Introduzione alla logica proposizionale ( 2 a parte: Analisi )

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Introduzione alla logica proposizionale ( 2 a parte: Analisi )"

Transcript

1 Introduzione alla logica proposizionale ( 2 a parte: Analisi ) Eugenio G. Omodeo Dip. Matematica e Geoscienze DMI De Morgan: γ >( α & β ) ( γ>α ) ( γ>β ) γ>( α β ) ( γ>α ) & ( γ>β ) contrapposizione: ( α β ) ( β α ) imp/esp-ortazione: ( α & β γ ) ( α ( β γ ) ) distribuzione: α ( β & γ ) ( α β ) & ( α γ ) α & ( β γ ) ( α & β ) ( α & γ ) associatività: α ( β γ ) ( α β ) γ α & ( β & γ ) ( α & β ) & γ commutatività: α β β α α & β β & α assorbimento: α α α α & α α Trieste, 08/03/2016 Eugenio G. Omodeo Logica proposizionale Analisi 1/16

2 Scopo della lezione I lucidi su Dnf e Cnf suggerivano metodi di sintesi per ottenere da una funzione booleana enunciati in grado di esprimerla Eugenio G. Omodeo Logica proposizionale Analisi 2/16

3 Scopo della lezione I lucidi su Dnf e Cnf suggerivano metodi di sintesi per ottenere da una funzione booleana enunciati in grado di esprimerla Qui affrontiamo la questione inversa: come effettuare l analisi di un enunciato dato Eugenio G. Omodeo Logica proposizionale Analisi 2/16

4 Scopo della lezione I lucidi su Dnf e Cnf suggerivano metodi di sintesi per ottenere da una funzione booleana enunciati in grado di esprimerla Qui affrontiamo la questione inversa: come effettuare l analisi di un enunciato dato N.B.: Non stiamo parlando più di analisi sintattica! :) Eugenio G. Omodeo Logica proposizionale Analisi 2/16

5 Citazione del giorno La dimostrazione nella logica è solo un mezzo meccanico per riconoscere piú facilmente la tautologia ove questa è complicata. [Wittgenstein(1922), ] Ludwig Wittgenstein Vienna 1889 Cambridge 1951 Eugenio G. Omodeo Logica proposizionale Analisi 3/16

6 Illustrazione del giorno Eugenio G. Omodeo Logica proposizionale Analisi 3/16

7 Scaletta mutua riducibilità dei problemi di tautologicità e soddisfacimento Eugenio G. Omodeo Logica proposizionale Analisi 4/16

8 Scaletta mutua riducibilità dei problemi di tautologicità e soddisfacimento tre esercizi sul soddisfacimento di disgiunzioni Eugenio G. Omodeo Logica proposizionale Analisi 4/16

9 Scaletta mutua riducibilità dei problemi di tautologicità e soddisfacimento tre esercizi sul soddisfacimento di disgiunzioni test ( manuale ) di tautologicità di un implicazione Eugenio G. Omodeo Logica proposizionale Analisi 4/16

10 Scaletta mutua riducibilità dei problemi di tautologicità e soddisfacimento tre esercizi sul soddisfacimento di disgiunzioni test ( manuale ) di tautologicità di un implicazione regole d inferenza : { istanziazione di schemi tautologici modus [ ponendo ] ponens Eugenio G. Omodeo Logica proposizionale Analisi 4/16

11 Scaletta mutua riducibilità dei problemi di tautologicità e soddisfacimento tre esercizi sul soddisfacimento di disgiunzioni test ( manuale ) di tautologicità di un implicazione regole d inferenza : { istanziazione di schemi tautologici modus [ ponendo ] ponens sistema deduttivo alla Hilbert Eugenio G. Omodeo Logica proposizionale Analisi 4/16

12 Tautologie Un enunciato ( proposizionale ) α può essere Eugenio G. Omodeo Logica proposizionale Analisi 5/16

13 Tautologie Un enunciato ( proposizionale ) α può essere vero: una volta assegnati i valori di verità alle sue lettere Eugenio G. Omodeo Logica proposizionale Analisi 5/16

14 Tautologie Un enunciato ( proposizionale ) α può essere vero: una volta assegnati i valori di verità alle sue lettere assurdo: se non è mai vero Eugenio G. Omodeo Logica proposizionale Analisi 5/16

15 Tautologie Un enunciato ( proposizionale ) α può essere vero: una volta assegnati i valori di verità alle sue lettere assurdo: se non è mai vero soddisfacibile: se è vero in almeno un caso Eugenio G. Omodeo Logica proposizionale Analisi 5/16

16 Tautologie Un enunciato ( proposizionale ) α può essere vero: una volta assegnati i valori di verità alle sue lettere assurdo: se non è mai vero soddisfacibile: se è vero in almeno un caso tautologico: se è vero sempre Eugenio G. Omodeo Logica proposizionale Analisi 5/16

17 Tautologie Un enunciato ( proposizionale ) α può essere vero: una volta assegnati i valori di verità alle sue lettere assurdo: se non è mai vero soddisfacibile: se è vero in almeno un caso tautologico: se è vero sempre Per stabilire se α è tautologico, possiamo: Eugenio G. Omodeo Logica proposizionale Analisi 6/16

18 Tautologie Un enunciato ( proposizionale ) α può essere vero: una volta assegnati i valori di verità alle sue lettere assurdo: se non è mai vero soddisfacibile: se è vero in almeno un caso tautologico: se è vero sempre Per stabilire se α è tautologico, possiamo: passare a α Eugenio G. Omodeo Logica proposizionale Analisi 6/16

19 Tautologie Un enunciato ( proposizionale ) α può essere vero: una volta assegnati i valori di verità alle sue lettere assurdo: se non è mai vero soddisfacibile: se è vero in almeno un caso tautologico: se è vero sempre Per stabilire se α è tautologico, possiamo: passare a α stabilire se α è assurdo Eugenio G. Omodeo Logica proposizionale Analisi 6/16

20 Tautologie Un enunciato ( proposizionale ) α può essere vero: una volta assegnati i valori di verità alle sue lettere assurdo: se non è mai vero soddisfacibile: se è vero in almeno un caso tautologico: se è vero sempre Per stabilire se α è tautologico, possiamo: passare a α stabilire se α è assurdo ma se invece troviamo che α è soddisfacibile, allora abbiamo un controesempio ad α Eugenio G. Omodeo Logica proposizionale Analisi 6/16

21 Esercizi sul soddisfacim. di enunciati in DNF 1 Indicare una condizione necessaria e sufficiente perché una disgiunzione di letterali sia tautologica Eugenio G. Omodeo Logica proposizionale Analisi 7/16

22 Esercizi sul soddisfacim. di enunciati in DNF 1 Indicare una condizione necessaria e sufficiente perché una disgiunzione di letterali sia tautologica 2 Mostrare che una DNF è assurda se e solo se ogni suo disgiunto ha, fra i propri congiunti, due letterali complementari, cioè una lettera l assieme alla sua negaz. l Eugenio G. Omodeo Logica proposizionale Analisi 7/16

23 Esercizi sul soddisfacim. di enunciati in DNF 1 Indicare una condizione necessaria e sufficiente perché una disgiunzione di letterali sia tautologica 2 Mostrare che una DNF è assurda se e solo se ogni suo disgiunto ha, fra i propri congiunti, due letterali complementari, cioè una lettera l assieme alla sua negaz. l 3 Dire allora se è pratico il seguente metodo per stabilire se un enunciato α è tautologico o no: sintetizzare una DNF β equivalente a α servirsi del criterio di cui al punto 2. per stabilire se β è assurdo Eugenio G. Omodeo Logica proposizionale Analisi 7/16

24 Accertamento manuale di tautologicità Esercizio. Stabilire che il seguente enunciato è una tautologia: ( p q r ) ( p q ) p r Eugenio G. Omodeo Logica proposizionale Analisi 8/16

25 Accertamento manuale di tautologicità Esercizio. Stabilire che il seguente enunciato è una tautologia: ( p q r ) ( p q ) p r tavole di verità: 8 righe da sviluppare ( provateci! ) Eugenio G. Omodeo Logica proposizionale Analisi 8/16

26 Accertamento manuale di tautologicità Esercizio. Stabilire che il seguente enunciato è una tautologia: ( p q r ) ( p q ) p r reductio ad absurdum: ( p ( q r ) ) ( ( p q ) ( p r ) ) 0 1 Eugenio G. Omodeo Logica proposizionale Analisi 8/16

27 Accertamento manuale di tautologicità Esercizio. Stabilire che il seguente enunciato è una tautologia: ( p q r ) ( p q ) p r reductio ad absurdum: ( p ( q ) r ) ( ( p q ) ( p r ) ) Eugenio G. Omodeo Logica proposizionale Analisi 8/16

28 Accertamento manuale di tautologicità Esercizio. Stabilire che il seguente enunciato è una tautologia: ( p q r ) ( p q ) p r reductio ad absurdum: ( p ( q ) r ) ( ( p q ) ( p r ) ) Eugenio G. Omodeo Logica proposizionale Analisi 8/16

29 Accertamento manuale di tautologicità Esercizio. Stabilire che il seguente enunciato è una tautologia: ( p q r ) ( p q ) p r reductio ad absurdum: ( p ( q ) r ) ( ( p q ) ( p r ) ) Eugenio G. Omodeo Logica proposizionale Analisi 8/16

30 Accertamento manuale di tautologicità Esercizio. Stabilire che il seguente enunciato è una tautologia: ( p q r ) ( p q ) p r reductio ad absurdum: ( p ( q ) r ) ( ( p q ) ( p r ) ) Eugenio G. Omodeo Logica proposizionale Analisi 8/16

31 Accertamento manuale di tautologicità Esercizio. Stabilire che il seguente enunciato è una tautologia: ( p q r ) ( p q ) p r reductio ad absurdum: ( p ( q ) r ) ( ( p q ) ( p r ) ) Eugenio G. Omodeo Logica proposizionale Analisi 8/16

32 Accertamento manuale di tautologicità Esercizio. Stabilire che il seguente enunciato è una tautologia: ( p q r ) ( p q ) p r reductio ad absurdum: ( p ( q ) r ) ( ( p q ) ( p r ) ) Eugenio G. Omodeo Logica proposizionale Analisi 8/16

33 Accertamento manuale di tautologicità Esercizio. Stabilire che il seguente enunciato è una tautologia: ( p q r ) ( p q ) p r reductio ad absurdum: ( p ( q ) r ) ( ( p q ) ( p r ) ) Eugenio G. Omodeo Logica proposizionale Analisi 8/16

34 Accertamento manuale di tautologicità II Esercizio. Stabilire che i seguenti due enunciati sono tautologie: p q p ( p q r ) ( ( p s ) q ) ( p q r ) Eugenio G. Omodeo Logica proposizionale Analisi 9/16

35 Accertamento manuale di tautologicità II Esercizio. Stabilire che i seguenti due enunciati sono tautologie: p q p ( p q r ) ( ( p s ) q ) ( p q r ) Osservazione: il 2 o enunciato è istanza del primo che possiamo dimostrare tautologico per reductio ad absurdum: p ( q p ) Eugenio G. Omodeo Logica proposizionale Analisi 9/16

36 Accertamento manuale di tautologicità II Esercizio. Stabilire che i seguenti due enunciati sono tautologie: p q p ( p q r ) ( ( p s ) q ) ( p q r ) Osservazione: il 2 o enunciato è istanza del primo che possiamo dimostrare tautologico per reductio ad absurdum: p ( q p ) Pertanto: anche il 2 o è una tautologia Eugenio G. Omodeo Logica proposizionale Analisi 9/16

37 Applicabile il metodo assiomatico? Forse qualunque tautologia è derivabile (i.e., ottenibile) a partire da pochi schemi tautologici, tramite istanziazione di tali schemi e impieghi della regola MP ( modus ponens ): α α γ γ o anche α γ α γ Eugenio G. Omodeo Logica proposizionale Analisi 10/16

38 Dalla miriade di proposte Questi gli assiomi logici proposti da Willard Van Orman Quine nel 1938: ( β α ) ( α γ ) β γ α α ( ) ( α ) α α f Stabilire che il calcolo che ha questi assiomi è corretto ( sound ) richiede la verifica che sono davvero tautologie Eugenio G. Omodeo Logica proposizionale Analisi 11/16

39 Assiomi tautologici ( scelta di Church, 1956 ) i. ( ) ( ) α ( β γ ) ( α β ) ( α γ ) ii. α ( β α ) ( ) iii. ( α f ) ( β f ) ( ) β α Eugenio G. Omodeo Logica proposizionale Analisi 12/16

40 Un modo di definire le dimostraz. proposizionali Diremo che la sequenza δ = δ 0, δ 1,..., δ h è una dimostrazione di ϑ da A quando: 1) δ h = ϑ; 2) per ogni i = 0,..., h, accade che δ i sia un enunciato di P che o: appartiene ad A, oppure ricade in uno dei tre schemi del lucido precedente, oppure è preceduto da due enunciati δ j0 e δ j1 = (δ j0 δ i ), nel senso che j 0 < i e j 1 < i. Eugenio G. Omodeo Logica proposizionale Analisi 13/16

41 Esempio di dimostrazione Dimostriamo in 9 passi l enunciato f p da, come segue: Ax. Prem. 1. f ( f f ) [ii] 2. ( f ( f f ) ) ( ( f f ) ( f f ) ) [i] 3. ( f f ) ( f f ) [1, 2] 4. ( ( f f ) ( f f ) ) ( f f ) [iii] 5. f f [3, 4] 6. ( f f ) ( ( p f ) ( f f ) ) [ii] 7. ( p f ) ( f f ) [5, 6] 8. ( ( p f ) ( f f ) ) ( f p ) [iii] 9. f p [7, 8] Eugenio G. Omodeo Logica proposizionale Analisi 14/16

42 Uno schema totipotente Questo lo schema d assioma proposto da Jan Łukasiewicz nel 1936 ( e sdoganato da Larry Wos nel 1999 ) ( ( ) ( (( ) ) β α f ) γ f ) α ( α β ) γ β Basta da solo!! ( Un altro solitario leggermente piú semplice fu scoperto da Carey Arthur Meredith nel 1952 ) Il primo risultato di completezza ( i.e., ogni tautologia è derivabile dagli assiomi logici ) dovuto ad Emil Leon Post, è del 1920 Eugenio G. Omodeo Logica proposizionale Analisi 15/16

43 Riferimenti bibliografici Ludwig J. J. Wittgenstein. Tractatus Logico-Philosophicus Eugenio G. Omodeo Logica proposizionale Analisi 16/16

UNIVERSITÀ DEGLI STUDI LA SAPIENZA CORSO DI STUDI IN INFORMATICA ESERCITAZIONI AL CORSO DI LOGICA MATEMATICA LOGICA PROPOSIZIONALE

UNIVERSITÀ DEGLI STUDI LA SAPIENZA CORSO DI STUDI IN INFORMATICA ESERCITAZIONI AL CORSO DI LOGICA MATEMATICA LOGICA PROPOSIZIONALE UNIVERSITÀ DEGLI STUDI LA SAPIENZA CORSO DI STUDI IN INFORMATICA ESERCITAZIONI AL CORSO DI LOGICA MATEMATICA LOGICA PROPOSIZIONALE TAVOLE DI VERITÀ, COLETEZZA VERO-FUNZIONALE Esercizio 1. Calcola le tavole

Dettagli

Fondamenti di Informatica 2

Fondamenti di Informatica 2 Fondamenti di Informatica 2 Linguaggi e Complessità : Lezione 1 Corso Fondamenti di Informatica 2 Marco Schaerf, 2009-2010 Linguaggi e Complessità : Lezione 1 1 Logica proposizionale Linguaggio matematico

Dettagli

Luca Costabile Esercizi di Logica Matematica Dispensa Calcolo Proposizionale 1

Luca Costabile Esercizi di Logica Matematica Dispensa Calcolo Proposizionale 1 Luca Costabile Esercizi di Logica Matematica Dispensa Calcolo Proposizionale 1 Esercizio 1.12 Per dimostrare che per ogni funzione esiste una formula in cui compaiono le variabili tale che la corrispondente

Dettagli

Logica: materiale didattico

Logica: materiale didattico Logica: materiale didattico M. Cialdea Mayer. Logica (dispense): http://cialdea.dia.uniroma3.it/teaching/logica/materiale/dispense-logica.pdf Logica dei Predicati (Logica per l Informatica) 01: Logica

Dettagli

LOGICA PER LA PROGRAMMAZIONE

LOGICA PER LA PROGRAMMAZIONE LOGICA PER LA PROGRAMMAZIONE Franco Turini turini@di.unipi.it IPSE DIXIT Occorre dire, anzitutto, quale oggetto riguardi ed a quale disciplina spetti la presente indagine, che essa cioè riguarda la dimostrazione

Dettagli

Introduzione ad alcuni sistemi di logica modale

Introduzione ad alcuni sistemi di logica modale Introduzione ad alcuni sistemi di logica modale Laura Porro 16 maggio 2008 1 Il calcolo proposizionale Prendiamo come primitivi i simboli del Calcolo Proposizionale (PC) tradizionale a due valori 1 : un

Dettagli

Logica degli enunciati; Operazioni con le proposizioni; Proprietà delle operazioni logiche; Tautologie; Regole di deduzione; Logica dei predicati;

Logica degli enunciati; Operazioni con le proposizioni; Proprietà delle operazioni logiche; Tautologie; Regole di deduzione; Logica dei predicati; Logica degli enunciati; Operazioni con le proposizioni; Proprietà delle operazioni logiche; Tautologie; Regole di deduzione; Logica dei predicati; Implicazione logica. Equivalenza logica; Condizione necessaria,

Dettagli

Esercitazioni per il corso di Logica Matematica

Esercitazioni per il corso di Logica Matematica Esercitazioni per il corso di Logica Matematica Luca Motto Ros 02 marzo 2005 Nota importante. Queste pagine contengono appunti personali dell esercitatore e sono messe a disposizione nel caso possano risultare

Dettagli

Logica proposizionale

Logica proposizionale Logica proposizionale Proposizione: frase compiuta che è sempre o vera o falsa. Connettivi Posti in ordine di precedenza: not, and, or, implica, doppia implicazione Sintassi Le proposizioni sono costituite

Dettagli

Soluzioni degli Esercizi da Svolgere Capitolo 8

Soluzioni degli Esercizi da Svolgere Capitolo 8 Soluzioni degli Esercizi da Svolgere Capitolo 8 Esercizio 8.19 1. Sia p = 3 + 2 = 7 e q = 4 + 4 = 8 ; la formalizzazione dell enunciato in esame è quindi p q che risulta VERO, essendo la premessa dell

Dettagli

Logica per la Programmazione

Logica per la Programmazione Logica per la Programmazione Lezione 2 Dimostrazione di tautologie Proof System pag. 1 Un Problema di Deduzione Logica [da un test di ingresso] Tre amici, Antonio, Bruno e Corrado, sono incerti se andare

Dettagli

DIMOSTRAZIONI E TAUTOLOGIE, IPOTESI NON TAUTOLOGICHE. Corso di Logica per la Programmazione A.A. 2013/14 Andrea Corradini

DIMOSTRAZIONI E TAUTOLOGIE, IPOTESI NON TAUTOLOGICHE. Corso di Logica per la Programmazione A.A. 2013/14 Andrea Corradini DIMOSTRAZIONI E TAUTOLOGIE, IPOTESI NON TAUTOLOGICHE Corso di Logica per la Programmazione A.A. 2013/14 Andrea Corradini INFERENZE CORRETTE E TAUTOLOGIE Il Calcolo Proposizionale permette di formalizzare

Dettagli

1 Richiami di logica matematica

1 Richiami di logica matematica Geometria e Topologia I 7 marzo 2005 1 1 Richiami di logica matematica Definire cos è un enunciato, una proposizione (elemento primitivo della logica delle proposizioni). La definizione è data in termini

Dettagli

Un po di logica. Christian Ferrari. Laboratorio di matematica

Un po di logica. Christian Ferrari. Laboratorio di matematica Un po di logica Christian Ferrari Laboratorio di matematica 1 Introduzione La logica è la disciplina che studia le condizioni di correttezza del ragionamento. Il suo scopo è quindi quello di elaborare

Dettagli

Logica per la Programmazione

Logica per la Programmazione Logica per la Programmazione Lezione 3 Dimostrazione di Tautologie e Sintassi del Calcolo osizionale Antonio, Corrado e Bruno... formalmente Tautologie: dimostrazioni e controesempi Sintassi del Calcolo

Dettagli

Logica per la Programmazione

Logica per la Programmazione Logica per la Programmazione Lezione 3 Dimostrazione di Tautologie e Sintassi del Calcolo osizionale Antonio, Corrado e Bruno... formalmente Tautologie: dimostrazioni e controesempi Sintassi del Calcolo

Dettagli

DIMOSTRAZIONI DI TAUTOLOGIE. Corso di Logica per la Programmazione A.A. 2010/11 Andrea Corradini, Paolo Mancarella

DIMOSTRAZIONI DI TAUTOLOGIE. Corso di Logica per la Programmazione A.A. 2010/11 Andrea Corradini, Paolo Mancarella DIMOSTRAZIONI DI TAUTOLOGIE Corso di Logica per la Programmazione A.A. 2010/11 Andrea Corradini, Paolo Mancarella DIMOSTRAZIONE DI TAUTOLOGIE Abbiamo detto che: Per dimostrare che p è una tautologia possiamo:

Dettagli

LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13)

LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13) LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13) DISPENSA N. 3 Sommario. Introduciamo il Calcolo dei Predicati del I ordine e ne dimostriamo le proprietà fondamentali. Discutiamo il trattamento dell identità

Dettagli

Logica per la Programmazione

Logica per la Programmazione Logica del Primo Ordine: Motivazioni, Sintassi e Interpretazioni Logica per la Programmazione Lezione 1 Calcolo Proposizionale: sintassi e semantica Tautologie Esempi di Formalizzazione di Enunciati pag.

Dettagli

Fondamenti di Informatica 2, Linguaggi e Complessità : Logica I Parte Lucidi di M.Schaerf e A.Marchetti Spaccamela

Fondamenti di Informatica 2, Linguaggi e Complessità : Logica I Parte Lucidi di M.Schaerf e A.Marchetti Spaccamela Fondamenti di Informatica 2 Linguaggi e Complessità : Logica I Parte Lucidi di M.Schaerf e A.Marchetti Spaccamela Fondamenti di Informatica 2: Logica Indice degli argomenti Introduzione: Motivazioni, Prove,

Dettagli

Intelligenza Artificiale I

Intelligenza Artificiale I Intelligenza Artificiale I Logica formale Calcolo simbolico Marco Piastra Logica formale - Calcolo simbolico - 1 Calcolo simbolico? Una fbf è conseguenza logica di un insieme di fbf sse qualsiasi modello

Dettagli

Logica per la Programmazione

Logica per la Programmazione Logica del Primo Ordine: Motivazioni, Sintassi e Interpretazioni Logica per la Programmazione Lezione 8 Modelli, Formule Valide, Conseguenza Logica Proof Systems Regole di inferenza per Calcolo Proposizionale

Dettagli

NOZIONI DI LOGICA PROPOSIZIONI.

NOZIONI DI LOGICA PROPOSIZIONI. NOZIONI DI LOGICA PROPOSIZIONI. Una proposizione è un affermazione che è vera o falsa, ma non può essere contemporaneamente vera e falsa. ESEMPI Sono proposizioni : 7 è maggiore di 2 Londra è la capitale

Dettagli

Livello dei componenti fisici: Circuiteria elettronica

Livello dei componenti fisici: Circuiteria elettronica Livello dei componenti fisici: Circuiteria elettronica Eugenio G. Omodeo Dip. Matematica e Geoscienze DMI Trieste, 06/10/2016 Eugenio G. Omodeo Livello dei componenti fisici ( elettronici ) 1/12 Cos ha

Dettagli

ESERCIZI DI ANALISI MATEMATICA 1 FOGLIO 1

ESERCIZI DI ANALISI MATEMATICA 1 FOGLIO 1 ESERCIZI DI ANALISI MATEMATICA 1 FOGLIO 1 Logica e connettivi logici Esercizio 0.1. Si costruiscano le tabelle di verità delle seguenti espressioni booleane; cioè, al variare dei valori di verit delle

Dettagli

Elementi di Algebra e Logica Determinare la tavola della verità di ciascuna delle seguenti forme proposizionali:

Elementi di Algebra e Logica Determinare la tavola della verità di ciascuna delle seguenti forme proposizionali: Elementi di Algebra e Logica 2008. 8. Logica. 1. Determinare la tavola della verità di ciascuna delle seguenti forme proposizionali: (a) p ( q r); (b) p (q r); (c) (p q) ( p r); (d) (p q) ( p r); (e) (p

Dettagli

Esercizi di logica. Ivan Valbusa 5 dicembre 2012

Esercizi di logica. Ivan Valbusa 5 dicembre 2012 Esercizi di logica Ivan Valbusa 5 dicembre 2012 Gli esercizi proposti di seguito coprono solo una piccola parte del programma del corso. Sono mediamente più difficili di quelli presenti sul manuale di

Dettagli

Maiuscole e minuscole

Maiuscole e minuscole Maiuscole e minuscole Abilità interessate Distinguere tra processi induttivi e processi deduttivi. Comprendere il ruolo e le caratteristiche di un sistema assiomatico. Riconoscere aspetti sintattici e

Dettagli

Introduzione alla logica

Introduzione alla logica Corso di Intelligenza Artificiale 2011/12 Introduzione alla logica iola Schiaffonati Dipartimento di Elettronica e Informazione Sommario 2 Logica proposizionale (logica di Boole) Logica del primo ordine

Dettagli

CALCOLO PROPOSIZIONALE

CALCOLO PROPOSIZIONALE CALCOLO PROPOSIZIONALE UN PROBLEMA DI DEDUZIONE LOGICA (da un test d ingresso) Tre amici, Antonio, Bruno e Corrado, sono incerti se andare al cinema. Si sa che: Se Corrado va al cinema, allora ci va anche

Dettagli

METODI MATEMATICI PER L INFORMATICA

METODI MATEMATICI PER L INFORMATICA METODI MATEMATICI PER L INFORMATICA Tutorato Lezione 2 17/03/2016 Corso per matricole congrue a 1 Docente: Margherita Napoli Tutor: Amedeo Leo Applicazioni della logica proposizionale La logica ha una

Dettagli

Materiale didattico aggiuntivo - Analisi Matematica I CENNI DI LOGICA MATEMATICA. 1. Proposizioni. Valori logici. Connettivi logici. Tavole di verita.

Materiale didattico aggiuntivo - Analisi Matematica I CENNI DI LOGICA MATEMATICA. 1. Proposizioni. Valori logici. Connettivi logici. Tavole di verita. Materiale didattico aggiuntivo - Analisi Matematica I CENNI DI LOGICA MATEMATICA 1. Proposizioni. Valori logici. Connettivi logici. Tavole di verita. Intenderemo per PROPOSIZIONE (o ENUNCIATO) una qualunque

Dettagli

Logica. 7: Conseguenza ed equivalenza logica in logica classica proposizionale. Claudio Sacerdoti Coen. Universitá di Bologna

Logica. 7: Conseguenza ed equivalenza logica in logica classica proposizionale. Claudio Sacerdoti Coen. Universitá di Bologna Logica 7: Conseguenza ed equivalenza logica in logica classica proposizionale Universitá di Bologna 30/11/2016 Outline Conseguenza logica per la logica proposizionale Wikipedia:

Dettagli

Semantica proposizionale. Unit 2, Lez 3 e 4 Corso di Logica

Semantica proposizionale. Unit 2, Lez 3 e 4 Corso di Logica Semantica proposizionale Unit 2, Lez 3 e 4 Corso di Logica Sommario Semantica dei connettivi Costruzione delle tavole di verità Tautologie, contraddizioni e contingenze Semantica delle forme argomentative

Dettagli

Logica proposizionale

Logica proposizionale Fondamenti di Informatica per la Sicurezza a.a. 2008/09 Logica proposizionale Stefano Ferrari UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI TECNOLOGIE DELL INFORMAZIONE Stefano Ferrari Università degli

Dettagli

ISTITUZIONI DI LOGICA(1)

ISTITUZIONI DI LOGICA(1) ISTITUZIONI DI LOGICA(1) a.a. 2005-2006 (5 crediti) prof.ssa Giovanna Corsi TEST del 26 novembre 2005 Cognome Nome Corso di Laurea 1. (a) Secondo la lettura fatta delle pagine di Quine, cosa è rilevante

Dettagli

LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13)

LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13) LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13) DISPENSA N. 4 Sommario. Dimostriamo il Teorema di Completezza per il Calcolo dei Predicati del I ordine. 1. Teorema di Completezza Dimostriamo il Teorema

Dettagli

C1: L C1 C2: L C2 C: C1 C2

C1: L C1 C2: L C2 C: C1 C2 Abbiamo visto Gli agenti logici applicano inferenze a una base di conoscenza per derivare nuove informazioni. Concetti base della logica: sintassi: struttura formale delle sentenze semantica: verita` di

Dettagli

CALCOLO PROPOSIZIONALE. Corso di Logica per la Programmazione Andrea Corradini

CALCOLO PROPOSIZIONALE. Corso di Logica per la Programmazione Andrea Corradini CALCOLO PROPOSIZIONALE Corso di Logica per la Programmazione Andrea Corradini andrea@di.unipi.it UN PROBLEMA DI DEDUZIONE LOGICA (da un test d ingresso) Tre amici, Antonio, Bruno e Corrado, sono incerti

Dettagli

Intelligenza Artificiale. Logica proposizionale: calcolo automatico

Intelligenza Artificiale. Logica proposizionale: calcolo automatico Intelligenza Artificiale Logica proposizionale: calcolo automatico Marco Piastra Logica formale (Parte 3) - Parte 3 Calcolo automatico Forme normali ed a clausole Risoluzione e refutazione Forward chaining

Dettagli

Logica proposizionale classica. Studia il comportamento dei connettivi proposizionali quali ( And ) e ( Or )

Logica proposizionale classica. Studia il comportamento dei connettivi proposizionali quali ( And ) e ( Or ) Logica proposizionale classica Studia il comportamento dei connettivi proposizionali quali ( And ) e ( Or ) Parte da una famiglia di enunciati atomici di cui non analizziamo la struttura interna, che rappresentiamo

Dettagli

DI CHE COSA SI OCCUPA LA LOGICA

DI CHE COSA SI OCCUPA LA LOGICA Di Emily Rinaldi DI CHE COSA SI OCCUPA LA LOGICA La logica si occupa dell esattezza dei ragionamenti Nei tempi antichi solo verbale. Nell epoca moderna la logica viene applicata per l ordinamento sistemazione

Dettagli

Logica e fondamenti di matematica

Logica e fondamenti di matematica Logica e fondamenti di matematica Docente: Prof. Roberto Giuntini (giuntini@unica.it) Logica proposizionale Logica e teoria dell argomantazione. Cap. 1: Enunciati. Enunciato: Non ogni discorso è dichiarativo

Dettagli

CALCOLO DEL PRIMO ORDINE

CALCOLO DEL PRIMO ORDINE CALCOLO DEL PRIMO ORDINE ANCORA SUL CONCETTO DI CALCOLO (PROOF SYSTEM) Un sistema di dimostrazione è un insieme di regole di inferenza Ciascuna regola di inferenza consente di derivare una formula ϕ (conseguenza)

Dettagli

LOGICA MATEMATICA. Sonia L Innocente. Corso di Laurea. Informatica e Tecnologie/Informatica Industriale. Argomento 1. Logica proposizionale

LOGICA MATEMATICA. Sonia L Innocente. Corso di Laurea. Informatica e Tecnologie/Informatica Industriale. Argomento 1. Logica proposizionale LOGICA MATEMATICA Corso di Laurea Informatica e Tecnologie/Informatica Industriale Argomento 1. Logica proposizionale a.a. 2014-2015 (Camerino) 1 / 83 Outline Introduzione 1 Introduzione 2 Semantica e

Dettagli

Un introduzione al corso di LOGICA PER LA PROGRAMMAZIONE

Un introduzione al corso di LOGICA PER LA PROGRAMMAZIONE Un introduzione al corso di LOGICA PER LA PROGRAMMAZIONE Pisa, 14 e 16 settembre 2010 Andrea Corradini andrea@di.unipi.it LOGICA La LOGICA è la disciplina che studia le condizioni di correttezza del ragionamento

Dettagli

Proposizioni e verità

Proposizioni e verità Proposizioni e verità Claudia Casadio Logica e Psicologia del Pensiero Laurea Triennale - Parte Istituzionale A.A. 2007-08 Contents 1 Proposizione.......................................... 3 2 Verità...............................................

Dettagli

Logica per la Programmazione Corso di Laurea in INFORMATICA a.a. 2016/17

Logica per la Programmazione Corso di Laurea in INFORMATICA a.a. 2016/17 Logica per la Programmazione Corso di Laurea in INFORMATICA a.a. 2016/17 Andrea Corradini e Francesca Levi Dipartimento di Informatica E-mail: andrea@di.unipi.it, francesca.levi@unipi.it A. Corradini e

Dettagli

Corso di Logica I. Modulo sul Calcolo dei Sequenti. Dispensa Lezione III.

Corso di Logica I. Modulo sul Calcolo dei Sequenti. Dispensa Lezione III. Corso di Logica I. Modulo sul Calcolo dei Sequenti. Dispensa Lezione III. Giovanni Casini Teorema di corrispondenza fra il calcolo sui sequenti SND c e il calcolo dei sequenti SC c. In queste pagine andiamo

Dettagli

Esercitazioni per il corso di Logica Matematica

Esercitazioni per il corso di Logica Matematica Esercitazioni per il corso di Logica Matematica Luca Motto Ros 22 febbraio 2005 Nota importante. Queste pagine contengono appunti personali dell esercitatore e sono messe a disposizione nel caso possano

Dettagli

Università degli Studi di Milano

Università degli Studi di Milano Università degli Studi di Milano Laurea in Sicurezza dei sistemi e delle reti informatiche Note di logica proposizionale STEFANO FERRARI Fondamenti di informatica per la sicurezza Note di logica proposizionale

Dettagli

Linguaggi predicativi del 1 o ordine: Semantica

Linguaggi predicativi del 1 o ordine: Semantica Trieste, Eugenio12 13/04 G. Omodeo & Interpretazioni 19 20/04/2016 dei ling. predicativi del 1 o ordine 1/17 Linguaggi predicativi del 1 o ordine: Semantica Eugenio G. Omodeo Dip. Matematica e Geoscienze

Dettagli

LOGICA FORMALE. Logiche

LOGICA FORMALE. Logiche LOGICA FORMALE Linguaggio formale (sintassi + semantica) + Sistema di inferenza Sintassi: insieme delle espressioni ben formate (linguaggio) Semantica: interpretazione M del linguaggio Logica classica:

Dettagli

Alcuni equivalenti dell Assioma della Scelta

Alcuni equivalenti dell Assioma della Scelta Alcuni equivalenti dell Assioma della Scelta Giugno 2010 Gabriele Gullà Sommario Dimostreremo l equivalenza fra l assioma della scelta ed altri enunciati della matematica piú o meno noti. Enunciati: 1)

Dettagli

NOZIONI DI LOGICA. Premessa

NOZIONI DI LOGICA. Premessa NOZIONI DI LOGICA Premessa Il compito principale della logica è quello di studiare il nesso di conseguenza logica tra proposizioni, predisponendo delle tecniche per determinare quando la verità di una

Dettagli

LOGICA MATEMATICA. Sonia L Innocente. Corso di Laurea. Informatica e Tecnologie/Informatica Industriale

LOGICA MATEMATICA. Sonia L Innocente. Corso di Laurea. Informatica e Tecnologie/Informatica Industriale LOGICA MATEMATICA Corso di Laurea Informatica e Tecnologie/Informatica Industriale Argomento 1. Logica dei Predicati del Primo Ordine a.a. 2013-2014 (Camerino) 1 / 57 Outline Introduzione 1 Introduzione

Dettagli

I-Compitino LOGICA MATEMATICA 12 dicembre 2016

I-Compitino LOGICA MATEMATICA 12 dicembre 2016 I-Compitino LOGICA MATEMATICA 12 dicembre 2016 nome: cognome: - Scrivete in modo CHIARO. Elaborati illegibili non saranno considerati. - NON si considerano le BRUTTE copie. - Ricordatevi di ESPLICITARE

Dettagli

sempre vere sempre false

sempre vere sempre false Logica: elementi I principi della logica sono innanzitutto i seguenti: Identità: a=a (ogni cosa è cioè identica a se stessa) Non contraddizione: non (a e non a). E impossibile che la stessa cosa sia e

Dettagli

Logica: nozioni di base

Logica: nozioni di base Fondamenti di Informatica Sistemi di Elaborazione delle Informazioni Informatica Applicata Logica: nozioni di base Antonella Poggi Anno Accademico 2012-2013 DIPARTIMENTO DI SCIENZE DOCUMENTARIE LINGUISTICO

Dettagli

LOGICA MATEMATICA PER INFORMATICA

LOGICA MATEMATICA PER INFORMATICA LOGICA MATEMATICA PER INFORMATICA A.A. 10/11, SETTIMANA N. 1 Sommario. Introduciamo il linguaggio e la sintassi e la semantica della Logica del I Ordine. Introduciamo i concetti di teoria, teoria completa,

Dettagli

La parabola. Giovanni Torrero Aprile La poarabola come luogo geometrico

La parabola. Giovanni Torrero Aprile La poarabola come luogo geometrico La parabola Giovanni Torrero Aprile 2006 1 La poarabola come luogo geometrico Definizione 1 (La parabola come luogo geometrico) La parabola è il luogo geometrico formato da tutti e soli i punti del piano

Dettagli

04 - Logica delle dimostrazioni

04 - Logica delle dimostrazioni Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 04 - Logica delle dimostrazioni Anno Accademico 013/014 D. Provenzano,

Dettagli

PROGRAMMA CONSUNTIVO

PROGRAMMA CONSUNTIVO PAGINA: 1 PROGRAMMA CONSUNTIVO A.S.2014-2015 SCUOLA Liceo Linguistico Manzoni DOCENTE: Marina Barbàra MATERIA: Matematica e Informatica Classe 1 Sezione A OBIETTIVI: le parti sottolineate sono da considerarsi

Dettagli

Logica proposizionale

Logica proposizionale Definire un linguaggio formale Logica proposizionale Sandro Zucchi 2013-14 Definiamo un linguaggio formale LP (che appartiene a una classe di linguaggi detti linguaggi della logica proposizionale) Per

Dettagli

Teoremi di Incompletezza di Gödel

Teoremi di Incompletezza di Gödel Teoremi di Incompletezza di Gödel Pieri Lorenzo January 5, 2013 1 Introduzione Quello che segue è un breve riassunto della dimostrazione dei teoremi di Incompletezza di Gödel (e per il 2 è solo un accenno).

Dettagli

Teoria dei modelli. Alessandro Berarducci. 3 Marzo Dipartimento di Matematica Pisa

Teoria dei modelli. Alessandro Berarducci. 3 Marzo Dipartimento di Matematica Pisa Teoria dei modelli Alessandro Berarducci Dipartimento di Matematica Pisa 3 Marzo 2014 Teoria dei campi algebricamente chiusi Denizione 1 La teoria del primo ordine dei campi algebricamente chiusi, ACF,

Dettagli

Appunti di informatica. Lezione 7 anno accademico Mario Verdicchio

Appunti di informatica. Lezione 7 anno accademico Mario Verdicchio Appunti di informatica Lezione 7 anno accademico 2016-2017 Mario Verdicchio L algoritmo di Euclide per l MCD Dati due numeri A e B, per trovare il loro MCD procedere nel seguente modo: 1. dividere il maggiore

Dettagli

Logica per la Programmazione

Logica per la Programmazione Logica del Primo Ordine: Motivazioni, Sintassi e Interpretazioni Logica per la Programmazione Lezione 7 Formule Valide, Conseguenza Logica Proof System per la Logica del Primo Ordine Leggi per i Quantificatori

Dettagli

Elementi di logica. SCOPO: introdurre nozioni di logica & vocabolario per una corretta interpretazione delle dimostrazioni.

Elementi di logica. SCOPO: introdurre nozioni di logica & vocabolario per una corretta interpretazione delle dimostrazioni. Elementi di logica SCOPO: introdurre nozioni di logica & vocabolario per una corretta interpretazione delle dimostrazioni. Quantificatori: elementi fondamentali del linguaggio matematico. quantificatore

Dettagli

Insiemi, Numeri, Terminologia. Prof. Simone Sbaraglia

Insiemi, Numeri, Terminologia. Prof. Simone Sbaraglia Insiemi, Numeri, Terminologia Prof. Simone Sbaraglia Corso Rapido di Logica Matematica La logica formale definisce le regole cui deve obbedire qualsiasi teoria deduttiva. Una proposizione e` una affermazione

Dettagli

Due esercizi sui linguaggi predicativi

Due esercizi sui linguaggi predicativi Due esercizi sui linguaggi predicativi Eugenio G. Omodeo Dip. Matematica e Geoscienze DMI Trieste, 13/04/2016 Eugenio G. Omodeo 2 esercizi sui linguaggi predicativi del 1 o ordine 1/15 Scaletta 1 Enunciare

Dettagli

ISTITUTO TECNICO STATALE COMMERCIALE E PER GEOMETRI A. MARTINI Castelfranco Veneto (TV) Elementi di Logica

ISTITUTO TECNICO STATALE COMMERCIALE E PER GEOMETRI A. MARTINI Castelfranco Veneto (TV) Elementi di Logica settembre 008 Elementi di Logica 1. Nozioni preliminari La logica studia come funziona il pensiero e il ragionamento espresso attraverso degli enunciati Il ragionamento è un sistema di enunciati che permette

Dettagli

Calcolo dei sequenti I. Introduzione.

Calcolo dei sequenti I. Introduzione. Calcolo dei sequenti I. Introduzione. giovanni.casini@gmail.com 5 Maggio 2009 Introduzione Il calcolo dei sequenti è stato introdotto nel 1935 da Gerhard Gentzen in Untersuchungen über das logische Schliessen

Dettagli

e Algoritmi Marco Piastra Intelligenza Artificiale I Soddisfacibilità

e Algoritmi Marco Piastra Intelligenza Artificiale I Soddisfacibilità Intelligenza Artificiale I Soddisfacibilità e Algoritmi Marco Piastra Intelligenza Artificiale I - A.A. 2010- Soddisfacibilità e Semantic Tableau [1] Problemi e decidibilità (automatica) Problema Un problema

Dettagli

I teoremi della funzione inversa e della funzione implicita

I teoremi della funzione inversa e della funzione implicita I teoremi della funzione inversa e della funzione implicita Appunti per il corso di Analisi Matematica 4 G. Mauceri Indice 1 Il teorema della funzione inversa 1 Il teorema della funzione implicita 3 1

Dettagli

8. Completamento di uno spazio di misura.

8. Completamento di uno spazio di misura. 8. Completamento di uno spazio di misura. 8.1. Spazi di misura. Spazi di misura completi. Definizione 8.1.1. (Spazio misurabile). Si chiama spazio misurabile ogni coppia ordinata (Ω, A), dove Ω è un insieme

Dettagli

RISOLUZIONE IN LOGICA PROPOSIZIONALE. Giovanna D Agostino Dipartimento di Matemaica e Informatica, Università di Udine

RISOLUZIONE IN LOGICA PROPOSIZIONALE. Giovanna D Agostino Dipartimento di Matemaica e Informatica, Università di Udine RISOLUZIONE IN LOGICA PROPOSIZIONALE Giovanna D Agostino Dipartimento di Matemaica e Informatica, Università di Udine 1. Risoluzione Definitione 1.1. Un letterale l è una variabile proposizionale (letterale

Dettagli

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 1 a.a Soluzioni

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 1 a.a Soluzioni Corso di Laurea in Matematica Geometria 2 Foglio di esercizi n. 1 a.a. 2015-16 Soluzioni Gli esercizi sono presi dal libro di Manetti. Per svolgere questi esercizi, studiare con cura i paragrafi 3.1, 3.2,

Dettagli

LOGICA DEL PRIMO ORDINE: PROOF SYSTEM. Corso di Logica per la Programmazione A.A. 2013/14 Andrea Corradini

LOGICA DEL PRIMO ORDINE: PROOF SYSTEM. Corso di Logica per la Programmazione A.A. 2013/14 Andrea Corradini LOGICA DEL PRIMO ORDINE: PROOF SYSTEM Corso di Logica per la Programmazione A.A. 2013/14 Andrea Corradini LOGICA DEL PRIMO ORDINE: RIASSUNTO Sintassi: grammatica libera da contesto (BNF), parametrica rispetto

Dettagli

LOGICA MATEMATICA PER INFORMATICA

LOGICA MATEMATICA PER INFORMATICA LOGICA MATEMATICA PER INFORMATICA A.A. 12/13, DISPENSA N. 6 Sommario. Il Teorema di Compattezza e alcune sue applicazioni: assiomatizzabilità e non-assiomatizzabilità di proprietà di strutture, e modelli

Dettagli

Esercizi di Riepilogo e Autovalutazione Modulo 1

Esercizi di Riepilogo e Autovalutazione Modulo 1 Esercizi di Riepilogo e Autovalutazione Modulo 1 Marcello D Agostino Istituzioni di Logica 2016-2017 Copyright c 2013 Marcello D Agostino Classificazione delle domande * = difficoltà bassa ** = difficoltà

Dettagli

Calcoli dei sequenti classici e lineare

Calcoli dei sequenti classici e lineare Calcoli dei sequenti classici e lineare Gianluigi Bellin November 5, 2009 Scheda per il compito 2, scadenza rinviata al marteedì 10 novembre 2009 1 Calcolo dei sequenti classico 1.1 Linguaggio ed interpretazione

Dettagli

Aristotele, gli Stoici e la nascita della moderna Teoria della Dimostrazione

Aristotele, gli Stoici e la nascita della moderna Teoria della Dimostrazione Aristotele, gli Stoici e la nascita della moderna Teoria della Dimostrazione Roberto Maieli Università degli Studi Roma Tre maieli@uniroma3.it Logica - CdS Magistrale in Teoria della Comunicazione - Roma

Dettagli

Introduzione alla TEORIA DEI NUMERI

Introduzione alla TEORIA DEI NUMERI Renato Migliorato Introduzione alla teoria dei numeri Introduzione alla TEORIA DEI NUMERI Avvertenza: questo è l inizio di un testo pensato come supporto al corso di Matematiche Complementari I ed ancora

Dettagli

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI Assumiamo come primitivo il concetto di insieme e quello di appartenenza di un elemento a un insieme. La notazione x A indica

Dettagli

Cenni di logica. Hynek Kovarik. Università di Brescia. Analisi Matematica A

Cenni di logica. Hynek Kovarik. Università di Brescia. Analisi Matematica A Cenni di logica Hynek Kovarik Università di Brescia Analisi Matematica A Hynek Kovarik (Università di Brescia) Cenni di logica Analisi Matematica A 1 / 21 Scopo: introdurre nozioni di logica & terminologia

Dettagli

APPUNTI DI TEORIA DEGLI INSIEMI. L assioma della scelta e il lemma di Zorn Sia {A i } i I

APPUNTI DI TEORIA DEGLI INSIEMI. L assioma della scelta e il lemma di Zorn Sia {A i } i I APPUNTI DI TEORIA DEGLI INSIEMI MAURIZIO CORNALBA L assioma della scelta e il lemma di Zorn Sia {A i } i I un insieme di insiemi. Il prodotto i I A i è l insieme di tutte le applicazioni α : I i I A i

Dettagli

02 - Logica delle dimostrazioni

02 - Logica delle dimostrazioni Università degli Studi di Palermo Facoltà di Economia Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 0 - Logica delle dimostrazioni Anno Accademico 015/016

Dettagli

Prerequisiti Matematici

Prerequisiti Matematici Prerequisiti Matematici Richiami di teoria degli insiemi Relazioni d ordine, d equivalenza Richiami di logica Logica proposizionale, tabelle di verità, calcolo dei predicati Importante: Principio di Induzione

Dettagli

LIBRO ADOTTATO. G.M. PIACENTINI CATTANEO: MATEMATICA DISCRETA, ed. ZANICHELLI LIBRI CONSIGLIATI

LIBRO ADOTTATO. G.M. PIACENTINI CATTANEO: MATEMATICA DISCRETA, ed. ZANICHELLI LIBRI CONSIGLIATI LIBRO ADOTTATO G.M. PIACENTINI CATTANEO: MATEMATICA DISCRETA, ed. ZANICHELLI LIBRI CONSIGLIATI A. FACCHINI: ALGEBRA E MATEMATICA DISCRETA, ed. ZANICHELLI M.G. BIANCHI, A. GILLIO: INTRODUZIONE ALLA MA-

Dettagli

Università degli Studi di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica ALGEBRA BOOLEANA

Università degli Studi di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica ALGEBRA BOOLEANA Università degli Studi di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica ALGEBRA BOOLEANA Introduzione George Boole (1815-1864) nel 1854 elaborò una algebra basata su predicati logici. Valori

Dettagli

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica Università degli Studi di Palermo Facoltà di Economia Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 03 - I Numeri Reali Anno Accademico 2015/2016 M. Tumminello,

Dettagli

Intelligenza Artificiale. Esercizi Logica Proposizionale-tableau. Intelligenza Artificiale Daniele Nardi, 2003 Esercizi Logica Proposizionale-tableau

Intelligenza Artificiale. Esercizi Logica Proposizionale-tableau. Intelligenza Artificiale Daniele Nardi, 2003 Esercizi Logica Proposizionale-tableau Intelligenza Artificiale Esercizi Logica Proposizionale-tableau Esercizi Modelli 1. Se Giovanni studia canto e non ha una brutta voce allora avrà successo alla Scala. Siano: C = studiacanto B = bruttavoce

Dettagli

delta δ mu (mi) µ M iupsilon υ Y eta η H omicron o O psi ψ Ψ 1. Scrivere il proprio nome e cognome in lettere greche.

delta δ mu (mi) µ M iupsilon υ Y eta η H omicron o O psi ψ Ψ 1. Scrivere il proprio nome e cognome in lettere greche. Capitolo 1 Numeri 1.1 Alfabeto greco Un ingrediente indispensabile per lo studente che affronta un corso di analisi matematica è la conoscenza dell alfabeto greco, di cui verranno usate a vario titolo

Dettagli

CINEMATICA. M-Lezione 13c Cinematica Moto rettilineo uniforme (MRU) (Cinematica Moto rettilineo uniforme M.R.U.)

CINEMATICA. M-Lezione 13c Cinematica Moto rettilineo uniforme (MRU) (Cinematica Moto rettilineo uniforme M.R.U.) M-Lezione 13c Cinematica Moto rettilineo uniforme (MRU) Un moto si dice rettilineo uniforme quando il corpo percorre spazi uguali in uguali intervalli di tempo, muovendosi in linea retta. In questo caso

Dettagli

ALGEBRA I: ASSIOMI DI PEANO E PROPRIETÀ DEI NUMERI NATURALI

ALGEBRA I: ASSIOMI DI PEANO E PROPRIETÀ DEI NUMERI NATURALI ALGEBRA I: ASSIOMI DI PEANO E PROPRIETÀ DEI NUMERI NATURALI 1. GLI ASSIOMI DI PEANO Come puro esercizio di stile voglio offrire una derivazione delle proprietà elementari dei numeri naturali e delle operazioni

Dettagli

1. equivalenze e implicazioni logiche. Esercizio 1.2. Trovare le implicazioni che legano i seguenti enunciati (x, y R):

1. equivalenze e implicazioni logiche. Esercizio 1.2. Trovare le implicazioni che legano i seguenti enunciati (x, y R): . equivalenze e implicazioni logiche Esercizio.. Trovare le implicazioni che legano i seguenti enunciati (x, y R): () x < y, () x = y, () x y, () x y, () (x y) > 0. Osserviamo subito che (x y) > 0 equivale

Dettagli

Dispense del corso di Elementi di Logica II

Dispense del corso di Elementi di Logica II Dispense del corso di Elementi di Logica II M. Baioletti 1 A.A. 2005/06 1 Queste dispense sono dedicate alla memoria del prof. Sauro Tulipani (1946 2005), già insigne docente di questo corso, maestro e

Dettagli

DIMOSTRAZIONE DI IMPLICAZIONI TAUTOLOGICHE. Corso di Logica per la Programmazione A.A. 2010/11 Andrea Corradini

DIMOSTRAZIONE DI IMPLICAZIONI TAUTOLOGICHE. Corso di Logica per la Programmazione A.A. 2010/11 Andrea Corradini DIMOSTRAZIONE DI IMPLICAZIONI TAUTOLOGICHE Corso di Logica per la Programmazione A.A. 2010/11 Andrea Corradini DIGRESSIONE: SULLA SINTASSI DEL CALCOLO PROPOSIZIONALE Abbiamo già presentato la grammatica

Dettagli