia la velocità sia l accelerazione;

FISICA. Fai un esempio di...: a)...un corpo in moto per il quale siano negative sia la velocità sia l accelerazione; FISICA Serie 6: Cinematica del punto materiale V I liceo Esercizio 1 Alcuni esempi Fai un esempio di...: a)...un corpo in moto per il quale siano negative sia la velocità sia l accelerazione; b)...un corpo

Dettagli

Localizzazione di una esplosione

Localizzazione di una esplosione XXIII Ciclo di Dottorato in Geofisica Università di Bologna Corso di: Il problema inverso in sismologia Prof. Morelli Localizzazione di una esplosione Paola Baccheschi & Pamela Roselli 1 INTRODUZIONE Problema

Dettagli

Il movimento dei corpi

Il movimento dei corpi 1 Per stabilire se un corpo si muove oppure no è necessario riferirsi a qualcosa che sicuramente è fermo. È necessario scegliere un sistema di riferimento. 1. Un passeggero di un treno in moto appare fermo

Dettagli

Tennis 20. Calcio 15. Nuoto 30. Basket 10. Sport preferito fra i ragazzi di un club sportivo. = 5 ragazzi

Tennis 20. Calcio 15. Nuoto 30. Basket 10. Sport preferito fra i ragazzi di un club sportivo. = 5 ragazzi Il linguaggio grafico della matematica, oggi usato in svariati campi dell informazione, è uno strumento molto utile in quanto ci permette una visione chiara e immediata di una situazione o di un fenomeno.

Dettagli

Scheda di lavoro 1. Isometrie: come ottenerle con GeoGebra

Scheda di lavoro 1. Isometrie: come ottenerle con GeoGebra Scheda di lavoro 1. Isometrie: come ottenerle con GeoGebra Esercizio 1. Traslazioni. Per traslare un oggetto di un vettore, bisogna prima definire l oggetto ed il vettore. Consideriamo la retta y = 2x

Dettagli

Esercizi geometria analitica nello spazio. Corso di Laurea in Informatica. Docente: Andrea Loi. Correzione

Esercizi geometria analitica nello spazio. Corso di Laurea in Informatica. Docente: Andrea Loi. Correzione Esercizi geometria analitica nello spazio Corso di Laurea in Informatica Docente: Andrea Loi Correzione 1. Denotiamo con P 1, P 13, P 3, P 1, P, P 3, P i simmetrici di un punto P rispetto ai piani coordinati

Dettagli

La descrizione del moto

La descrizione del moto Professoressa Corona Paola Classe 1 B anno scolastico 2016-2017 La descrizione del moto Il moto di un punto materiale La traiettoria Sistemi di riferimento Distanza percorsa Lo spostamento La legge oraria

Dettagli

Esercizio L1 L2 L3 L4 L5 L6 L7 L8. Sia f (x) = 4 x. Allora f (x + 1) f (x) è uguale a. Risposta. Risulta immediatamente

Esercizio L1 L2 L3 L4 L5 L6 L7 L8. Sia f (x) = 4 x. Allora f (x + 1) f (x) è uguale a. Risposta. Risulta immediatamente Sia f (x) = 4 x. Allora f (x + 1) f (x) è uguale a [1] 4 [2] f (x) [3] 2f (x) [4] 3f (x) [5] 4f (x) Risulta immediatamente f (x 1) f (x) = 4 x+1 4 x = 4 x 4 1 4 x = 4 x (4 1) = 3 4 x = 3f (x). E noto che

Dettagli

COMPENDIO ESPONENZIALI LOGARITMI

COMPENDIO ESPONENZIALI LOGARITMI TORINO SETTEMBRE 2010 COMPENDIO DI ESPONENZIALI E LOGARITMI di Bart VEGLIA 1 ESPONENZIALi 1 Equazioni esponenziali Un espressione in cui l incognita compare all esponente di una o più potenze si chiama

Dettagli

Mutue posizioni della parabola con gli assi cartesiani

Mutue posizioni della parabola con gli assi cartesiani Mutue posizioni della parabola con gli assi cartesiani L equazione di una parabola generica è data da: Consideriamo l equazione che definisce i punti di intersezione della parabola con l asse delle ascisse

Dettagli

UNITÀ DIDATTICA 5 LA RETTA

UNITÀ DIDATTICA 5 LA RETTA UNITÀ DIDATTICA 5 LA RETTA 5.1 - La retta Equazione generica della retta Dalle considerazioni emerse nel precedente capitolo abbiamo compreso come una funzione possa essere rappresentata da un insieme

Dettagli

sen ; e sul teorema del coseno. 2

sen ; e sul teorema del coseno. 2 Esercizi sul grafico di funzioni: Lunghezza di una corda ( ) sen e sul teorema del coseno Esercizi sulla equazione della circonferenza centrata in un generico punto (, ) R Il prodotto di una funzione pari

Dettagli

Definizioni basilari di funzione.

Definizioni basilari di funzione. Definizioni basilari di funzione. Una funzione per definizione e' una legge che ad ogni elemento di un insieme ( detto dominio ed indicato con D) associa un unico elemento di un secondo insieme (il codominio)

Dettagli

Problemi con discussione grafica

Problemi con discussione grafica Problemi con discussione grafica Un problema con discussione grafica consiste nel determinare le intersezioni tra un fascio di rette (proprio o improprio) e una particolare funzione che viene assegnata

Dettagli

Sul concetto di derivata di una funzione con riferimento ad alcune sue applicazioni nel campo matematico e fisico.

Sul concetto di derivata di una funzione con riferimento ad alcune sue applicazioni nel campo matematico e fisico. Sul concetto di derivata di una funzione con riferimento ad alcune sue applicazioni nel campo matematico e fisico. Introduzione In matematica la derivata di una funzione è uno dei cardini dellanalisi matematica

Dettagli

Esercitazione su grafici di funzioni elementari

Esercitazione su grafici di funzioni elementari Esercitazione su grafici di funzioni elementari Davide Boscaini Queste sono le note da cui ho tratto le esercitazioni del giorno 8 Novembre 0. Come tali sono ben lungi dall essere esenti da errori, invito

Dettagli

La lunghezza dei vettori e legata alle operazioni sui vettori nel modo seguente: Consideriamo due vettori v, w e il vettore v + w loro somma.

La lunghezza dei vettori e legata alle operazioni sui vettori nel modo seguente: Consideriamo due vettori v, w e il vettore v + w loro somma. Matematica II, 20.2.. Lunghezza di un vettore nel piano Consideriamo il piano vettoriale geometrico P O. Scelto un segmento come unita, possiamo parlare di lunghezza di un vettore v P O rispetto a tale

Dettagli

1 Equazioni parametriche e cartesiane di sottospazi affini di R n

1 Equazioni parametriche e cartesiane di sottospazi affini di R n 2 Trapani Dispensa di Geometria, Equazioni parametriche e cartesiane di sottospazi affini di R n Un sottospazio affine Σ di R n e il traslato di un sottospazio vettoriale. Cioe esiste un sottospazio vettoriale

Dettagli

Un punto del piano può essere individuato dalle sue coordinate cartesiane o anche dalle sue coordinate polari:

Un punto del piano può essere individuato dalle sue coordinate cartesiane o anche dalle sue coordinate polari: Un punto del piano può essere individuato dalle sue coordinate cartesiane o anche dalle sue coordinate polari: Figura 1 Per passare da coordinate polari a quelle cartesiane usiamo { x = r cos θ y = r sin

Dettagli

LICEO SCIENTIFICO PROBLEMA 1

LICEO SCIENTIFICO PROBLEMA 1 www.matefilia.it LICEO SCIENTIFICO 2015 - PROBLEMA 1 Il piano tariffario proposto da un operatore telefonico prevede, per le telefonate all estero, un canone fisso di 10 euro al mese, più 10 centesimi

Dettagli

Soluzioni dei quesiti di matematica (3)

Soluzioni dei quesiti di matematica (3) Facoltà d Ingegneria - Università Roma Tre 1 Soluzioni dei quesiti di matematica (3) 1) Anche senza usare i criteri di classificazione delle curve del second ordine, è possibile rendersi conto che l equazione

Dettagli

Sistemi di equazioni di primo grado (sistemi lineari)

Sistemi di equazioni di primo grado (sistemi lineari) Sistemi di equazioni di primo grado (sistemi lineari) DEFINIZIONE Un sistema di equazioni è un insieme di due o più equazioni, tutte nelle stesse incognite, di cui cerchiamo soluzioni comuni. Esempi 1.

Dettagli

Coordinate geografiche

Coordinate geografiche LATITUDINE Coordinate geografiche Dove siamo?? DATE LE COORDINATE.. TROVARE IL PUNTO NAVE Individuare longitudine (asse orizzontale) e latitudine (asse verticale). Riportare i punti individuati sugli assi

Dettagli

Secondo parziale di Matematica per l Economia (esempio)

Secondo parziale di Matematica per l Economia (esempio) Corso di Laurea in Economia e Management Secondo parziale di Matematica per l Economia (esempio) lettere E-Z, a.a. 206 207 prof. Gianluca Amato Regole generali Si svolga il primo esercizio e, a scelta

Dettagli

FISICA. Serie 3: Cinematica del punto materiale II. Esercizio 1 Velocità media. I liceo

FISICA. Serie 3: Cinematica del punto materiale II. Esercizio 1 Velocità media. I liceo FISICA Serie 3: Cinematica del punto materiale II I liceo Le funzioni affini Una funzione f è detta una funzione del tempo se ad ogni istante t associa il valore di una grandezza fisica f a quell istante,

Dettagli

Scheda n.3: densità gaussiana e Beta

Scheda n.3: densità gaussiana e Beta Scheda n.3: densità gaussiana e Beta October 10, 2008 1 Definizioni generali Chiamiamo densità di probabilità (pdf ) ogni funzione integrabile f (x) definita per x R tale che i) f (x) 0 per ogni x R ii)

Dettagli

Piano cartesiano. O asse delle ascisse

Piano cartesiano. O asse delle ascisse Piano cartesiano E costituito da due rette orientate e perpendicolari tra di loro chiamate assi di riferimento. Il loro punto di intersezione O si chiama origine del riferimento. L asse orizzontale è detto

Dettagli

Problemi di massimo e minimo

Problemi di massimo e minimo Problemi di massimo e minimo Supponiamo di avere una funzione continua in Per il teorema di Weierstrass esistono il massimo assoluto M e il minimo assoluto m I problemi di massimo e minimo sono problemi

Dettagli

Numero decimale con la virgola -- numero binario

Numero decimale con la virgola -- numero binario Numero decimale con la virgola -- numero binario Parlando del SISTEMA DI NUMERAZIONE BINARIO abbiamo visto come è possibile trasformare un NUMERO decimale INTERO in un numero binario. La conversione avviene

Dettagli

FUNZIONI PROPORZIONALITA INVERSA

FUNZIONI PROPORZIONALITA INVERSA Revisione del 1/10/15 ISTITUTO TECNICO INDUSTRIALE V.E.MARZOTTO Valdagno (VI) Corso di Fisica prof. Nardon FUNZIONI PROPORZIONALITA INVERSA Richiami di teoria Due grandezze si definiscono inversamente

Dettagli

20 MARZO 2010 TESTO E SOLUZIONI

20 MARZO 2010 TESTO E SOLUZIONI 25 a GARA MATEMATICA CITTÀ DI PADOVA 20 MARZO 2010 TESTO E SOLUZIONI 1.- È dato un rettangolo ABCD. Si dimostri che per un qualunque punto P del piano vale : PD 2 + PB 2 = PA 2 + PC 2 con AC una diagonale.

Dettagli

LA GEOMETRIA CON L EQ. PARAMETRICA DI VAG La Retta Cap. II Pag. 1

LA GEOMETRIA CON L EQ. PARAMETRICA DI VAG La Retta Cap. II Pag. 1 II. LA RETTA La Retta Cap. II Pag. 1 LA RETTA In un riferimento cartesiano ortogonale una qualunque retta si può orientare stabilendo la sua direzione e verso, secondo l angolo che essa forma con il verso

Dettagli

1 Cambiamenti di riferimento nel piano

1 Cambiamenti di riferimento nel piano 1 Cambiamenti di riferimento nel piano Siano date due basi ortonormali ordinate di V : B = ( i, j) e B = ( i, j ) e supponiamo che i = a i + b j j = c i + d j allora per un generico vettore v V abbiamo

Dettagli

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette Annalisa Amadori e Benedetta Pellacci amadori@uniparthenope.it pellacci@uniparthenope.it Università di Napoli Parthenope Contenuti Nel Piano

Dettagli

Funzioni elementari. Funzioni lineari. 13. Funzioni elementari. Funzioni lineari.

Funzioni elementari. Funzioni lineari. 13. Funzioni elementari. Funzioni lineari. Funzioni elementari. Funzioni lineari. Funzioni elementari Per potere determinare le proprietà e quindi il grafico di una qualsiasi funzione a partire dalla sua espressione analitica, dobbiamo prima di

Dettagli

Parabola ************************* La curva chiamata PARABOLA si rappresenta con la seguente funzione matematica (1)

Parabola ************************* La curva chiamata PARABOLA si rappresenta con la seguente funzione matematica (1) ttività di recupero conoscenze di ase) araola Oiettivi Saper riconoscere la funzione che esprime la conica. Saper tracciare il grafico di una paraola. Saper determinare gli elementi caratterizzanti una

Dettagli

il discriminante uguale a zero; sviluppando i calcoli si ottiene che deve essere

il discriminante uguale a zero; sviluppando i calcoli si ottiene che deve essere Macerata maggio 0 classe M COMPITO DI MATEMATICA RECUPERO ASSENTI QUESITO Considera il fascio di curve di equazione: x y (.) = k + k 6 a) Trova per quali valori di k si hanno delle ellissi. Deve essere

Dettagli

Paolo Martinis Trieste, 11 marzo Università degli Studi di Trieste Facoltà di Ingegneria Corso di strade, ferrovie, aeroporti A.A.

Paolo Martinis Trieste, 11 marzo Università degli Studi di Trieste Facoltà di Ingegneria Corso di strade, ferrovie, aeroporti A.A. Paolo Martinis Trieste, 11 marzo 004 Università degli Studi di Trieste Facoltà di Ingegneria Corso di strade, ferrovie, aeroporti A.A. 003-004 Esercitazione Per una strada extraurbana secondaria (tipo

Dettagli

Capitolo III Ellisse

Capitolo III Ellisse Capitolo III Ellisse 1 Proprietà focali dell ellisse. Benché le coniche siano curve piane la loro definizione usa nozioni della geometria dello spazio. Sembrerebbe ragionevole cercare di caratterizzare

Dettagli

GEOMETRIA ANALITICA 1 IL PIANO CARTESIANO

GEOMETRIA ANALITICA 1 IL PIANO CARTESIANO GEOMETRI NLITIC 1 IL PINO CRTESINO Il piano cartesiano è costituito da due rette orientate e tra loro perpendicolari chiamate assi cartesiani, generalmente una orizzontale e l altra verticale, sulle quali

Dettagli

LA CIRCONFERENZA. Preparazione. Esercizi

LA CIRCONFERENZA. Preparazione. Esercizi IN CLASSE LA CIRCONFERENZA Preparazione Per questi esercizi con GeoGebra dovrai utilizzare i seguenti pulsanti. Leggi sempre le procedure di esecuzione nella zona in alto a destra, accanto alla barra degli

Dettagli

IL PIANO CARTESIANO. Preparazione. Esercizi

IL PIANO CARTESIANO. Preparazione. Esercizi IN CLASSE IL PIANO CARTESIANO Preparazione Per questi esercizi con GeoGebra dovrai utilizzare i seguenti pulsanti. Leggi le procedure di esecuzione nella zona in alto a destra, accanto alla barra degli

Dettagli

PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010

PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010 PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010 1) PIANO CARTESIANO serve per indicare, identificare, chiamare... ogni PUNTO del piano (ente geometrico) con una coppia di valori numerici (detti COORDINATE).

Dettagli

E K = 1 2 mv 2. A.A. 2014/15 Fisica 1 1

E K = 1 2 mv 2. A.A. 2014/15 Fisica 1 1 Lavoro ed energia Le relazioni ricavate dalla cinematica e dalla dinamica permettono di descrivere il moto di un oggetto puntiforme note le variabili cinematiche e le forze applicate all oggetto in funzione

Dettagli

Maturità Scientifica, Corso di ordinamento, Sessione Ordinaria

Maturità Scientifica, Corso di ordinamento, Sessione Ordinaria Matematica per la nuova maturità scientifica A. Bernardo M. Pedone 7 Problema 1 Maturità Scientifica, Corso di ordinamento, Sessione Ordinaria 001-00 In un piano, riferito a un sistema di assi cartesiani

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

Il primo insieme numerico che abbiamo scoperto è stato l insieme dei numeri naturali, l insieme N. L impossibilità di trovare in N il quoziente tra

Il primo insieme numerico che abbiamo scoperto è stato l insieme dei numeri naturali, l insieme N. L impossibilità di trovare in N il quoziente tra Il primo insieme numerico che abbiamo scoperto è stato l insieme dei numeri naturali, l insieme N. L impossibilità di trovare in N il quoziente tra due numeri naturali ci ha portati a vedere la frazione

Dettagli

GRAFICI NEL PIANO CARTESIANO

GRAFICI NEL PIANO CARTESIANO Revisione del 28/7/15 ISTITUTO TECNICO INDUSTRIALE V.E.MARZOTTO Valdagno (VI) Corso di Fisica prof. Nardon GRAFICI NEL PIANO CARTESIANO Richiami di teoria La retta reale La retta reale rappresenta ogni

Dettagli

1 Nozioni utili sul piano cartesiano

1 Nozioni utili sul piano cartesiano Nozioni utili sul piano cartesiano Nozioni utili sul piano cartesiano Il piano cartesiano è un sistema di riferimento costituito da due rette perpendicolari (una orizzontale detta asse delle ascisse x

Dettagli

Scale Logaritmiche. Matematica con Elementi di Statistica a.a. 2015/16

Scale Logaritmiche. Matematica con Elementi di Statistica a.a. 2015/16 Scale Logaritmiche Scala Logaritmica: sull asse prescelto (ad esempio, l asse x) si rappresenta il punto di ascissa = 0 0 nella direzione positiva si rappresentano, a distanze uguali fra di loro, i punti

Dettagli

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1.

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1. Definizione di circonferenza e cerchio. Equazione della circonferenza centrata in O e di raggio R. Esercizi. La circonferenza e il cerchio Definizioni: dato un punto C nel piano cartesiano e dato un numero

Dettagli

1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano:

1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano: QUESITI 1 PIANO CARTESIANO 1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano: a) 6 b) 13/2 c) 12 d) 13 e) 78 2.

Dettagli

L equazione generica della funzione costante è y=k, il grafico è una retta parallela all asse x (asse delle ascisse). retta parallela all'asse x y

L equazione generica della funzione costante è y=k, il grafico è una retta parallela all asse x (asse delle ascisse). retta parallela all'asse x y La funzione costante L equazione generica della funzione costante è =k, il grafico è una retta parallela all asse (asse delle ascisse). Esempio di esercizio, dall equazione al grafico: =- retta parallela

Dettagli

1 Prodotto cartesiano di due insiemi 1. 5 Soluzioni degli esercizi 6

1 Prodotto cartesiano di due insiemi 1. 5 Soluzioni degli esercizi 6 1 PRODOTTO CARTESIANO DI DUE INSIEMI 1 I-4 R 2 ed R 3 Piano e spazio cartesiani Indice 1 Prodotto cartesiano di due insiemi 1 2 Rappresentazione di R 2 sul piano cartesiano 2 3 Sottoinsiemi di R 2 e regioni

Dettagli

La parabola. Giovanni Torrero Aprile La poarabola come luogo geometrico

La parabola. Giovanni Torrero Aprile La poarabola come luogo geometrico La parabola Giovanni Torrero Aprile 2006 1 La poarabola come luogo geometrico Definizione 1 (La parabola come luogo geometrico) La parabola è il luogo geometrico formato da tutti e soli i punti del piano

Dettagli

SOLUZIONE DEL PROBLEMA 2 TEMA DI MATEMATICA ESAME DI STATO 2016

SOLUZIONE DEL PROBLEMA 2 TEMA DI MATEMATICA ESAME DI STATO 2016 SOLUZIONE DEL PROBLEMA 2 TEMA DI MATEMATICA ESAME DI STATO 2016 1. Per prima cosa determiniamo l espressione analitica della funzione f per x 8. x 8 = y y = 2x 16 2 4 Del grafico di f (x) possiamo dire

Dettagli

x =0 x 1 x 2 Esercizio (tratto dal Problema 1.4 del Mazzoldi)

x =0 x 1 x 2 Esercizio (tratto dal Problema 1.4 del Mazzoldi) 1 Esercizio (tratto dal Problema 1.4 del Mazzoldi) Un punto materiale si muove con moto uniformemente accelerato lungo l asse x. Passa per la posizione x 1 con velocità v 1 1.9 m/s, e per la posizione

Dettagli

Corso di Fisica. Lezione 2 Scalari e vettori Parte 1

Corso di Fisica. Lezione 2 Scalari e vettori Parte 1 Corso di Fisica Lezione 2 Scalari e vettori Parte 1 Scalari e vettori Consideriamo una libreria. Per determinare quanti libri ci sono su uno scaffale basta individuare lo scaffale in questione e contare

Dettagli

Esercitazioni Fisica Corso di Laurea in Chimica A.A

Esercitazioni Fisica Corso di Laurea in Chimica A.A Esercitazioni Fisica Corso di Laurea in Chimica A.A. 2016-2017 Esercitatore: Marco Regis 1 I riferimenti a pagine e numeri degli esercizi sono relativi al libro Jewett and Serway Principi di Fisica, primo

Dettagli

CINEMATICA. M-Lezione 13c Cinematica Moto rettilineo uniforme (MRU) (Cinematica Moto rettilineo uniforme M.R.U.)

CINEMATICA. M-Lezione 13c Cinematica Moto rettilineo uniforme (MRU) (Cinematica Moto rettilineo uniforme M.R.U.) M-Lezione 13c Cinematica Moto rettilineo uniforme (MRU) Un moto si dice rettilineo uniforme quando il corpo percorre spazi uguali in uguali intervalli di tempo, muovendosi in linea retta. In questo caso

Dettagli

Ricordiamo. 1. Tra le equazioni delle seguenti rette individua e disegna quelle parallele all asse delle ascisse:

Ricordiamo. 1. Tra le equazioni delle seguenti rette individua e disegna quelle parallele all asse delle ascisse: La retta Retta e le sue equazioni Equazioni di rette come luogo geometrico y = h h R equazione di una retta parallela all asse delle ascisse x = 0 equazione dell asse delle ordinate y = h h R equazione

Dettagli

Esercitazioni di Fisica 1

Esercitazioni di Fisica 1 Esercitazioni di Fisica 1 Ultima versione: 6 novembre 2013 Paracadutista (attrito viscoso). Filo con massa che pende da un tavolo. 1 Studio del moto di un paracadutista Vogliamo studiare il moto di un

Dettagli

Esercitazione: 16 novembre 2009 SOLUZIONI

Esercitazione: 16 novembre 2009 SOLUZIONI Esercitazione: 16 novembre 009 SOLUZIONI Esercizio 1 Scrivere [ ] equazione vettoriale, parametrica [ ] e cartesiana della retta passante 1 per il punto P = e avente direzione d =. 1 x 1 Soluzione: Equazione

Dettagli

INVILUPPO DI VOLO VELOCITÀ MASSIMA IN VOLO ORIZZONTALE RETTILINEO UNIFORME

INVILUPPO DI VOLO VELOCITÀ MASSIMA IN VOLO ORIZZONTALE RETTILINEO UNIFORME INILUPPO DI OLO Una volta diagrammate le curve delle potenze disponibili e necessarie, dobbiamo ora usarle per determinare le prestazioni fondamentali del velivolo: tali prestazioni andranno a generare

Dettagli

Un modello matematico della riflessione e rifrazione. Riflessione

Un modello matematico della riflessione e rifrazione. Riflessione Un modello matematico della riflessione e rifrazione. Proposizioni iniziali 1. In un dato mezzo la luce si muove con una velocità costante lungo una retta 1. 2. La velocità della luce dipende dal mezzo

Dettagli

MOTO CIRCOLARE VARIO

MOTO CIRCOLARE VARIO MOTO ARMONICO E MOTO VARIO PROF. DANIELE COPPOLA Indice 1 IL MOTO ARMONICO ------------------------------------------------------------------------------------------------------ 3 1.1 LA LEGGE DEL MOTO

Dettagli

Analisi Matematica II (Prof. Paolo Marcellini)

Analisi Matematica II (Prof. Paolo Marcellini) Vero o falso? Analisi Matematica II (Prof. Paolo Marcellini) Università degli Studi di Firenze Corso di laurea in Matematica Esercitazione del 8//205 Michela Eleuteri eleuteri@math.unifi.it web.math.unifi.it/users/eleuteri

Dettagli

ESERCIZI SU FUNZIONI. La funzione f è una corrispondenza biunivoca? La funzione f è continua e derivabile in x=0?(motivare le risposte).

ESERCIZI SU FUNZIONI. La funzione f è una corrispondenza biunivoca? La funzione f è continua e derivabile in x=0?(motivare le risposte). ESERCIZI SU FUNZIONI. 1) Disegnare il grafico della funzione f : R R così definita y = f(x)= x +1 se x 0 -x 2 +1 se x < 0. La funzione f è una corrispondenza biunivoca? La funzione f è continua e derivabile

Dettagli

Soluzione dei sistemi lineari con metodo grafico classe 2H

Soluzione dei sistemi lineari con metodo grafico classe 2H Soluzione dei sistemi lineari con metodo grafico classe H (con esempi di utilizzo del software open source multipiattaforma Geogebra e calcolatrice grafica Texas Instruments TI-89) Metodo grafico Il metodo

Dettagli

M557- Esame di Stato di Istruzione Secondaria Superiore

M557- Esame di Stato di Istruzione Secondaria Superiore Problema Ministero dell Istruzione, dell Università e della Ricerca M557- Esame di Stato di Istruzione Secondaria Superiore Indirizzi: LI, EA SCIENTIFICO LI3, EA9 SCIENTIFICO Opzione Scienze Applicate

Dettagli

CORSO DI TECNOLOGIE E TECNICHE DI RAPPRESENTAZIONI GRAFICHE

CORSO DI TECNOLOGIE E TECNICHE DI RAPPRESENTAZIONI GRAFICHE CORSO DI TECNOLOGIE E TECNICHE DI RARESENTAZIONI GRAFICHE ER L ISTITUTO TECNICO SETTORE TECNOLOGICO Agraria, Agroalimentare e Agroindustria classe seconda ARTE RIMA Disegno del rilievo Unità Didattica:

Dettagli

Insegnamento di Fondamenti di Infrastrutture viarie

Insegnamento di Fondamenti di Infrastrutture viarie Insegnamento di Fondamenti di Infrastrutture viarie Territorio ed infrastrutture di trasporto La meccanica della locomozione: questioni generali Il fenomeno dell aderenza e l equazione generale del moto

Dettagli

Geometria analitica di base. Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa

Geometria analitica di base. Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa Equazioni di primo grado nel piano cartesiano Risoluzione grafica di un equazione

Dettagli

Corso di Laurea in Informatica/Informatica Multimediale Esercizi Analisi Matematica 2

Corso di Laurea in Informatica/Informatica Multimediale Esercizi Analisi Matematica 2 a.a 2005/06 Corso di Laurea in Informatica/Informatica Multimediale Esercizi Analisi Matematica 2 Funzioni di due variabili a cura di Roberto Pagliarini Vediamo prima di tutto degli esercizi sugli insiemi

Dettagli

I TERREMOTI COSA É IL TERREMOTO

I TERREMOTI COSA É IL TERREMOTO I TERREMOTI COSA É IL TERREMOTO Il terremoto, sisma o scossa tellurica, è un fenomeno naturale che si manifesta con un'improvvisa, rapida vibrazione del suolo provocata dallo spostamento improvviso di

Dettagli

Quadro riassuntivo di geometria analitica

Quadro riassuntivo di geometria analitica Quadro riassuntivo di geometria analitica IL PIANO CARTESIANO (detta ascissa o coordinata x) e y quella dall'asse x (detta ordinata o coordinata y). Le coordinate di un punto P sono: entrambe positive

Dettagli

Funzioni di secondo grado

Funzioni di secondo grado Definizione della funzione di secondo grado 1 Funzioni di secondo grado 1 Definizione della funzione di secondo grado f: R R, = a +b +c dove a, b, c ǫ R e a definisce una funzione di secondo grado. A seconda

Dettagli

Microeconomia (C.L. Economia e Legislazione di Impresa); A.A. 2010/2011 Prof. C. Perugini

Microeconomia (C.L. Economia e Legislazione di Impresa); A.A. 2010/2011 Prof. C. Perugini Microeconomia (C.L. Economia e Legislazione di Impresa); A.A. 010/011 Prof. C. Perugini Esercitazione n.1 1 Obiettivi dell esercitazione Ripasso di matematica Non è una lezione di matematica! Ha lo scopo

Dettagli

17. Elettromagnetismo

17. Elettromagnetismo 1 quaioni di Mawell 17. lettromagnetismo Nelle leioni precedenti abbiamo considerato i campi elettrico e magnetico statici, cioè abbiamo considerato fenomeni indipendenti dal tempo. I campi elettrico e

Dettagli

Trigonometria angoli e misure

Trigonometria angoli e misure Trigonometria angoli e misure ITIS Feltrinelli anno scolastico 27-28 R. Folgieri 27-28 1 Angoli e gradi Due semirette che condividono la stessa origine danno luogo ad un angolo. Le due semirette (che si

Dettagli

Generalità Introduttive

Generalità Introduttive Generalità Introduttive L'obiettivo della geometria analitica è quello di classificare e rappresentare rette, curve, enti geometrici in genere che soddisfano certe condizioni.ad ogni fatto geometrico corrisponde

Dettagli

Che cos è un terremoto?

Che cos è un terremoto? TERREMOTI Che cos è un terremoto? Un terremoto, o sisma, è un'improvvisa vibrazione del terreno prodotta da una brusca liberazione di energia da masse rocciose situate in profondità (tra 10 e 700 Km);

Dettagli

2. SIGNIFICATO FISICO DELLA DERIVATA

2. SIGNIFICATO FISICO DELLA DERIVATA . SIGNIFICATO FISICO DELLA DERIVATA Esempi 1. Un auto viaggia lungo un percorso rettilineo, con velocità costante uguale a 70 km/h. Scrivere la legge oraria s= s(t) e rappresentarla graficamente. 1. Scriviamo

Dettagli

Il moto uniformemente accelerato. Prof. E. Modica

Il moto uniformemente accelerato. Prof. E. Modica Il moto uniformemente accelerato! Prof. E. Modica www.galois.it La velocità cambia... Quando andiamo in automobile, la nostra velocità non si mantiene costante. Basta pensare all obbligo di fermarsi in

Dettagli

INTRODUZIONE ALLA CINEMATICA DEL PUNTO MATERIALE PROF. FRANCESCO DE PALMA

INTRODUZIONE ALLA CINEMATICA DEL PUNTO MATERIALE PROF. FRANCESCO DE PALMA INTRODUZIONE ALLA CINEMATICA DEL PUNTO MATERIALE PROF. FRANCESCO DE PALMA Sommario MOTO E TRAIETTORIA... 3 PUNTO MATERIALE... 3 TRAIETTORIA... 3 VELOCITÀ... 4 VELOCITÀ MEDIA... 4 VELOCITÀ ISTANTANEA...

Dettagli

La velocità. Isabella Soletta - Liceo Fermi Documento riadattato da MyZanichelli.it

La velocità. Isabella Soletta - Liceo Fermi Documento riadattato da MyZanichelli.it La velocità Isabella Soletta - Liceo Fermi Documento riadattato da MyZanichelli.it Questo simbolo significa che l esperimento si può realizzare con materiali o strumenti presenti nel nostro laboratorio

Dettagli

FUNZIONI ALGEBRICHE PARTICOLARI

FUNZIONI ALGEBRICHE PARTICOLARI FUNZIONI ALGEBRICHE PARTICOLARI (al massimo di secondo grado in x) Appunti presi dalle lezioni del prof. Nedo Checcaglini Liceo Scientifico di Castiglion Fiorentino (Classe 4 B) September 9, 003 1. FUNZIONI

Dettagli

Equazione della retta tangente al grafico di una funzione

Equazione della retta tangente al grafico di una funzione Equazione della retta tangente al grafico di una funzione Abbiamo già visto che in un sistema di assi cartesiani ortogonali, è possibile determinare l equazione di una retta r non parallela agli assi coordinati,

Dettagli

Test sull ellisse (vai alla soluzione) Quesiti

Test sull ellisse (vai alla soluzione) Quesiti Test sull ellisse (vai alla soluzione) Quesiti ) Considerata nel piano cartesiano l ellisse Γ : + y = 8 valutare il valore di verità delle seguenti affermazioni. I fuochi si trovano sull asse delle ordinate

Dettagli

La retta nel piano cartesiano

La retta nel piano cartesiano La retta nel piano cartesiano Abbiamo visto come, fissato un sistema di riferimento, a ciascun punto sia possibile associare una coppia ordinata di numeri reali (le sue coordinate). Se adesso consideriamo

Dettagli

Correzione 1 a provetta del corso di Fisica 1,2

Correzione 1 a provetta del corso di Fisica 1,2 Correzione 1 a provetta del corso di Fisica 1, novembre 005 1. Primo Esercizio (a) Indicando con r (t) il vettore posizione del proiettile, la legge oraria del punto materiale in funzione del tempo t risulta

Dettagli

valore di a: verso l alto (ordinate crescenti) se a>0, verso il basso (ordinate decrescenti) se a<0;

valore di a: verso l alto (ordinate crescenti) se a>0, verso il basso (ordinate decrescenti) se a<0; La parabola è una particolare conica definita come è una curva aperta, nel senso che non può essere contenuta in alcuna superficie finita del piano; è simmetrica rispetto ad una retta, detta ASSE della

Dettagli

Appunti di Cinematica

Appunti di Cinematica Appunti di Cinematica Thomas Bellotti 28 novembre 2010 Indice 1 Punto materiale, traiettoria e legge oraria 1 1.1 Il punto materiale.......................... 1 1.2 La traiettoria.............................

Dettagli

Chi non risolve esercizi non impara la matematica.

Chi non risolve esercizi non impara la matematica. 2.8 esercizi 31 2.8 esercizi hi non risolve esercizi non impara la matematica. 1 Vero o falso? a. I punti (0, 2), (4, 4), (6, 0) e (2, 2) sono i vertici di un quadrato. V F b. Non esiste il coefficiente

Dettagli