Corso di Matematica per l Economia

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Corso di Matematica per l Economia"

Transcript

1 Corso di Matematica per l Economia a.a Francesco Rania Soluzioni Esercitazione 1 Riportiamo alcuni risultati degni di nota sono: Teorema 1. Dato (E,+, ) uno spazio vettoriale sul campo K, il sottinsieme X E è un sottospazio vettoriale di E sul campo K se e solo se Teorema 2. dimr n = n α,β K, v,u X αv +βu X Soluzione 1. SV.1. (R +,+, ) è un sottospazio vettoriale di R Banale. SV.2. X = {(x,y) x+2y +1 = 0} è un sottospazio di R 2 sul campo R Presi α,β R e v = (x 1,y 1 ),u = (x 2,y 2 ) X si ha allora: perché αv +βu = α(x 1,y 1 )+β(x 2,y 2 ) = (αx 1 +βx 2,αy 1 +βy 2 ) / X αx 1 βx 2 +2(αy 1 +βy 2 )+1 = 0 αx 1 βx 2 +2αy 1 +2βy 2 +1 = 0 αx 1 βx 2 +2αy 1 +2βy 2 +1+α α+β β = 0 α( x 1 +2y 1 +1)+β( x 2 +2y 2 +1) α β +1 = 0 α(0)+β(0) α β +1 = 0 α β +1 = 0 Basterà scegliere α = 1 e β = 1 perché l uguaglianza non sia valida. Quindi in forza delle caratterizzazioni dei sottospazi vettoriali X = {(x,y) x+2y+1 = 0} non è un sottospazio di R 2 sul campo R. Department of Legal, Historical, Economic and Social Sciences, Magna Graecia University of Catanzaro, Campus loc. Germaneto, Viale Europa, Catanzaro, Italy. raniaf@unicz.it 1

2 SV.3. (X = {(x,y,z) x 2z = 0},+, ) è un sottospazio di R 3 sul campo R Presi α,β R e v = (x 1,y 1,z 1 ),u = (x 2,y 2,z 2 ) X si ha allora: αv +βu = α(x 1,y 1,z 1 )+β(x 2,y 2,z 2 ) = (αx 1 +βx 2,αy 1 +βy 2,αz 1 +βz 2 ) X perché in base alla caratterizzazione di X si ha αx 1 +βx 2 2(αz 1 +βz 2 ) = αx 1 +βx 2 2αz 1 2βz 2 = = αx 1 2αz 1 +βx 2 2βz 2 = 0+0 = 0. Quindi (X = {(x,y,z) x 2z = 0},+, ) è un sottospazio di R 3 sul campo R. SV.4. {(1,2,3),(0,1,1),(1,1,2)} è una base di R 3? Da dimr 3 = 3 segue che ogni base di R 3 è costituita da 3 vettori linearmente indipendenti che sono anche generatori. Nel nostro caso i vettori sono numericamente 3 perciò l unica verifica che andremo ad effettuare sarà la lineare indipendenza. Consideriamo la combinazione lineare nulla dei vettori mediante tre scalari reali α, β e γ e proviamo che tali scalari sono unicamente tutti uguali a zero. che è equivalente a α(1,2,3)+β(0,1,1)+γ(1,1,2) = (0,0,0) (α+γ,2α+β +γ,3α+β +2γ) = (0,0,0) α+γ = 0 2α+β +γ = 0 3α+β +2γ = 0 α = γ β = γ γ = γ (1) Dal risultato del sistema (1) evinciamo che esistono infiniti γ diversi da zero che permettono di esprimere i vettori come combinazione lineare nulla e quindi non essendo linearmente indipendenti non costituiscono una base di R 3. SV.5. Calcolare le componenti di ( 3,2, 1) rispetto a (0,1,1), (1,0,1) e (1,2,0) I vettori (0,1,1), (1,0,1) e (1,2,0) sono linearmente indipendenti in quanto ognuno di essi non può esprimersi come combinazione lineare dei precedenti 1 e quindi in R 3 costituiscono una base B. Allora il vettore ( 3,2, 1) può essere generato da (0,1,1), (1,0,1) e (1,2,0) e le sue componenti α, β e γ rispetto a B si calcolano risolvendo l eguaglianza ( 3,2, 1) = α(0,1,1)+β(1,0,1)+γ(1,2,0) ( 3,2, 1) = (β +γ,α+2γ,α+β) 1 Basta osservare le componenti nulle e capire che ad es. (0,1,1) con terza componente uguale a 0 non può esprimersi mediante combinazione lineare di (1,0,1) e (1,2,0) e così dicasi per gli altri. 2

3 che poi è equivalente a risolvere il sistema β +γ = 3 α+2γ = 2 α+β = 1 In conclusione essendo 2γ 3+γ = 3 β = 2γ 3 α = 1 β γ = 0 β = 3 α = 2 ( 3,2, 1) = 2(0,1,1) 3(1,0,1)+0(1,2,0) le componenti di ( 3,2, 1) rispetto a B sono (2, 3,0). SV.6. Determinare le basi di R 3 con v 1,v 2,v 3,v 4,v 5,v 6 v 1 (1,0,1) v 2 (1,2,1) v 3 (0,2,0) v 4 (0,0,2) v 5 (1,2,2) v 6 (1,0,0) Una base di R 3 è costituita al massimo da tre vettori linearmente indipendenti. Le terne che possiamo ottenere combinando a tre a tre i vettori v 1,v 2,v 3,v 4,v 5,v 6 sono Con le medesime argomentazioni di SV.4. e le osservazioni della nota 4 otteniamo che le terne che costituiscono basi di R 3 sono le seguenti B 1 = {v 1,v 2,v 4 } B 2 = {v 1,v 2,v 5 } B 3 = {v 1,v 2,v 6 } B 4 = {v 1,v 3,v 4 } B 5 = {v 1,v 3,v 5 } B 6 = {v 1,v 3,v 6 } B 7 = {v 1,v 4,v 5 } B 8 = {v 1,v 4,v 6 } B 9 = {v 1,v 5,v 6 } B 10 = {v 2,v 3,v 4 } B 11 = {v 2,v 3,v 5 } B 12 = {v 2,v 3,v 6 } B 13 = {v 2,v 4,v 6 } B 14 = {v 2,v 5,v 6 } B 15 = {v 3,v 4,v 5 } B 16 = {v 3,v 4,v 6 } B 17 = {v 4,v 5,v 6 } SV.7. Completare a base {(2,1,0),(1,0,2)} t.c. (4,2,4) ha componenti (1,1,1) rispetto ad essa Indichiamoconv = (x,y,z)ilvettorechecompleteràabaseilsistema{(2,1,0),(1,0,2)}. Di v ne esistono infiniti che non siano del tipo (2α+β,α,2β) 3 che completerbbero a base il sistema di 2 vettori dati, ma perché si realizzi la condizione delle componenti (1,1,1) del vettore (4,2,4) rispetto alla base B = {(2,1,0),(1,0,2),v} occorre porre (4,2,4) = 1(2,1,0)+1(1,0,2)+1(x,y,z) (4,2,4) = (3+x,y,2+z) 2 Sono tante quante le combinazioni di 6 elementi presi a tre a tre ovvero C 6,3 = 6 5cot = Ricordiamo che (2α+β,α,2β) è combinazione lineare del sistema {(2,1,0),(1,0,2)} 3

4 ovvero risolvere il sistema 3+x = 4 y = 2 2+z = 4 x = 1 y = 2 z = 2 Il vettore ottenuto v = (1,2,2) non è del tipo (2α+β,α,2β) e perciò unitamente a (2,1,0) e (1,0,2) costiutisce una base di R 3 ed è tale da soddisfare alla condizione richiesta. Soluzione 2. Ricordiamo i seguenti risultati: Dati gli spazi vettoriali E e F sul medesimo campo K l applicazione f : E F è lineare se e solo se f(αv+βu) = αf(v)+βf(u) α,β K, v,u E (2) L insieme Ker(f) = {v E f(v) = 0 F } èil nucleo di f edèunsottospaziovettoriale di E. L insieme Im(f) = {u F v E : f(v) = u} è l immagine di f ed è un sottospazio vettoriale di F. Se dime < + allora dime = dimker(f)+im(f) f : E F lineare è iniettiva se e solo se Ker(f) = 0 E. AL.1. Verificare se le applicazioni f 1, f 2, f 3 e f 4 sono lineari f 1 : R 3 R 2 t.c. f(x,y,z) = (2x z,x+y +z) f 2 : R 2 R t.c. f(x,y) = sin(x y) f 3 : R 2 R 2 t.c. f(x,y) = (2x,xy) f 4 : R 2 R 3 t.c. f(x,y) = (x+2y,x+y,2x y) Consideriamo f 1 e v 1 = (x 1,y 1,z 1 ),v 2 = (x 2,y 2,z 2 ) R 3 e α,β R allora da f(αv 1 +βv 2 ) = f(α(x 1,y 1,z 1 )+β(x 2,y 2,z 2 )) = f(αx 1 +βx 2,αy 1 +βy 2,αz 1 +βz 2 ) = = (2(αx 1 +βx 2 ) (αz 1 +βz 2 ),(αx 1 +βx 2 )+(αy 1 +βy 2 )+(αz 1 +βz 2 )) = = (α(2x 1 z 1 )+β(2x 2 z 2 ),α(x 1 +y 1 +z 1 )+β(x 2 +y 2 +z 2 )) = = (α(2x 1 z 1 ),α(x 1 +y 1 +z 1 ))+(β(2x 2 z 2 ),β(x 2 +y 2 +z 2 )) = = f(αv 1 )+f(βv 2 ) = αf(v 1 )+βf(v 2 ) segue che f 1 è lineare. In modo analoga si dimostra che f 4 è lineare. L applicazione f 2 non è lineare perché f(αv) = f(α(x,y)) = sin(αx αy) αsin(x y) = αf(x,y) = αf(v) in quanto sin(αx αy) 1 e αsin(x y) = α sin(x y) α 1 α 4

5 Lapplicazione f 3 non è lineare perchè f(v 1 +v 2 ) = f((x 1,y 1 )+(x 2,y 2 )) = f(x 1 +x 2,y 1 +y 2 ) = = (x 1 +x 2,(x 1 +x 2 )(y 1 +y 2 )) = (x 1 +x 2,x 1 y 1 +x 1 y 2 +x 2 y 1 +x 2 y 2 ) = = (x 1,x1+x 1 y 1 )+(x 2,x 2 y 2 )+(0,x 1 y 2 )+(0,x 2 y 1 ) (x 1,x1+x 1 y 1 )+(x 2,x 2 y 2 ) = = f(x 1,y 1 )+f(x 2,y 2 ) = f(v 1 )+f(v 2 ) AL.2. Delle f lineari di AL.1. calcolare Ker(f), Im(f)e verificare se iniettiva e suriettiva In AL.1. solamente f 1 e f 4 sono lineari. f 1 : R 3 R 2 t.c. f(x,y,z) = (2x z,x+y +z) f 4 : R 2 R 3 t.c. f(x,y) = (x+2y,x+y,2x y) per f 1 : data la base canonica di R 3 si ha f(1,0,0) = (2,1) f(0,1,0) = (0,1) f(0,0,1) = ( 1,1) Poiché i vettori (2, 1) e (0, 1) sono linearmente indipendenti costituiscono una base di R 2 per cui Im(f)=R 2 ed inoltre f e surriettiva. Dal Thm della dimensione finita di E = R 3 si deduce che dimker(f) = dimr 3 dimim(f) = 3 2 = 1 e quindi che f non èiniettiva. Per determinare il Ker(f) risolviamo la seguente equazione vettoriale f(x,y,z) = (0,0) (2x z,x+y +z) = (0,0) equivalente al sistema { 2x z = 0 x+y +z = 0 x = 1 2 z y = 3 2 z z = z per cui il nucleo è Ker(f) = {( 1 2 z, 3 2 z,z) z R }4. per f 4 : Poiché lo spazio vettoriale di arrivo F = R 3 è più grande di quello di partenzae = R 2 subitosenzaalcunaverificapossiamoaffermarechedimim(f) 2 e quindi che f non è suriettiva. Inoltre calcolando le immagini della base canonica di E = R 2 f(1,0) = (1,1,2) f(0,1) = (2,1, 1) si ha che i vettori (1,1,2) e (2,1, 1) sono linearmenti indipendenti per cui Im(f) =< (1,1,2),(2,1, 1) > 5 e quindi dimim(f) = 2. Conseguentemente dal Thm della dimensione finita di E = R 2 si ricava che dimker(f) = dimr 2 dimim(f) = 2 2 = 0 e quindi che Ker(f) = 0 E equivalente ad affermare che f è iniettiva. 4 Per semplicità scegiendo z = 2 si potrebbe affermare che Ker(f) è generato dal vettore (1, 3,2). 5 Il simbolo <...,... > significa sistema di generatori. 5

6 AL.3. Sia f(1,0,0) = ( 1,0,1), f(0,1,0) = (0,2,1),f(0,0,1) = (3,4, 1), l endomorfismo su R 3. Determinare il Ker(f) e l Im(f). Esprimere f rispetto alla base canonica nel dominio e alla base B = {( 1,0,1),(0,2,1),(0,0,1)}nel codominio. Esprimere f rispetto alla base B = {(1,0,0),(0,1,0),(3, 2,1)} nel dominio ed alla base B nel codominio. Con le medesime argomentazioni di AL.2. si perviene a: Im(f) = R 3 Ker(f) = 0 R 3 = (0,0,0) per cui f è un automorfimo 6 di R 3. Indichiamo con B = {e 1,e 2,e 3 } la base canonica di R 3. Consideriamo la matrice dell endomorfismo f rispetto alle basi canoniche nel dominio e nel codominio ottenuta collocando come colonne le componenti delle immagini dei vettori e 1 = (1,0,0), e 2 = (0,1,0) e e 3 = (0,0,1) A B,B = Chiaramente dovendo scrivere f rispetto alla base canonica nel dominio e alla base B = {( 1,0,1),(0,2,1),(0,0,1)} nel codominio, occorrerà esprimere i vettori colonnadia B,B infunzionedib.iprimi duevettori sonougualiasestessi edavranno componenti ripettivamente (1,0,0) e (0,1,0); rimane da determinare (3,4, 1) rispetto a B, le cui componenti si ricavano come in SV.5.. Alla fine la matrice di f rispetto alla canonica nel dominio e a B nel codominio è A B,B = Invece per determinare la matrice di f rispetto a B = {(1,0,0),(0,1,0),(3, 2,1)} nel dominio ed alla base B nel codominio esprimiamo i vettori di B come combinazione lineare della base canonica ottendo la matrice di f rispetto a B nel dominio e alla canonica nel codominio A B,B = e poi come fatto sopra esprimere i vettori colonna (1,0,0), (0,1,0) e (0,0,0 di A B,B mediante B. In tal caso l operazione è più semplice di prima perchè i primi due sono gli stessi dei primi due di B e l ultimo, il vettore nullo, ha componenti tutte nulle per cui A B,B = Un automorfismo è un endomorfismo biettivo. 6

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI Esercizi Esercizio Date le seguenti applicazioni lineari f : R 2 R 3 definita da fx y = x 2y x + y x + y; 2 g : R 3 R 2 definita da gx y z = x + y x y; 3 h : Rx] 2 R 2 definita da

Dettagli

Geometria I. Esercizi svolti.

Geometria I. Esercizi svolti. Geometria I. Esercizi svolti. Alcuni esercizi svolti dal mio libro Appunti di Geometria I (Pitagora Editore). Es..5, p. 64. Siano F, H due sotto spazi vettoriali del k-spazio vettoriale E. Se H F, allora

Dettagli

Esercizi Applicazioni Lineari

Esercizi Applicazioni Lineari Esercizi Applicazioni Lineari (1) Sia f : R 4 R 2 l applicazione lineare definita dalla legge f(x, y, z, t) = (x + y + z, y + z + t). (a) Determinare il nucleo di f, l immagine di f, una loro base e le

Dettagli

Terminiamo gli ultimi due esercizi della lezione 4 SPAZI E SOTTOSPAZI VETTORIALI

Terminiamo gli ultimi due esercizi della lezione 4 SPAZI E SOTTOSPAZI VETTORIALI Terminiamo gli ultimi due esercizi della lezione 4 SPAZI E SOTTOSPAZI VETTORIALI Dato un campo K e (V) gruppo abeliano se è definita la legge di composizione tra gli scalari λ di K e gli elementi v di

Dettagli

DIAGONALIZZAZIONE. M(f) =

DIAGONALIZZAZIONE. M(f) = DIAGONALIZZAZIONE Esercizi Esercizio 1. Sia f End(R 3 ) associato alla matrice M(f) = 0 1 2 0. 2 (1) Determinare gli autovalori di f e le relative molteplicità. (2) Determinare gli autospazi di f e trovare,

Dettagli

Esempio. L immagine di f è l insieme dei vettori w = (w 1, w 2 ) R 2 che hanno w 1 = w 2. Quindi:

Esempio. L immagine di f è l insieme dei vettori w = (w 1, w 2 ) R 2 che hanno w 1 = w 2. Quindi: Nucleo, immagine e loro proprietà [Abate, 5.2] Data una applicazione lineare f : V W, chiamiamo nucleo di f l insieme N(f) := { v V : f(v) = 0 W } Se S V è un sottoinsieme del dominio, indichiamo con f(s)

Dettagli

Soluzioni primi compitini - Geometria 1

Soluzioni primi compitini - Geometria 1 Soluzioni primi compitini - Geometria Caterina Vernieri Ottobre 7 Le soluzioni proposte non sono state riviste dai professori Soluzioni Primi Compitini - G I compitino 7//3 Esercizio Al variare di α R

Dettagli

ENDOMORFISMI. ove B := (v 1,v 2,v 3 ). (1) Determinare gli autovalori di f e le relative molteplicità algebriche e geometriche.

ENDOMORFISMI. ove B := (v 1,v 2,v 3 ). (1) Determinare gli autovalori di f e le relative molteplicità algebriche e geometriche. ENDOMORFISMI Esercizi Esercizio 1 Siano v 1 := T (1, 1, 1, 0), v 2 := T (0, 1, 2, 1), v 3 := T (0, 0, 1, 1) Consideriamo V := L(v 1,v 2,v 3 ) R 4 e sia f End R (V ) associato alla matrice A := MB B (f)

Dettagli

1 Esercitazione tipo compitino

1 Esercitazione tipo compitino 1 Esercitazione tipo compitino Risolvo i primi due esercizi Esercizio 1. Sia g =: L B : R 4 R 4, la funzione definita da L B (X) = BX ove B = 0 1 1 2 0 1 1 2 1 2 1 3 1. Si dimostri che L B è una funzione

Dettagli

GEOMETRIA 1 terza parte

GEOMETRIA 1 terza parte GEOMETRIA 1 terza parte Cristina Turrini C. di L. in Fisica - 2014/2015 Cristina Turrini (C. di L. in Fisica - 2014/2015) GEOMETRIA 1 1 / 32 index Applicazioni lineari 1 Applicazioni lineari 2 Nucleo e

Dettagli

Esercizi di MATEMATICA PER RCHITETTURA prima parte: Algebra Lineare e Geometria

Esercizi di MATEMATICA PER RCHITETTURA prima parte: Algebra Lineare e Geometria Esercizi di MATEMATICA PER RCHITETTURA prima parte: Algebra Lineare e Geometria Avvertenze In quanto segue tutti i vettori hanno il medesimo punto d origine O l origine dello spazio cartesiano. Possiamo

Dettagli

Tutorato di GE110. Universitá degli Studi Roma Tre - Corso di Laurea in Matematica

Tutorato di GE110. Universitá degli Studi Roma Tre - Corso di Laurea in Matematica Universitá degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di GE110 A.A. 2014-2015 - Docente: Prof. Angelo Felice Lopez Tutori: Federico Campanini e Giulia Salustri Soluzioni Tutorato 12

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI GENNAIO 2015 DOCENTE: M. LONGO

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI GENNAIO 2015 DOCENTE: M. LONGO FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI GENNAIO 2015 DOCENTE: M. LONGO 1. Domande Domanda 1. Dire quando una funzione f : X Y tra dee insiemi X ed Y si dice iniettiva.

Dettagli

Esercizi per il corso di Algebra e Geometria L.

Esercizi per il corso di Algebra e Geometria L. Esercizi per il corso di Algebra e Geometria L AA 2006/2007 1 Foglio 1 In tutti gli esercizi che seguiranno lo spazio ambiente sarà il piano cartesiano a valori nel campo dei numeri reali, dove supporremo

Dettagli

LEZIONE 21 [ ] D [ ] 1. k n. k m. k n,1 k m,1

LEZIONE 21 [ ] D [ ] 1. k n. k m. k n,1 k m,1 LEZIONE 21 21.1. Matrice di un applicazione lineare. Siano V e W spazi vettoriali su k = R, C finitamente generati e siano = (v 1,..., v n ) e = (w 1,..., w m ) basi di V e W rispettivamente. Come abbiamo

Dettagli

Applicazioni Lineari. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni.

Applicazioni Lineari. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni. Politecnico di Torino. Applicazioni Lineari. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni. Argomenti: Basi e coordinate. Applicazioni lineari. Matrici come applicazioni

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a. 014-01 Prova scritta del 1-6-01 TESTO E SOLUZIONI Avvertenze: A. Per il recupero del primo esonero svolgere gli esercizi

Dettagli

3. Determinare le soluzioni del sistema lineare Σ α interpretato ora come sistema lineare nelle 4 incognite x 1, x 2, x 3, x 4.

3. Determinare le soluzioni del sistema lineare Σ α interpretato ora come sistema lineare nelle 4 incognite x 1, x 2, x 3, x 4. Corsi di Laurea in INGEGNERIA INDUSTRIALE Canali 1-2-5 Corso di Fondamenti di Algebra Lineare e Geometria Padova 21 Aprile 2012 I prova parziale Tema n.1 PARTE A. Risolvere i seguenti esercizi: Esercizio

Dettagli

Esercizi di Geometria

Esercizi di Geometria UNIVERSITÀ DEGLI STUDI DI TRENTO FACOLTÀ DI INGEGNERIA Marco Andreatta Luca Migliorini Gianluca Occhetta Davide Panizzolo Lorenza Tonetto Marina Avitabile Esercizi di Geometria Luglio 2000 2 1. Programma

Dettagli

Tutorato di GE110. Universitá degli Studi Roma Tre - Corso di Laurea in Matematica

Tutorato di GE110. Universitá degli Studi Roma Tre - Corso di Laurea in Matematica Universitá degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di GE110 A.A. 2013-2014 - Docente: Prof. Angelo Felice Lopez Tutori: Dario Giannini e Giulia Salustri Soluzioni Tutorato 9 15 Maggio

Dettagli

APPLICAZIONI LINEARI O OMOMORFISMI

APPLICAZIONI LINEARI O OMOMORFISMI 42 APPLICAZIONI LINEARI O OMOMORFISMI Definizione 9 Dati due spazi vettoriali U e V sullo stesso campo K, una applicazione f : U V è detta lineare o omomorfismo se soddisfa le seguenti due condizioni:

Dettagli

Algebra lineare Geometria 1 15 luglio 2009

Algebra lineare Geometria 1 15 luglio 2009 Algebra lineare Geometria 1 15 luglio 2009 Esercizio 1. Nello spazio vettoriale reale R 3 [x] si considerino l insieme A k = {1 + x, k + (1 k)x 2, 1 + (k 1)x 2 + x 3 }, il vettore v k = k + kx x 3 e la

Dettagli

CORSO DI MATEMATICA II Prof. Paolo Papi ESERCIZI. 1). Stabilire quali dei seguenti sottoinsiemi di V sono sottospazi vettoriali. (a) V = R 3.

CORSO DI MATEMATICA II Prof. Paolo Papi ESERCIZI. 1). Stabilire quali dei seguenti sottoinsiemi di V sono sottospazi vettoriali. (a) V = R 3. CORSO DI MATEMATICA II Prof Paolo Papi ESERCIZI ) Stabilire quali dei seguenti sottoinsiemi di V sono sottospazi vettoriali (a) V = R 3 () W = {(x,,x 3 ) x,x 3 R} (2) W 2 = {(x,,x 3 ) x,x 3 R} (3) W 3

Dettagli

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE. Esercizi Esercizio. In R calcolare il modulo dei vettori,, ),,, ) ed il loro angolo. Esercizio. Calcolare una base ortonormale del sottospazio

Dettagli

Algebra lineare e geometria AA Esercitazione del 14/6/2018

Algebra lineare e geometria AA Esercitazione del 14/6/2018 Algebra lineare e geometria AA. 2017-2018 Esercitazione del 14/6/2018 1) Siano A, B due matrici n n tali che 0 < rk(a) < rk(b) = n. (a) AB è invertibile. (b) rk(ab) = nrk(b). (c) det(ab) = det(a). (d)

Dettagli

Esercizi di GEOMETRIA I - Algebra Lineare B = , calcolare A A t A + I

Esercizi di GEOMETRIA I - Algebra Lineare B = , calcolare A A t A + I Esercizi di GEOMETRIA I - Algebra Lineare. Tra le seguenti matrici, eseguire tutti i prodotti possibili: 2 ( ) A = 0 3 4 B = 2 0 0 2 D = ( 0 ) E = ( ) 4 4 2 C = 2 0 5 F = 4 2 6 2. Data la matrice A = 0

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI Fra le applicazioni definite tra spazi vettoriali sono particolarmente significative quelle che conservano le operazioni, dette applicazioni lineari. Definizione Siano V, W due k-s.v.

Dettagli

Corso di Geometria Lezione II: Spazi vettoriali

Corso di Geometria Lezione II: Spazi vettoriali .. Corso di Geometria Lezione II: Spazi vettoriali F. Baldassarri 8 ottobre 2013 Definizione di spazio vettoriale Uno spazio vettoriale su un campo C (ad es. Q,R,C,{0, 1}) è un insieme V dotato di due

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Cognome Nome Matricola FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Ciarellotto, Esposito, Garuti Prova del 21 settembre 2013 Dire se è vero o falso (giustificare le risposte. Bisogna necessariamente rispondere

Dettagli

ESERCIZI DI ALGEBRA LINEARE E COMPLEMENTI DI GEOMETRIA

ESERCIZI DI ALGEBRA LINEARE E COMPLEMENTI DI GEOMETRIA ESERCIZI DI ALGEBRA LINEARE E COMPLEMENTI DI GEOMETRIA Foglio 4 Esempio. Sia V = P 5 (R) lo spazio dei polinomi di grado strettamente minore di 5. Si considerino i seguenti sottoinsiemi di V (i) Dimostrare

Dettagli

Algebra Lineare. a.a Gruppo A-H. Prof. P. Piazza Soluzioni del compito pomeridiano del 6/12/2004

Algebra Lineare. a.a Gruppo A-H. Prof. P. Piazza Soluzioni del compito pomeridiano del 6/12/2004 Algebra Lineare. a.a. 004-05. Gruppo A-H. Prof. P. Piazza Soluzioni del compito pomeridiano del 6/1/004 Esercizio 1. Siano V e W due spazi vettoriali e sia F : V W un isomorfismo (quindi F è lineare e

Dettagli

(VX) (F) Se A e B sono due matrici simmetriche n n allora anche A B è una matrice simmetrica.

(VX) (F) Se A e B sono due matrici simmetriche n n allora anche A B è una matrice simmetrica. 5 luglio 010 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

A. Languasco - Esercizi Matematica B - 2. Spazi Vettoriali e Trasformazioni lineari 1

A. Languasco - Esercizi Matematica B - 2. Spazi Vettoriali e Trasformazioni lineari 1 A. Languasco - Esercizi Matematica B - 2. Spazi Vettoriali e Trasformazioni lineari 1 A: Spazi vettoriali e sottospazi Corso di Matematica B - Ingegneria Informatica Testi di Esercizi A1. Provare che l

Dettagli

ESERCIZI DI ALGEBRA LINEARE. Vincenzo Di Gennaro

ESERCIZI DI ALGEBRA LINEARE. Vincenzo Di Gennaro ESERCIZI DI ALGEBRA LINEARE Vincenzo Di Gennaro Sono raccolti, in ordine cronologico, gli esercizi di Algebra Lineare proposti nelle prove scritte per i vari corsi di Geometria 1 che ho tenuto presso la

Dettagli

ESERCIZI sui VETTORI

ESERCIZI sui VETTORI ESERCIZI sui VETTORI 1. Calcolare la somma di v 1 (2, 3) e v 2 (1, 4). 2. Calcolare la somma di v 1 (1, 5, 4) e v 2 (6, 8, 2). 3. Calcolare il prodotto di α = 2 e v 1 (1, 4). 4. Calcolare il prodotto di

Dettagli

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ. ESERCIZI SVOLTI DI ALGEBRA LINEARE (Sono svolti alcune degli esercizi proposti nei fogli di esercizi su vettori linearmente dipendenti e vettori linearmente indipendenti e su sistemi lineari ) I. Foglio

Dettagli

Nozioni e notazioni: concetti primitivi di insieme, elemento ed appartenenza.

Nozioni e notazioni: concetti primitivi di insieme, elemento ed appartenenza. Geometria I lezione del 30 settembre 2013 Presentazione del corso. Nozioni e notazioni: concetti primitivi di insieme, elemento ed appartenenza. Insiemi numerici: i numeri naturali, gli interi, i numeri

Dettagli

ESERCIZI DI ALGEBRA LINEARE. Vincenzo Di Gennaro

ESERCIZI DI ALGEBRA LINEARE. Vincenzo Di Gennaro ESERCIZI DI ALGEBRA LINEARE Vincenzo Di Gennaro Sono raccolti, in ordine cronologico, gli esercizi di Algebra Lineare proposti nelle prove scritte per i vari corsi di Geometria che ho tenuto presso la

Dettagli

CORSO DI LAUREA IN INGEGNERIA.

CORSO DI LAUREA IN INGEGNERIA. CORSO DI LAUREA IN INGEGNERIA. FOGLIO DI ESERCIZI 9 GEOMETRIA E ALGEBRA LINEARE 2012/13 Esercizio 9.1 (8.40). Sia T : R 2 R 3 l applicazione definita da T(x,y) = (2x,x y,2y), e siano B = {(1,0), (1,1)

Dettagli

Definizione 1 Una applicazione f : V W, con V, W spazi vettoriali sul campo K si dice lineare se conserva le combinazioni lineari:

Definizione 1 Una applicazione f : V W, con V, W spazi vettoriali sul campo K si dice lineare se conserva le combinazioni lineari: Applicazioni lineari Definizione Una applicazione f : V W, con V, W spazi vettoriali sul campo K si dice lineare se conserva le combinazioni lineari: f(αv + βv 2 ) = αf(v ) + βf(v 2 ) v, v 2 V, α, β K.

Dettagli

Elementi di Algebra Lineare. Spazio Vettoriale (lineare)

Elementi di Algebra Lineare. Spazio Vettoriale (lineare) Elementi di Algebra Lineare Spazio Vettoriale (lineare) Uno spazio vettoriale su un corpo F è una quadrupla (X, F, +, ) costituita da: un insieme di elementi X, detti vettori, un corpo F, i cui elementi

Dettagli

Istituzioni di Matematica I. Esercizi su sistemi lineari. & % x + y " #z = "1 & '#x " y+ z =1

Istituzioni di Matematica I. Esercizi su sistemi lineari. & % x + y  #z = 1 & '#x  y+ z =1 Istituzioni di Matematica I Esercizi su sistemi lineari Esempio. Dire per quali valori di λ R il sistema x " y+ z = 2 % x + y " z = " x " y+ z = ha una sola soluzione, per quali nessuna, per quali infinite

Dettagli

r 2 r 2 2r 1 r 4 r 4 r 1

r 2 r 2 2r 1 r 4 r 4 r 1 SPAZI R n 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x, y, z)

Dettagli

AUTOVALORI, AUTOVETTORI, AUTOSPAZI

AUTOVALORI, AUTOVETTORI, AUTOSPAZI AUTOVALORI, AUTOVETTORI, AUTOSPAZI. Esercizi Esercizio. Sia f : R 3 R 3 l endomorfismo definito da f(x, y, z) = (x+y, y +z, x+z). Calcolare gli autovalori ed una base per ogni autospazio di f. Dire se

Dettagli

ESERCIZI DI MATEMATICA DISCRETA ANNO 2006/2007

ESERCIZI DI MATEMATICA DISCRETA ANNO 2006/2007 ESERCIZI DI MATEMATICA DISCRETA ANNO 6/7 //7 () Ridurre la seguente matrice ad una a scala ridotta utilizzando il metodo di Gauss-Jordan. Soluzione. () Determinare quante e quali sono le matrici a scala

Dettagli

11 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

11 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

Tutorato di GE110. Si scriva l'equazione del piano α passante per i punti A = (1; 0; 0); B = (2; 1; 1) e D = (0; 1; 1);

Tutorato di GE110. Si scriva l'equazione del piano α passante per i punti A = (1; 0; 0); B = (2; 1; 1) e D = (0; 1; 1); Universitá degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di GE110 A.A. 2012-2013 - Docente: Prof. Angelo Felice Lopez Tutori: Dario Giannini e Giulia Salustri Tutorato 9 15 Maggio 2013

Dettagli

Per le risposte utilizza gli spazi predisposti. Quando richiesto, il procedimento va esposto brevemente, ma in maniera comprensibile.

Per le risposte utilizza gli spazi predisposti. Quando richiesto, il procedimento va esposto brevemente, ma in maniera comprensibile. COGNOME............................... NOME..................................... Punti ottenuti Esame di geometria Scrivi cognome e nome negli spazi predisposti in ciascuno dei tre fogli. Per ogni domanda

Dettagli

Prova scritta di geometria e algebra lineare del Esercizio 1 Sono dati il piano π e la retta r k in R 3 definiti da:

Prova scritta di geometria e algebra lineare del Esercizio 1 Sono dati il piano π e la retta r k in R 3 definiti da: Prova scritta di geometria e algebra lineare del 20.07.2017 Esercizio 1 Sono dati il piano π e la retta r k in R 3 definiti da: π : { x = 1 + t s y = t + 2s z = 2 + 2t + s con k costante reale assegnata.

Dettagli

INGEGNERIA EDILE ARCHITETTURA ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA 17 SETTEMBRE 2012

INGEGNERIA EDILE ARCHITETTURA ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA 17 SETTEMBRE 2012 INGEGNERIA EDILE ARCHITETTURA ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA 7 SETTEMBRE 202 Esercizio. Sia V = R[X] 2 lo spazio vettoriale dei polinomi ax 2 + bx + c nella variabile X di grado al più 2 a coefficienti

Dettagli

Foglio di esercizi numero 2 Corso di Fondamenti di Algebra Lineare e Geometria Ingegneria Aerospaziale e Meccanica

Foglio di esercizi numero 2 Corso di Fondamenti di Algebra Lineare e Geometria Ingegneria Aerospaziale e Meccanica Foglio di esercizi numero 2 Corso di Fondamenti di Algebra Lineare e Geometria Ingegneria Aerospaziale e Meccanica Esercizio 1. Sia f l endomorfismo di R 4 definito nel modo seguente: f(x, y, z, w) = (w,

Dettagli

Ingegneria Gestionale - Corso di Analisi II e Algebra anno accademico 2008/2009

Ingegneria Gestionale - Corso di Analisi II e Algebra anno accademico 2008/2009 Ingegneria Gestionale - Corso di Analisi II e Algebra anno accademico 28/29 Dire se le seguenti proposizioni sono vere o false: ESERCITAZIONE. Proposizione Vera Falsa f : R R 4 rk(f f : R 4 R rk(f f :

Dettagli

ALGEBRA LINEARE E GEOMETRIA

ALGEBRA LINEARE E GEOMETRIA ALGEBRA LINEARE E GEOMETRIA A 20 settembre 2017 60 minuti Istruzioni: Scrivere cognome, nome, matricola in STAMPATELLO negli appositi spazi. Per ogni quiz nella prima parte, indicare l affermazione giudicata

Dettagli

x 1 x 2 x 3 x 4 x 3 x 1 + x 3

x 1 x 2 x 3 x 4 x 3 x 1 + x 3 a.a. -6 Esercizi. Applicazioni lineari. Soluzioni. Sia : R 4 R 4 l applicazione lineare data da e siano dati i sottospazi + x ( x ) = +, + x 4 + x 4 U = span{, } W = span{, }. (i) Determinare ker e dire

Dettagli

Esercizi per il corso di Algebra e Geometria L.

Esercizi per il corso di Algebra e Geometria L. Esercizi per il corso di Algebra e Geometria L. Alessandra Bernardi Il numero degli esercizi qui raccolti è volutamente elevato. Lo scopo è di fornire un ampio spettro di esercizi e la conseguente possibilità

Dettagli

1. [15 punti] Calcolare il rango della seguente matrice a coefficienti reali: ( 1/2) 1 (1/2)

1. [15 punti] Calcolare il rango della seguente matrice a coefficienti reali: ( 1/2) 1 (1/2) Università di Modena e Reggio Emilia Facoltà di Scienze MM.FF.NN. PROVA DI ALGEBRA LINEARE del 17 febbraio 011 ISTRUZIONI PER LO SVOLGIMENTO. Scrivere cognome, nome, numero di matricola in alto a destra

Dettagli

dipendenti. Cosa possiamo dire sulla dimensione di V?

dipendenti. Cosa possiamo dire sulla dimensione di V? Esercizi Esercizi. In uno spazio vettoriale V ci sono tre vettori v, v 2, v linearmente indipendenti. Cosa possiamo dire sulla dimensione di V? 2. In uno spazio vettoriale V ci sono tre vettori v, v 2,

Dettagli

LAUREA IN INGEGNERIA CIVILE ED AMBIENTE-TERRITORIO Corso di Matematica 2 Padova TEMA n.1

LAUREA IN INGEGNERIA CIVILE ED AMBIENTE-TERRITORIO Corso di Matematica 2 Padova TEMA n.1 LAUREA IN INGEGNERIA CIVILE ED AMBIENTE-TERRITORIO Corso di Matematica Padova -8-8 TEMA n.1 PARTE 1. Quesiti preliminari Stabilire se le seguenti affermazioni sono vere o false giustificando brevemente

Dettagli

Esempi. In R 2, le coppia (2, 5) è combinazione lineare dei vettori (0, 1) e (1, 1). Infatti:

Esempi. In R 2, le coppia (2, 5) è combinazione lineare dei vettori (0, 1) e (1, 1). Infatti: Combinazioni lineari [Abate, 4.2] Sia V uno spazio vettoriale e v 1, v 2,..., v n dei vettori di V. Diremo che un vettore w V è combinazione lineare dei vettori v 1,..., v n se esistono a 1, a 2,..., a

Dettagli

Esercitazione 6 - Soluzione

Esercitazione 6 - Soluzione Anno Accademico 28-29 Corso di Algebra Lineare e Calcolo Numerico per Ingegneria Meccanica Esercitazione 6 - Soluzione Immagine, nucleo. Teorema di Rouché-Capelli. Esercizio Sia L : R 3 R 3 l applicazione

Dettagli

Appunti di ALGEBRA LINEARE

Appunti di ALGEBRA LINEARE Appunti di ALGEBRA LINEARE Corso di Laurea in Chimica A. A. 2009/200 Capitolo SPAZI VETTORIALI In matematica si incontrano spesso insiemi di elementi su cui sono definite delle operazioni che godono di

Dettagli

CORSO DI ALGEBRA (M-Z) Prof. A. Venezia

CORSO DI ALGEBRA (M-Z) Prof. A. Venezia CORSO DI ALGEBRA (M-Z) Prof. A. Venezia 2018-19 Complementi ed Esercizi APPLICAZIONI LINEARI Siano V e V spazi vettoriali sul campo K. Una applicazione L: V V si dice lineare se: 1 AL. L(v+w) = L(v) +

Dettagli

Metodi Matematici per la Comunicazione Digitale - 19 Giugno 2017

Metodi Matematici per la Comunicazione Digitale - 19 Giugno 2017 Metodi Matematici per la Comunicazione Digitale - 9 Giugno 7 Esercizio. Determinare il valore del parametro reale h in modo che il polinomio sia divisibile per il polinomio p h (x) = x 3 x 5x + 4 + h q(x)

Dettagli

LEZIONE 15. Esempio L applicazione f: R 3 R 2. è lineare. Infatti si ha che se α R, (x, y, z) R 3 risulta

LEZIONE 15. Esempio L applicazione f: R 3 R 2. è lineare. Infatti si ha che se α R, (x, y, z) R 3 risulta LEZIONE 15 15.1. Applicazioni lineari ed esempi. Definizione 15.1.1. Siano V e W spazi vettoriali su k = R, C. Un applicazione f: V W si dice k lineare se: (AL1) per ogni v 1, v 2 V si ha f(v 1 + v 2 )

Dettagli

ESAME DI GEOMETRIA. 6 febbraio 2002 CORREZIONE QUIZ

ESAME DI GEOMETRIA. 6 febbraio 2002 CORREZIONE QUIZ ESAME DI GEOMETRIA 6 febbraio CORREZIONE QUIZ. La parte reale di ( + i) 9 è positiva. QUIZ Si può procedere in due modi. Un primo modo è osservare che ( + i) =i, dunque ( + i) 9 =(+i)(i) 4 = 4 ( + i) :

Dettagli

21 settembre Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

21 settembre Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

Esercizi di Geometria 1 - Foglio 3bis

Esercizi di Geometria 1 - Foglio 3bis Esercizi di Geometria - Foglio 3bis Alessandro Rubin (alex.rubin@outlook.com) Si ringrazia Ricardo Tzantzoglou per il codice L A TEX condiviso dicembre 7 Esercizio. Sia f : V W un applicazione e G = {(v,

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 4: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 4: soluzioni Corso di Geometria - BIAR, BSIR Esercizi : soluzioni Esercizio. Sono dati i seguenti sistemi lineari omogenei nelle incognite x, y, z: { x + y z = x + y z = x + y z = S : x y + z =, S :, S 3 : x 3y =,

Dettagli

1 Indipendenza lineare e scrittura unica

1 Indipendenza lineare e scrittura unica Geometria Lingotto. LeLing7: Indipendenza lineare, basi e dimensione. Ārgomenti svolti: Indipendenza lineare e scrittura unica. Basi e dimensione. Coordinate. Ēsercizi consigliati: Geoling. Indipendenza

Dettagli

Esame di GEOMETRIA (Appello del 30 gennaio 2018)

Esame di GEOMETRIA (Appello del 30 gennaio 2018) Esame di GEOMETRIA (Appello del 3 gennaio 28) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. Siano dati i sottospazi di R 4 : W = L, 4, 5 2 2. Scrivere equazioni cartesiane per W. {, U : x +

Dettagli

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n NOTE DI ALGEBRA LINEARE 2- MM 9 NOVEMBRE 2 Combinazioni lineari e generatori Sia K un campo e V uno spazio vettoriale su K Siano v,, v n vettori in V Definizione Un vettore v V si dice combinazione lineare

Dettagli

Esercizio 1 (rango) In R 4 (R) si dica per quali valori reali di k il vettore v=(0,k-1,k-1,2) appartiene allo spazio vettoriale generato da

Esercizio 1 (rango) In R 4 (R) si dica per quali valori reali di k il vettore v=(0,k-1,k-1,2) appartiene allo spazio vettoriale generato da Lezione 8 - Esercitazioni di Algebra e Geometria - Anno accademico 9- Esercizio (rango) In R 4 (R) si dica per quali valori reali di il vettore v(,-,-,) appartiene allo spazio vettoriale generato da ((,

Dettagli

CORSI DI LAUREA IN MATEMATICA E FISICA

CORSI DI LAUREA IN MATEMATICA E FISICA CORSI DI LAUREA IN MATEMATICA E FISICA FOGLIO DI ESERCIZI # 6 GEOMETRIA 1 Esercizio 6.1 (Esercizio 5.1). Scrivere un vettore w R 3 linearmente dipendente dal vettore v ( 1, 9, 0). Per esempio il vettore

Dettagli

Capitolo 5 Applicazioni lineari Esercizi svolti Tutorato di geometria e algebra lineare. Marco Robutti

Capitolo 5 Applicazioni lineari Esercizi svolti Tutorato di geometria e algebra lineare. Marco Robutti Capitolo 5 Applicazioni lineari Esercizi svolti Tutorato di geometria e algebra lineare Marco Robutti 5 Ottobre 27 Introduzione Gli esercizi di questo capitolo riguardano i seguenti argomenti: Data un

Dettagli

Facoltà di Scienze. Appello A

Facoltà di Scienze. Appello A Facoltà di Scienze Appello -2-28-A SOLUZIONI Esercizio. Discutere e risolvere almeno 3 dei seguenti esercizi. Giustificare sempre le risposte, fornendo una dimostrazione nel caso l affermazione sia vera

Dettagli

Esame di GEOMETRIA 27 giugno ore 11

Esame di GEOMETRIA 27 giugno ore 11 Esame di GEOMETRIA 27 giugno 2011 - ore 11 Istruzioni: Scrivere cognome, nome, matricola in STAMPATELLO negli appositi spazi. Per ogni quiz nella prima parte, indicare l affermazione giudicata corretta

Dettagli

ESERCIZI MATEMATICA GENERALE - Canale III

ESERCIZI MATEMATICA GENERALE - Canale III ESERCIZI MATEMATICA GENERALE - Canale III Vettori Prof. A. Fabretti 1 A.A. 009/010 1 Dati in R i vettori v = (1,,, u = (,, 1 e w = (,, calcolare: a la combinazione lineare u + v + 4 w b il prodotto scalare

Dettagli

Elementi di Algebra Lineare Applicazioni lineari

Elementi di Algebra Lineare Applicazioni lineari Elementi di Algebra Lineare Applicazioni lineari Cristina Turrini UNIMI - 2015/2016 Cristina Turrini (UNIMI - 2015/2016) Elementi di Algebra Lineare 1 / 18 index Applicazioni lineari 1 Applicazioni lineari

Dettagli

SPAZI VETTORIALI CON PRODOTTO SCALARE A =

SPAZI VETTORIALI CON PRODOTTO SCALARE A = SPAZI VETTORIALI CON PRODOTTO SCALARE Esercizi Esercizio. Nello spazio euclideo standard (R 2,, ) sia data la matrice 2 3 A = 3 2 () Determinare una base rispetto alla quale A sia la matrice di un endomorfismo

Dettagli

Analisi dei dati corso integrato - Algebra lineare, e a b c 0. le soluzioni del sistema lineare omogeneo x d e f 2. a b c.

Analisi dei dati corso integrato - Algebra lineare, e a b c 0. le soluzioni del sistema lineare omogeneo x d e f 2. a b c. Analisi dei dati corso integrato - Algebra lineare 4.3.8 e 5.3.8-1 1. Nella lezione precedente abbiamo definito lo spazio nullo e lo spazio delle colonne di una matrice; ora definiamo lo spazio delle righe

Dettagli

0.1 Complemento diretto

0.1 Complemento diretto 1 0.1 Complemento diretto Dato U V, un complemento diretto di U é un sottospazio W V tale che U W = {0} U + W = V cioé la somma di U con il suo complemento diretto é diretta, e dá tutto lo spazio vettoriale

Dettagli

CORSO DI GEOMETRIA APPLICAZIONI LINEARI E MATRICI A.A. 2018/2019 PROF. VALENTINA BEORCHIA

CORSO DI GEOMETRIA APPLICAZIONI LINEARI E MATRICI A.A. 2018/2019 PROF. VALENTINA BEORCHIA CORSO DI GEOMETRIA APPLICAZIONI LINEARI E MATRICI AA 2018/2019 PROF VALENTINA BEORCHIA INDICE 1 Matrici associate a un applicazione lineare 1 2 Cambiamenti di base 4 3 Diagonalizzazione 6 1 MATRICI ASSOCIATE

Dettagli

1. Complemento ortogonale di un vettore non nullo Abbiamo visto che nel piano

1. Complemento ortogonale di un vettore non nullo Abbiamo visto che nel piano Geometria e Algebra (II), 11.12.12 1. Complemento ortogonale di un vettore non nullo Abbiamo visto che nel piano P O i vettori ortogonali ad un dato vettore non nullo descrivono una retta per O, e nello

Dettagli

Algebra lineare e geometria AA Soluzioni della simulazione

Algebra lineare e geometria AA Soluzioni della simulazione Algebra lineare e geometria AA. 2018-2019 Soluzioni della simulazione QUIZ Q1. Sia A R nn una matrice che ammette l autovalore λ 0 con molteplicità algebrica k. Quale delle seguenti affermazioni è vera?

Dettagli

Parte I. Algebra lineare teorica

Parte I. Algebra lineare teorica Parte I Algebra lineare teorica 1 1 Gli spazi vettoriali 11 Definizione ed esempi Consideriamo come esempio di riferimento lo spazio R n, n 1, ossia l insieme delle n uple di numeri reali con n fissato

Dettagli

Applicazioni lineari e diagonalizzazione. Esercizi svolti

Applicazioni lineari e diagonalizzazione. Esercizi svolti . Applicazioni lineari Esercizi svolti. Si consideri l applicazione f : K -> K definita da f(x,y) = x + y e si stabilisca se è lineare. Non è lineare. Possibile verifica: f(,) = 4; f(,4) = 6; quindi f(,4)

Dettagli

Applicazioni lineari e diagonalizzazione

Applicazioni lineari e diagonalizzazione Autovalori e autovettori Matrici associate a applicazioni lineari Endomorfismi semplici e matrici diagonalizzabili Prodotti scalari e Teorema Spettrale nel caso generale 2 2006 Politecnico di Torino 1

Dettagli

a + 2b + c 3d = 0, a + c d = 0 c d

a + 2b + c 3d = 0, a + c d = 0 c d SPAZI VETTORIALI 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x,

Dettagli

ALGEBRA LINEARE E GEOMETRIA

ALGEBRA LINEARE E GEOMETRIA ALGEBRA LINEARE E GEOMETRIA A 28 giugno 2017 60 minuti Istruzioni: Scrivere cognome, nome, matricola in STAMPATELLO negli appositi spazi. Per ogni quiz nella prima parte, indicare l affermazione giudicata

Dettagli

Esercizi su applicazioni lineari. Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V,W,U spazi vettoriali su K.

Esercizi su applicazioni lineari. Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V,W,U spazi vettoriali su K. Esercizi su applicazioni lineari Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V,W,U spazi vettoriali su K. 1. Cose da ricordare Definizione 1.1. Una funzione f : V W si

Dettagli

ESEMPIO DI SISTEMA LINEARE CON SOLUZIONE. Esercizio Si consideri il sistema di equazioni lineari dipendente da un parametro λ R:

ESEMPIO DI SISTEMA LINEARE CON SOLUZIONE. Esercizio Si consideri il sistema di equazioni lineari dipendente da un parametro λ R: ESEMPIO DI SISTEMA LINEARE CON SOLUZIONE Esercizio Si consideri il sistema di equazioni lineari dipendente da un parametro λ R: x 1 + x = 0 6x 1 + (λ + )x + x 3 + x 4 = 1 x 1 4x + (λ + 1)x 3 + 6x 4 = 3

Dettagli

Algebra lineare. {ax 2 + bx + c R 2 [x] : 2a + 3b = 1} a b c d. M(2, 2) : a + c + d = 2. a b. c d

Algebra lineare. {ax 2 + bx + c R 2 [x] : 2a + 3b = 1} a b c d. M(2, 2) : a + c + d = 2. a b. c d Algebra lineare 1. Riconoscere se il seguente insieme costituisce uno spazio vettoriale. In caso affermativo trovarne la dimensione e una base. (R n [x] denota lo spazio dei polinomi nell indeterminata

Dettagli

SPAZI VETTORIALI. Esercizi Esercizio 1. Sia V := R 3. Stabilire quale dei seguenti sottoinsiemi di V sono suoi sottospazi:

SPAZI VETTORIALI. Esercizi Esercizio 1. Sia V := R 3. Stabilire quale dei seguenti sottoinsiemi di V sono suoi sottospazi: SPAZI VETTORIALI Esercizi Esercizio. Sia V := R 3. Stabilire quale dei seguenti sottoinsiemi di V sono suoi sottospazi: V := { (a, a, a) V a R }, V 2 := { (a, b, a) V a, b R }, V 3 := { (a, 2a, a + b)

Dettagli

T (a) La matrice associata alla trasformazione lineare T rispetto alle basi canoniche è semplicementre A = 1 1 5

T (a) La matrice associata alla trasformazione lineare T rispetto alle basi canoniche è semplicementre A = 1 1 5 8 Analogamente, T 0 = 6 4 5 4 2. (a) La matrice associata alla trasformazione lineare T rispetto alle basi canoniche è semplicementre 4 A = 5 C AB = 4 cioé la matrice dei coefficienti delle espressioni

Dettagli

[Si può fare una dimostrazione valida per ogni scelta di u, che sfrutti solo la linearità del prodotto scalare]

[Si può fare una dimostrazione valida per ogni scelta di u, che sfrutti solo la linearità del prodotto scalare] Università di Bergamo Anno accademico 20182019 Primo anno di Ingegneria Foglio 7 Geometria e Algebra Lineare Sottospazi, basi e dimensione Esercizio 7.1. Sia u = (1, 1, 1) e si consideri il sottoinsieme

Dettagli

Applicazioni lineari tra spazi euclidei. Cambi di base.

Applicazioni lineari tra spazi euclidei. Cambi di base. pplicazioni lineari tra spazi euclidei. Cambi di base. Esercizio. Data la seguente applicazione lineare f : R R : f(x, y, z) = (x z, x + y, y + z), scrivere la matrice B, rappresentativa di f rispetto

Dettagli

A = e 1 = e 2 + e 3, e 2 = e 1 + e 3, e 3 = e 1, ; e 3 =

A = e 1 = e 2 + e 3, e 2 = e 1 + e 3, e 3 = e 1, ; e 3 = aa -6 Soluzioni Esercizi Applicazioni lineari Sia data l applicazione lineare F : R R, F X A X, dove A i Sia {e, e, e } la base canonica di R Far vedere che i vettori e e + e, e e + e, e e, formano una

Dettagli

Note di Matematica Generale Elementi di Teoria degli Spazi Vettoriali. Roberto Monte

Note di Matematica Generale Elementi di Teoria degli Spazi Vettoriali. Roberto Monte Note di Matematica Generale Elementi di Teoria degli Spazi Vettoriali Roberto Monte December 5, 23 Abstract These notes are still a work in progress and are intended to be for internal use. Please, don

Dettagli