Segnali Canonici e. Risposta di un sistema
|
|
|
- Onorato Barbato
- 8 anni fa
- Visualizzazioni
Transcript
1 Segnali Canonici e Risposta di un Sistema ARSLAB - Autonomous and Robotic Systems Laboratory Dipartimento di Matematica e Informatica - Università di Catania, Italy [email protected] Programmazione Sistemi Robotici
2 Segnali Canonici Si definiscono alcuni segnali (input) canonici che sono quelli più spesso utilizzati per studiare un sistema e capirne il comportamento. Impulso o delta di Dirac Gradino unitario Rampa
3 Delta di Dirac Il delta di Dirac δ(t) o segnale impulsivo è matematicamente definito come segue: δ(t) = 0, t 0 δ(t) = +, t = 0 + δ(t)dt = 1 Esso è utilizzato per definire un fenomeno fisico di grande intensità ma di durata infinitesima.
4 Gradino Unitario Il gradino unitario u(t) è un segnale costante definito come segue: { u(t) = 0, t < 0 u(t) = 1, t 0 Esso è utilizzato per modella l applicazione, al tempo 0, di uno stimolo costante ad un sistema.
5 Rampa La rampa r(t) è un segnale crescente definito come segue: { r(t) = 0, t < 0 r(t) = t, t 0 Esso è utilizzato per modella l applicazione ad un sistema, al tempo 0, di uno stimolo che cresce indefinitamente.
6 Relazione tra Segnali Canonici I segnali canonici godo di questa proprietà: t 0 t 0 δ(τ)dτ = u(t) u(τ)dτ = r(t) du(t) = δ(t) dt dr(t) = u(t) dt
7 Composizione di segnali canonici Traslazione nel tempo di un fattore T (in avanti): s(t) s(t T) Segnale rettangolare
8 Risposte tipiche di un sistema al gradino unitario (a) Sistema stabile con autovalori reali negativi (b) Sistema stabile con autovalori complessi e coniugati (a parte reale negativa)
9 Caratteristiche delle risposte al gradino Transitorio: risposta del sistema nella parte iniziale dell evoluzione a partire dallo stato di quiete Regime: risposta del sistema dopo l esaurimento del transitorio
10 Caratteristiche delle risposte al gradino Guadagno a regime: K = lim t y(t) Tempo di salita: TS, tempo impiegato dall uscita, durante il transitorio, per passare dal 10% al 90% del valore del guadagno a regime K
11 Caratteristiche delle risposte al gradino Sovraelongazione: S = ymax K K, percentuale massima di scostamento dall uscita dal valore a regime Tempo di assestamento: TA, tempo impiegato dall uscita, durante il transitorio, stabilizzarsi nell intorno del guadagno a regime (2% - 5% di scostamento da K )
12 Poli e risposta al gradino Relazione tra i poli e la risposta al gradino
13 Sistema del primo ordine con α,β > 0. G(s) = α s +β Il sistema ha un polo in β, quindi è asintoticamente stabile. La riposta al gradino è: y(t) = α β (1 e βt ) Il valore del polo β influenza la crescita del fattore esponenziale. Più vicino è il polo all origine, più importante è il contributo di e βt più lento è il sistema Più lontano è il polo dall origine, meno importante è il contributo di e βt più veloce è il sistema
14 Sistema del primo ordine con α,β > 0. G(s) = α s +β Riposta al gradino: y(t) = α β (1 e βt ) Il polo β ha dimensioni di frequenza (Hz = sec 1 ). Il valore T = 1 β è detto costante di tempo del sistema: y(t) = αt(1 e t T ) Il tempo di salita è (circa) 3 volte la costante di tempo: T S 3T = 3 β
15 Sistema del secondo ordine con poli complessi e coniugati con poli σ ± iω,σ > 0. G(s) = α s 2 + sβ + sγ Il sistema è asintoticamente stabile e la riposta al gradino è: y(t) = K(1 e σt sin(ωt +φ)) 1 δ 2 δ = cos φ
16 Sistema del secondo ordine con poli complessi e coniugati Poli: σ ± iω,σ > 0, φ = angolo, δ = cosφ y(t) = K(1 e σt sin(ωt +φ)) 1 δ 2 1 e σt 1 δ 2 sin(ωt + φ) ω ω 2π Componente smorzante Componente oscillatoria Pulsazione Frequenza delle oscillazioni
17 Sistema del secondo ordine con poli complessi e coniugati Poli: σ ± iω,σ > 0, φ = angolo, δ = cosφ y(t) = K(1 e σt sin(ωt +φ)) 1 δ 2 1 e σt 1 δ 2 sin(ωt + φ) T a 3 σ πδ S = 100e 1 δ 2 Componente smorzante Componente oscillatoria Tempo di assestamento Sovraelongazione
18 Segnali Canonici e Risposta di un Sistema ARSLAB - Autonomous and Robotic Systems Laboratory Dipartimento di Matematica e Informatica - Università di Catania, Italy [email protected] Programmazione Sistemi Robotici
Sistemi di Controllo
ARSLAB - Autonomous and Robotic Systems Laboratory Dipartimento di Matematica e Informatica - Università di Catania, Italy [email protected] Programmazione Sistemi Robotici Massa su piano Supponiamo
SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE
CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm SISTEMI ELEMENTARI DEL o
Analisi di un sistema. con Matlab/Octave
dinamico con Matlab/Octave ARSLAB - Autonomous and Robotic Systems Laboratory Dipartimento di Matematica e Informatica - Università di Catania, Italy [email protected] Programmazione Sistemi Robotici
Rappresentazioni e parametri della funzione di trasferimento
FUNZIONE DI TRASFERIMENTO Definizione e proprietà Rappresentazioni e parametri della funzione di trasferimento Risposta allo scalino Illustrazioni dal Testo di Riferimento per gentile concessione degli
Risposta temporale: esempi
...4 Risposta temporale: esempi Esempio. Calcolare la risposta al gradino unitario del seguente sistema: x(t) = u(t) s + 5 (s + )(s + ) y(t) Il calcolo della trasformata del segnale di uscita è immediato:
Scomposizione in fratti semplici
0.0.. Scomposizione in fratti semplici La determinazione dell evoluzione libera e dell evoluzione forzata di un sistema lineare stazionario richiedono l antitrasformazione di una funzione razionale fratta
Risposta al gradino di un sistema del primo ordine
0.0..4 Risposta al gradino di un sistema del primo ordine Diagramma Si consideri il seguente sistema lineare del primo ordine: G(s) = +τ s L unico parametro che caratterizza il sistema è la costante di
Nome: Nr. Mat. Firma:
Fondamenti di Controlli Automatici - A.A. 212/13 9 novembre 212 - Domande Teoriche Nome: Nr. Mat. Firma: Per ciascuno dei test a soluzione multipla segnare con una crocetta tutte le affermazioni che si
Scomposizione in fratti semplici
0.0. 2.2 Scomposizione in fratti semplici La determinazione dell evoluzione libera e dell evoluzione forzata di un sistema lineare stazionario richiede l antitrasformazione di una funzione razionale fratta
Esercizi per il corso di Fondamenti di Automatica I
Esercizi per il corso di Fondamenti di Automatica I Ing. Elettronica N.O. Docente: Dott. Ing. Luca De Cicco 2 Febbraio 2009 Exercise. Si determini la trasformata di Laplace dei segnali: x (t) = cos(ωt
5. Per ω = 1/τ il diagramma reale di Bode delle ampiezze della funzione G(jω) =
Fondamenti di Controlli Automatici - A.A. 211/12 3 luglio 212 - Domande Teoriche Cognome Nome: Matricola: Corso di Laurea: Per ciascuno dei test a soluzione multipla segnare con una crocetta tutte le affermazioni
Diagrammi asintotici di Bode: esercizi. Tracciare i diagrammi asintotici di Bode della seguente funzione G(s): s 2. s(s 30)(1+ s
.. 3.2 1 Nyquist: Diagrammi asintotici di Bode: esercizi Tracciare i diagrammi asintotici di Bode della seguente funzione G(s): 6(s2 +.8s+4) s(s 3)(1+ s 2 )2. Pendenza iniziale: -2 db/dec. Pulsazioni critiche:
SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE
CONTROLLI AUTOMATICI Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/controlliautomatici.html SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE Ing. e-mail: [email protected]
Esercizi per il corso di Fondamenti di Automatica I
Esercizi per il corso di Fondamenti di Automatica I Ing. Elettronica N.O. Docente: Dott. Ing. Luca De Cicco 2 novembre 2009 Parte I Exercise. Si determini la trasformata di Laplace dei segnali: x (t) =
Controlli Automatici Compito del - Esercizi
Compito del - Esercizi. Data la funzione di trasferimento G(s) = s (s +),sicalcoli a) La risposta impulsiva g(t); b) L equazione differenziale associata al sistema G(s); c) Si commenti la stabilità del
Controlli Automatici L-A - Esercitazione
Controlli Automatici L-A - Esercitazione 1. Si consideri lo schema a blocchi di figura. d(t) K d x(t) e(t) R(s) u(t) G(s) y(t) - R(s) = K τs + 1 s + 1, G(s) = K d = 2 s(s 2 + 6s + ), a) Considerando gli
Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 2
Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: [email protected]
La trasformata di Laplace
La trasformata di Laplace (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi DIMS Universitá di Trento anno accademico 2005/2006 La trasformata di Laplace 1 / 34 Outline 1 La trasformata di
Stabilità e risposte di sistemi elementari
Parte 4 Aggiornamento: Settembre 2010 Parte 4, 1 Stabilità e risposte di sistemi elementari Prof. Lorenzo Marconi DEIS-Università di Bologna Tel. 051 2093788 Email: [email protected] URL: www-lar.deis.unibo.it/~lmarconi
Corso di laurea in Informatica. Regolatori. Marta Capiluppi Dipartimento di Informatica Università di Verona
Corso di laurea in Informatica Regolatori Marta Capiluppi [email protected] Dipartimento di Informatica Università di Verona Scelta delle specifiche 1. Picco di risonanza e massima sovraelongazione
Reti nel dominio delle frequenze. Lezione 10 2
Lezione 10 1 Reti nel dominio delle frequenze Lezione 10 2 Introduzione Lezione 10 3 Cosa c è nell Unità 3 In questa sezione si affronteranno Introduzione all Unità Trasformate di Laplace Reti nel dominio
Cinematica e Controllo di un robot mobile
Cinematica e Controllo di un robot mobile ARSLAB - Autonomous and Robotic Systems Laboratory Dipartimento di Matematica e Informatica - Università di Catania, Italy [email protected] Programmazione
Scrivere il numero della risposta sopra alla corrispondente domanda. (voti: 2,0,-1, min=14 sulle prime 10) , C = [3 2 2], D =
n. 101 cognome nome corso di laurea Analisi e Simulazione di Sistemi Dinamici 18/11/2003 Risposte Domande 1 2 3 4 5 6 7 8 9 10 N. matricola Scrivere il numero della risposta sopra alla corrispondente domanda.
Analisi dei sistemi in retroazione
Facoltà di Ingegneria di Reggio Emilia Corso di Controlli Automatici Corsi di laurea in Ingegneria Meccatronica ed in Ingegneria della Gestione Industriale Ing. Alessandro Macchelli e-mail: [email protected]
Risposta a regime (per ingresso costante e per ingresso sinusoidale)
Risposta a regime (per ingresso costante e per ingresso sinusoidale) Esercizio 1 (es. 1 del Tema d esame del 18-9-00) s + 3) 10 ( s + 1)( s + 4s ) della risposta all ingresso u ( a gradino unitario. Non
Lo studio dell evoluzione libera nei sistemi dinamici
Lo studio dell evoluzione libera nei sistemi dinamici December, Un sistema lineare, dinamico, a dimensione finita e continuo (ovvero in cui il tempo t appartiene all insieme dei reali) può essere descritto
MODELLO COMPLETO PER IL CONTROLLO. D r (s) U(s) Y (s) d m (t): disturbi misurabili. d r (t): disturbi non misurabili
MODELLO COMPLETO PER IL CONTROLLO D m (s) D r (s) Y o (s) U(s) P (s) Y (s) d m (t): disturbi misurabili d r (t): disturbi non misurabili y o (t): andamento desiderato della variabile controllata u(t):
Controlli Automatici: Raccolta di Prove Scritte con Soluzione. Elena Zattoni
Controlli Automatici: Raccolta di Prove Scritte con Soluzione Elena Zattoni Premessa Questo volumetto è rivolto agli Studenti dei corsi di Controlli Automatici e raccoglie una serie di prove scritte con
Stabilità BIBO Risposta impulsiva (vedi Marro par. 2.3, vedi Vitelli-Petternella par. III.1, vedi es. in LabView) Poli sull asse immaginario
Stabilità BIBO Risposta impulsiva (vedi Marro par..3, vedi Vitelli-Petternella par. III., vedi es. in LabView) Poli sull asse immaginario Criteri per la stabilità (vedi Marro Par. 4. a 4., vedi Vitelli-Petternella
CONTROLLI AUTOMATICI Ingegneria Gestionale LUOGO DELLE RADICI
CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm LUOGO DELLE RADICI Ing. Federica Grossi Tel. 059 2056333 e-mail: [email protected]
MODELLI A TEMPO CONTINUO IN EQUAZIONI DI STATO. Sistema lineare stazionario a tempo continuo in equazioni di stato. = Cx(t) + Du(t) x(0) = x 0
MODELLI A TEMPO CONTINUO IN EQUAZIONI DI STATO Sistema lineare stazionario a tempo continuo in equazioni di stato ẋ(t) y(t) = Ax(t) + Bu(t) = Cx(t) + Du(t) x() = x Risposta completa (risposta libera e
06. Analisi Armonica. Controlli Automatici. Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti
Controlli Automatici 6. Analisi Armonica Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti ARSControl - DISMI - Università di Modena e Reggio Emilia E-mail: {nome.cognome}@unimore.it http://www.arscontrol.org/teaching
Controlli automatici L-A
Controlli automatici L-A Compendio delle dispense del prof. Paolo Castaldi Marco Alessandrini Università degli Studi di Bologna (Sede di Cesena) Quest opera è stata rilasciata sotto la licenza Creative
ANALISI ARMONICA FUNZIONE DI RISPOSTA ARMONICA
ANALISI ARMONICA I procedimenti per la soluzione delle equazioni differenziali lineari e tempoinvarianti, basati in particolare sulla trasformazione di Laplace, hanno come obiettivo la deduzione della
Fisica Quantistica III Esercizi Natale 2009
Fisica Quantistica III Esercizi Natale 009 Philip G. Ratcliffe ([email protected]) Dipartimento di Fisica e Matematica Università degli Studi dell Insubria in Como via Valleggio 11, 100 Como
(Figura adattata da Modern Control Systems di R. Dorf R. Bishop, Pearson International Ed.)
Prova TIPO A per: Esame di FONDAMENTI DI AUTOMATICA (9 crediti): 6 dei 10 esercizi numerici (nell effettiva prova d esame verranno selezionati a priori dal docente) + domande a risposta multipla (v. ultime
STABILITÀ DEI SISTEMI Metodo di Bode e Nyquist
I.T.I. Modesto PANETTI B A R I Via Re David, 186-70125 BARI 080-542.54.12 - Fax 080-542.64.32 Internet http://www.itispanetti.it email : [email protected] INTRODUZIONE STABILITÀ DEI SISTEMI Metodo
Dal controllo all automazione
Dal controllo all automazione Vincenzo Suraci Automazione STRUTTURA DEL NUCLEO TEMATICO RICHIAMI DI FONDAMENTI DI AUTOMATICA LIVELLO DI CAMPO LIVELLO DI COORDINAMENTO LIVELLO DI CONDUZIONE RICHIAMI DI
Simulazione dei sistemi: esercitazione 1
Simulazione dei sistemi: esercitazione 1 Esempio 1: studio di un sistema massa-molla Si consideri il sistema di figura 1 in cui ad un corpo di massa M, vincolato ad un riferimento tramite una molla di
Ingegneria e Tecnologie dei Sistemi di Controllo ANALISI ARMONICA
Ingegneria e Tecnologie dei Sistemi di Controllo ANALISI ARMONICA Luigi Biagiotti DEIS-Università di Bologna Tel. 5 29334 e-mail: [email protected] Analisi armonica di sistemi dinamici Analisi nel
Fondamenti di Controlli Automatici
Cognome: Nome: N. Matr.: Fondamenti di Controlli Automatici Ingegneria Meccanica Compito del 11 settembre 215 - Quiz Per ciascuno dei seguenti quesiti, segnare con una crocetta le risposte che si ritengono
CONCETTO DI STABILITÀ NEI SISTEMI DI CONTROLLO. Sistema in condizioni di equilibrio a t = 0. d(t) = 0. u(t) = 0. y(t) = 0. Sistema
CONCETTO DI STABILITÀ NEI SISTEMI DI CONTROLLO Sistema in condizioni di equilibrio a t = 0. d(t) = 0 u(t) = 0 Sistema y(t) = 0 Tipi di perturbazione. Perturbazione di durata limitata: u(t) = 0, t > T u
Ingegneria e Tecnologie dei sistemi di Controllo
INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Laurea Specialistica in Ingegneria Meccatronica PROGETTO MEDIANTE IL LUOGO DELLE RADICI Ing. Tel. 05 535 email: [email protected] http://www.dismi.unimo.it/members/csecchi
Graficazione qualitativa del luogo delle radici
.. 5.3 1 Graficazione qualitativa del luogo delle radici Esempio. Si faccia riferimento al seguente sistema retroazionato: d(t) G(s) r(t) e(t) K 1(s 1) s(s + 1)(s + 8s + 5) y(t) Per una graficazione qualitativa
Il criterio di Nyquist
0.0. 4.5 1 Il criterio di Nyquist IlcriteriodiNyquistconsentedistabilireseunsistema,delqualesiconosce la risposta armonica ad anello aperto, sia stabile o meno una volta chiuso in retroazione: r(t) e(t)
Controllo PID con saturazione
ARSLAB - Autonomous and Robotic Systems Laboratory Dipartimento di Matematica e Informatica - Università di Catania, Italy [email protected] Programmazione Sistemi Robotici Schema controllo PID di un
ANALISI ARMONICA. G(s) Analisi armonica. Funzione di risposta armonica. CONTROLLI AUTOMATICI Ingegneria Meccatronica
CONTROLLI AUTOMATICI Ingegneria Meccatronica http://www.automazione.ingre.unimore.it/pages/corsi/automazione%2industriale.htm ANALISI ARMONICA Analisi armonica di sistemi dinamici Analisi nel dominio del
CONTROLLI AUTOMATICI Ingegneria Meccatronica
) CONTROLLI AUTOMATICI Ingegneria Meccatronica ANALISI ARMONICA Prof. Cesare Fantuzzi Ing. Cristian Secchi e-mail: [email protected], [email protected] http://www.automazione.ingre.unimore.it
ANTITRASFORMATA DI LAPLACE MODI DI UN SISTEMA
CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANTITRASFORMATA DI LAPLACE MODI DI UN SISTEMA Ing. Federica Grossi Tel.
Controlli Automatici 2 22/06/05 Compito a
Controlli Automatici 2 22/6/5 Compito a a) Si consideri il diagramma di Bode (modulo e fase) di G(s) in figura 1. Si 5 Bode Diagram 5 15 45 9 135 18 3 2 1 1 2 3 Frequency (rad/sec) Figure 1: Diagrammi
Calcolo del movimento di sistemi dinamici LTI
Calcolo del movimento di sistemi dinamici LTI Analisi modale per sistemi dinamici LTI TC Modi naturali di un sistema dinamico Analisi modale Esercizio 1 Costante di tempo Esercizio 2 2 Analisi modale per
Diagrammi di Nyquist o polari
0.0. 3.3 1 qualitativa Ampiezza Diagrammi di Nyquist o polari Esempio di diagramma polare senza poli nell origine: 40 20 G(s) = 100(1+ s 50 ) (1+ s 10 )2 (1+ s 20 )(1+ s 100 ) Imag 0 20 15 20 30 80 0.1
Segnali e Sistemi (Ingegneria Informatica)
Segnali e Sistemi (Ingegneria Informatica) Lezione 3 last update Oct 17, 2004 c 2004 Finesso, Pavon, Pinzoni 1 SIMMETRIE DEI SEGNALI - Simmetria pari (Definizioni analoghe nel caso discreto) Segnale pari
Sintesi diretta. (Complementi di Controlli Automatici: prof. Giuseppe Fusco)
Sintesi diretta (Complementi di Controlli Automatici: prof. Giuseppe Fusco) La tecnica di progetto denominata sintesi diretta ha come obiettivo il progetto di un controllore C(s) il quale assicuri che
rapporto tra ingresso e uscita all equilibrio.
Sistemi Dinamici: Induttore: Condensatore: Massa: Oscillatore meccanico: Pendolo: Serbatoio cilindrico: Serbatoio cilindrico con valvola d efflusso: Funzione di Trasferimento: Stabilità del sistema: (N.B.
Controlli automatici e controllo dei processi Docente: Davide M. Raimondo Prova scritta: 01/03/2013 Durata: 3h. Cognome Nome Matricola
Controlli automatici e controllo dei processi Docente: Davide M. Raimondo Prova scritta: 01/03/2013 Durata: 3h Cognome Nome Matricola Esercizio 3: Si determini, motivando brevemente, la corrispondenza
Prof. SILVIA STRADA Cognomi LF - PO
Politecnico di Milano Prof. SILVIA STRADA Cognomi LF - PO A.A. 2015/16 Appello di Fondamenti di Automatica (CL Ing. Gestionale) 1 Marzo 2016 Tempo a disposizione: 2.00 h. Nome e Cognome:... Matricola...
Prova scritta di Controlli Automatici e sistemi elettrici lineari
Prova scritta di Controlli Automatici e sistemi elettrici lineari Corso di Laurea in Ingegneria Meccatronica, AA 202 203 9 Settembre 203 Domande a Risposta Multipla Per ognuna delle seguenti domande a
ANALISI ARMONICA. G(s) Analisi armonica. Funzione di risposta armonica
CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI ARMONICA Analisi
Comunicazione Elettriche L-A Identità ed equazioni
Comunicazione Elettriche L-A Identità ed equazioni Gennaio - Marzo 2009 Identità ed equazioni relative alle comunicazioni elettriche tratti dalle lezioni del corso di Comunicazioni Elettriche L-A alla
s + 6 s 3, b) i valori di K per i quali il sistema a ciclo chiuso risulta asintoticamente stabile;
1 Esercizi svolti Esercizio 1. Con riferimento al sistema di figura, calcolare: ut) + K s s + 6 s 3 yt) a) la funzione di trasferimento a ciclo chiuso tra ut) e yt); b) i valori di K per i quali il sistema
Graficazione qualitativa del luogo delle radici
.. 1.1 1 Graficazione qualitativa del luogo delle radici Esempio. Si faccia riferimento al seguente sistema retroazionato: d(t) G(s) r(t) e(t) K 1(s 1) s(s+1)(s +8s+5) y(t) Per una graficazione qualitativa
RICHIAMI MATEMATICI. x( t)
0.0. 0.1 1 RICHIAMI MATEMATICI Funzioni reali del tempo: (t) : t (t) (t) ( t) Funzioni reali dell ingresso: y() t t y( ) y() : y() Numeri complessi. Un numero complesso è una coppia ordinata di numeri
Fondamenti di Automatica
Fondamenti di Automatica Stabilità esterna e analisi della risposta Stabilità esterna e risposta a regime Risposte di sistemi del I e II ordine 2 Stabilità esterna e analisi della risposta Stabilità esterna
Architettura Software di un Sistema di Controllo per Multirotore
Architettura Software di un Sistema di Controllo per Multirotore ARSLAB - Autonomous and Robotic Systems Laboratory Dipartimento di Matematica e Informatica - Università di Catania, Italy [email protected]
ANALISI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO. Schema generale di controllo in retroazione
ANALISI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO Schema generale di controllo in retroazione Requisiti di un sistema di controllo Stabilità in condizioni nominali Margine di guadagno e margine di fase
Stabilità e retroazione
0.0. 4.1 1 iagramma Stabilità e retroazione Stabilità dei sistemi dinamici lineari: Un sistema G(s) è asintoticamente stabile se tutti i suoi poli sono a parte reale negativa. Un sistema G(s) è stabile
08. Analisi armonica. Controlli Automatici
8. Analisi armonica Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Alessio Levratti ARSControl - DISMI - Università di Modena e Reggio Emilia E-mail: {nome.cognome}@unimore.it http://www.arscontrol.org/teaching
Teoria dei Segnali Richiami di analisi matematica; alcune funzioni notevoli
Teoria dei Segnali Richiami di analisi matematica; alcune funzioni notevoli Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano [email protected] Teoria dei Segnali Richiami
ANALISI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO. Schema generale di controllo in retroazione. Margine di guadagno e margine di fase
ANALISI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO Schema generale di controllo in retroazione Requisiti di un sistema di controllo Stabilità in condizioni nominali Margine di guadagno e margine di fase
Diagrammi di Bode. Esempio: j. 1+ s. 1+j ω. Diagrammi di Bode: ω Diagramma dei moduli. Ampiezza [db] Diagramma delle fasi.
.. 3.2 Diagrammi di Bode La funzione di risposta armonica F(ω) = G(jω) può essere rappresentata graficamente in tre modi diversi: i Diagrammi di Bode, i Diagrammi di Nyquist e i Diagrammi di Nichols. I
Esercizi di Controlli Automatici
Esercizi di Controlli Automatici L. Magni Esercizio Si studi la stabilità dei seguenti sistemi retroazionati negativamente con guadagno d anello L(s) al variare di > utilizzando il luogo delle radici e
Realizzazione digitale di controllori analogici
Realizzazione digitale di controllori analogici Digitalizzazione di un controllore analogico Sistema di controllo r(t) uscita + - desiderata e(t) segnale di errore C(s) controllore analogico u(t) ingresso
Banda passante dei sistemi retroazionati
.. 3.6 Banda passante dei sistemi retroazionati Consideriamo un sistema retroazionato con retroazione unitaria: R(s) C(s) X(s) G(s) Y(s) Il guadagno di anello del sistema G a (s) e la funzione di trasferimento
Sintesi di reti correttrici e progetto analitico di controllori PID
Sintesi di reti correttrici e progetto analitico di controllori PID A. Ferrante January 4, 204 Il materiale esposto in questa nota è tratto da [] cui si rimanda per maggiori dettagli. Sintesi di Bode Si
Regolazione e Controllo dei Sistemi Meccanici 21 Luglio 2003
Regolazione e Controllo dei Sistemi Meccanici 2 Luglio 23 Numero di matricola = α = β = γ = δ Si consideri un sistema termodinamico costituito da un frigorifero posto all interno di un ambiente a temperatura
