Gates CMOS in cascata

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Gates CMOS in cascata"

Transcript

1 Gaes MOS n cascaa Obevo Sudo del mnmo rardo d roagazone: Numero d sage fssao Numero d sage omo

2 Esemo 1 due nveror n cascaa Inv1 Inv2 S=W/L αs uαs V V Vo us L L/=ρ I: = n(inv2) = u Dmensonameno del Transsor V (u) V I Vo B L = u = ρ L due sage n cascaa: = = u + u mnmzzazone del rardo d roagazone: u = ρ 1 = 2 = ρ = 2 ρ = 2 l ρ

3 Esemo = 2 l Due sage sono ù veloc d uno se: ρ > 2 l l > 4 Dmensonameno de ercors Logc er mglorare la velocà La caacà d nu d un ercorso logco è vncolaa La logca deve gudare anche l dmensonameno della caacà Esemo: l carco della LU n un mcrorocessore Inel è 0.5F ome dmensonare l daaah d un LU er oenere la massma velocà? bbamo gà rsolo queso er la caena d nveror ssamo generalzzare er ogn d logca?

4 Rardo n un Gae logco Rardo d Gae: d = h + effor delay Rardo nrnseco Effor delay: h = g f logcal Fanou effevo = ou / n effor Logcal effor è funzone della ologa ed è ndendene dal dmensonameno Il fanou effevo è funzone del carco e dmensonameno del gae Logcal Effor: defnzone L nverore ha mnor logcal effor e nrnsc delay d u gae MOS sac Il Logcal effor d un gae è l raro ra la sua caacà d ngresso e la caacà dell nverore quando è dmensonao er erogare la sessa correne Il Logcal effor aumena all aumenare della comlessà del gae

5 Logcal Effor: esem Logcal effor è l raro ra la caacà d ngresso d un gae e la aacà d ngresso d un nverore con la sessa correne d ouu V DD 2 V DD 2 2 B un = 3 F B B 2 B g = 1 g = 4/3 g = 5/3 F un = 4 B B V DD B 1 Inverer 2-nu NND 2-nu NOR B B 1 un = 5 F + B Logcal Effor: nerreazone Normalzed delay (d) NND g = 4/3 = 2 d = (4/3)h+2 INV g = 1 = 1 d = h+1 F(Fan-n) Fan-ou (h)

6 Logcal Effor er gae FMOS From Suherland, Sroull Branchng Effor Branchng effor: on ah + off ah b = on ah

7 Mulsage Neworks Delay = Sage effor: h = b g f N ( + b g f ) = 1 Pah delay D = Σd = Σ + Σh Pah elecrcal effor: F = ou / n Pah logcal effor: G = g 1 g 2 g N Branchng effor: B = b 1 b 2 b N Pah effor: H = GFB Meodo del Logcal Effor 1 Pres N, F, er ogn sado g e b G 2 calcolao h come: h = N F g b B 3 arendo dall ouu al nu s calcola +1 / alcando la formula f = h g b Quando lo sage effor h è lo sesso er u gl sage, l rardo è mnmo

8 Esemo: Percorso Omo g = 1 f = a 1 a b c g = 5/3 f = b/a Fanou effevo, F = 5 G = 25/9 H = 125/9 = 13.9 h = 1.93 a = 1.93 b = ha/g 2 = 2.23 c = hb/g 3 = 5g 4 /f = 2.59 g = 5/3 f = c/b L 5 g = 1 f = 5/c Esemo 8-nu ND

9 Sommaro Suherland, Sroull Harrs Numero omo d sages: buffer Perché un buffer - fl lungh d nerconnessone - ch nerfaces

10 h nerface: un esemo PD L PIN o Penum (7 buffer) L = ( ) nh o = ( ) F = ( ) F Fl lungh d nerconnessone

11 Sngola caacà d nerconnessone aacà oale d nerconnessone

12 Esemo: 2 sad nveror = 20 f F = F = 2 = 1000 = 64 = 0.4ns = 26ns Tro alo! Mulle sage Buffer V u u u V1 2 u N-1 V2 Vo N V G 1 2 N-1 L 1 2 = u L = u N 1 2 = u = u n N n N 1 n = u + K = u + +K u = N u

13 Inveror MOS n cascaa L Mnmzzando : = N u = u N N u o o = = = e ln( e L ln( ) L ) Rardo d Proagazone vs dmensonameno del faore u X Inv 2 Inv N Inv

14 Esemo MOS 1µm; =10fF; 0.2ns L=20F X= sad crca 4ns Sado Wn(µm) W(µm) Numero Omo d Sage Per una daa carca, e una daa caacà n nu del rmo gae Trovare l numero omo d sage e l dmensonameno omo 1/ N D = NH + N D N = H 1/ N nv 1/ N 1/ N ln( H ) + H + = 0 nv Sosure bes sage effor h = H 1/ Nˆ

15 Meodo del Logcal Effor Quando l numero d sage è non noo» alcolare l ah effor: F = GBH» Trovare l mglor numero d sage N ~ log 4 F» alcolare he sage effor f = F 1/N» Defnre l ercorso con queso numero d sage» Procedere uno er uno rovando le dmenson:» n = ou *g/f Tr-Sae MOS Buffer Eleronca Eleronca D, LB nno.. ccademco ascadng MOS

T R I BU N A L E D I T R E V IS O A Z I E N D A LE. Pr e me s so

T R I BU N A L E D I T R E V IS O A Z I E N D A LE. Pr e me s so 1 T R I BU N A L E D I T R E V IS O BA N D O P E R L A C E S S IO N E C O M P E TI TI V A D EL C O M P E N D I O A Z I E N D A LE D E L C O N C O R D A T O PR EV E N T I V O F 5 Sr l i n l i q u i da z

Dettagli

funzione: trasformare un segnale ottico in un segnale elettrico;

funzione: trasformare un segnale ottico in un segnale elettrico; Foorivelaori (a semiconduore) funzione: rasformare un segnale oico in un segnale elerico; ipi: fooconduori; foodiodi (pn, pin, a valanga...) caraerisiche: modo di funzionameno; larghezza di banda; sensibilià;

Dettagli

A.A. 2016/17 Graduatoria corso di laurea magistrale a ciclo unico in Giurisprudenza

A.A. 2016/17 Graduatoria corso di laurea magistrale a ciclo unico in Giurisprudenza 1 12/03/1997 I.M. 33,03 Idoneo ammesso/a 2 11/06/1997 B.F. 33,01 Idoneo ammesso/a 3 02/02/1998 T.A. 32,75 Idoneo ammesso/a 4 09/04/1997 B.M. 32,75 Idoneo ammesso/a 5 05/03/1998 M.S. 32,74 Idoneo ammesso/a

Dettagli

Elementi di matematica finanziaria

Elementi di matematica finanziaria APPENDICE ATEATICA Elemen d maemaca fnanzara. Il regme dell neresse semplce L neresse è l fruo reso dall nvesmeno del capale. Nel corso dell esposzone s farà rfermeno a due regm o pologe d calcolo dell

Dettagli

Istruzioni. verrà richiesto..

Istruzioni. verrà richiesto.. Istruzioni Soluzioni Gestionali per l Impresa Siamo lieti di illustrarvi il Sito di Supporto di Albalog s.r.l. che Vi permetterà di inoltrare in modo piu' veloce le richieste di assistenza, di avere una

Dettagli

V AK. Fig.1 Caratteristica del Diodo

V AK. Fig.1 Caratteristica del Diodo 1 Raddrizzaore - Generalià I circuii raddrizzaori uilizzano componeni come i Diodi che presenano la caraerisica di unidirezionalià, cioè permeono il passaggio della correne solo in un verso. In figura

Dettagli

CAPITOLO PRIMO LEGGI E REGIMI FINANZIARI 1. LEGGI FINANZIARIE

CAPITOLO PRIMO LEGGI E REGIMI FINANZIARI 1. LEGGI FINANZIARIE CAPITOLO PRIMO LEGGI E REGIMI FINANZIARI SOMMARIO:. Legg fnanzare. - 2. Regme fnanzaro dell neresse semplce e dello scono razonale. - 3. Regme fnanzaro dell neresse e dello scono composo. - 4. Tass equvalen.

Dettagli

Risultati simulazione test di accesso per l ammissione al corso di Laurea in Professioni Sanitarie

Risultati simulazione test di accesso per l ammissione al corso di Laurea in Professioni Sanitarie 81032GV 42,00 80207OG 39,75 82663RA 39,25 81026IF 38,75 80173GN 38,50 82400LS 38,50 83014FG 38,50 82402TR 38,25 81024CF 37,75 80329DG 37,50 82335GA 37,50 83099LG 37,50 82462GM 37,50 80360BS 37,25 82626DP

Dettagli

Algoritmo di Carlier- Pinson per problemi di Job Shop Scheduling: un esempio

Algoritmo di Carlier- Pinson per problemi di Job Shop Scheduling: un esempio Formulazone e Notazon Algortmo d Carler- Pnson er roblem d Job Sho Schedulng: un esemo Notazon o C M ( o r, q -esma oerazone del ob Temo d rocessamento d o Macchna che deve rocessare o Clque (nseme d oerazon

Dettagli

icard Virtual POS Servizio di accettazione pagamenti online con carte di credito e debito MasterCard, VISA or JCB

icard Virtual POS Servizio di accettazione pagamenti online con carte di credito e debito MasterCard, VISA or JCB Card Vrtual POS Servzo d accettazone pagament onlne con carte d credto e debto MasterCard, VISA or JCB Supporta MasterCard SecureCode, Verfed by Vsa, J/Secure Supporta mult valuta e lngue dverse Funzon

Dettagli

Esercizi di Matematica Finanziaria

Esercizi di Matematica Finanziaria Esercizi di Maemaica Finanziaria Copyrigh SDA Bocconi Faori nanziari Classi care e rappresenare gra camene i segueni faori nanziari per : (a) = + ; 8 (b) = ( + ; ) (c) = (d) () = ; (e) () = ( + ; ) (f)

Dettagli

Elenco candidati preselezione - Comune di Padova-4

Elenco candidati preselezione - Comune di Padova-4 CONCORSO PUBBLICO, PER ESAMI, A TEMPO INDETERMINATO PER N. 28 POSTI DI EDUCATORE ASILO NIDO DI CUI N. 4 PART-TIME, CATEGORIA C ELENCO CANDIDATI CHE DEVONO SOSTENERE LA PRESELEZIONE IL GIORNO 1 AGOSTO 2019

Dettagli

ALLE ORE I CANDIDATI DOVRANNO PRESENTARSI NELL'AULA INDICATA MUNITI DI DOCUMENTO DI IDENTITA'

ALLE ORE I CANDIDATI DOVRANNO PRESENTARSI NELL'AULA INDICATA MUNITI DI DOCUMENTO DI IDENTITA' TEST DI INGRESSO 10 APRILE 2015 DISLOCAZIONE AULE (Test valido per: Giurisprudenza; Interfacce e Tecnologie della Comunicazione; Scienze e Tecniche di Psicologia Cognitiva; Servizio Sociale; Sociologia;

Dettagli

PROVINCIA DI VERONA RENDICONTO ESERCIZIO 2012 ELENCO DEI RESIDUI ATTIVI E PASSIVI DISTINTI PER ANNO DI PROVENIENZA

PROVINCIA DI VERONA RENDICONTO ESERCIZIO 2012 ELENCO DEI RESIDUI ATTIVI E PASSIVI DISTINTI PER ANNO DI PROVENIENZA PROVINCIA DI VERONA RENDICONTO ESERCIZIO 2012 ELENCO DEI RESIDUI ATTIVI E PASSIVI DISTINTI PER ANNO DI PROVENIENZA 1 2 RIEPILOGO GENERALE RESIDUI ATTIVI CONSERVATI 3 4 Pgm. CPA0099R ***-----------------------------------------------------------***

Dettagli

Soluzione degli esercizi del Capitolo 2

Soluzione degli esercizi del Capitolo 2 Sisemi di auomazione indusriale - C. Boniveno, L. Genili, A. Paoli 1 degli esercizi del Capiolo 2 dell Esercizio E2.1 Il faore di uilizzazione per i processi in esame è U = 8 16 + 12 48 + 6 24 = 1. L algorimo

Dettagli

VALORE EFFICACE DEL VOLTAGGIO

VALORE EFFICACE DEL VOLTAGGIO Fisica generale, a.a. /4 TUTOATO 8: ALO EFFC &CCUT N A.C. ALOE EFFCE DEL OLTAGGO 8.. La leura con un mulimero digiale del volaggio ai morsei di un generaore fornisce + in coninua e 5.5 in alernaa. Tra

Dettagli

Costo Dinamico Carburanti DFC. Gabriele Puccetti E CO RINNOVABILITALIA 2011 2013 tutti i diritti riservati

Costo Dinamico Carburanti DFC. Gabriele Puccetti E CO RINNOVABILITALIA 2011 2013 tutti i diritti riservati CDC Costo Dinamico Carburanti DFC DynamicFuel Cost Gabriele Puccetti E CO RINNOVABILITALIA 2011 2013 tutti i diritti riservati CDC (Costo Dinamico Carburanti) Con il progetto CDC si propone come creare

Dettagli

Risultati simulazione test di accesso per l ammissione ai corsi di Laurea Triennale in Ingegneria

Risultati simulazione test di accesso per l ammissione ai corsi di Laurea Triennale in Ingegneria per Area del Sapere I 80262EG 50,50 8,75 3,75 18,75 15,50 3,75 80275LM 39,75 8,50 6,25 1 1 4,00 83803RF 34,25 8,00 13,25 9,50 3,50 82832VA 30,25 80264LN 25,75 80259ZA 25,00 9,25 7,75 1 3,25 8,50 1 5,25

Dettagli

Lezione 3 Controllo delle scorte. Simulazione della dinamica di un magazzino

Lezione 3 Controllo delle scorte. Simulazione della dinamica di un magazzino Lezione 3 Conollo delle scoe Simulazione della dinamica di un magazzino Conollo delle scoe ovveo gesione magazzini significa conollo degli aovvigionameni (aivi), a fone di acquisi; conollo della oduzione

Dettagli

LEZIONE 3 INDICATORI DELLE PRINCIPALI VARIABILI MACROECONOMICHE. Argomenti trattati: definizione e misurazione delle seguenti variabili macroecomiche

LEZIONE 3 INDICATORI DELLE PRINCIPALI VARIABILI MACROECONOMICHE. Argomenti trattati: definizione e misurazione delle seguenti variabili macroecomiche LEZIONE 3 INDICATORI DELLE RINCIALI VARIABILI MACROECONOMICHE Argomeni raai: definizione e misurazione delle segueni variabili macroecomiche Livello generale dei prezzi, Tasso d inflazione, π IL nominale,

Dettagli

ALL. 1 - GRADUATORIA DEFINITIVA

ALL. 1 - GRADUATORIA DEFINITIVA ALLEGATO 1 GRADUATORIA ASSEGNAZIONE CONTRIBUTI ALLE FAMIGLIE (VOUCHER) A PARZIALE COPERTURA DEL COSTO DI FREQUENZA ATTIVITA' ESTIVE 2019 (ALLEGATO 1) N. INIZIALI GENITORE INIZIALI FIGLIO/A NUMERO PROT.

Dettagli

Modelli di Ricerca Operativa per il Lot Sizing

Modelli di Ricerca Operativa per il Lot Sizing Modelli di Ricerca Oeraiva er il Lo Sizing Corso di Modelli di Sisemi di Produzione I Sommario Inroduzione La gesione delle score (Problema e modelli) Parameri Fondamenali (cosi di e soccaggio) Aroccio

Dettagli

Tracciato ecofee 25 - Righe

Tracciato ecofee 25 - Righe 3FF 10025 RAEE 2,750 ECOLAMP NV NON VISIBILE 00000 00000000 0000000 022 3FF 10026 RAEE 4,000 ECOLAMP NV NON VISIBILE 00000 00000000 0000000 022 3FF 10027 RAEE 4,750 ECOLAMP NV NON VISIBILE 00000 00000000

Dettagli

PROCESSI CASUALI. Segnali deterministici e casuali

PROCESSI CASUALI. Segnali deterministici e casuali POCESSI CASUALI POCESSI CASUALI Segnal deermnsc e casual Un segnale () s dce DEEMIISICO se è una funzone noa d, coè se, fssao un qualunque sane d empo o, l valore ( o ) assuno dal segnale è noo con esaezza

Dettagli

La retroazione negli amplificatori

La retroazione negli amplificatori La retroazone negl amplfcator P etroazonare un amplfcatore () sgnfca sottrarre (o sommare) al segnale d ngresso (S ) l segnale d retroazone (S r ) ottenuto dal segnale d uscta (S u ) medante un quadrpolo

Dettagli

Test ammissione CdL in Economia aziendale ed Economia e commercio GRADUATORIA GENERALE

Test ammissione CdL in Economia aziendale ed Economia e commercio GRADUATORIA GENERALE GRADUATORIA INIZIALI COG E 741 BM 24/10/1997 1 83,125 29,00 37,50 737 RG 14/11/1997 2 81,250 24,00 41,00 471 AN 14/01/1998 3 80,625 25,00 39,50 893 GF 27/09/1997 4 80,000 23,50 40,50 579 DL 22/03/1997

Dettagli

Circuiti statici, dinamici e circuiti sequenziali. Esercizio A 15/07/2007

Circuiti statici, dinamici e circuiti sequenziali. Esercizio A 15/07/2007 ircuiti statici, dinamici e circuiti sequenziali. Esercizio A 15/07/007 Il circuito di figura è statico o dinamico? Illustrare la funzione del transistore TR Il transistor TR ha il compito di mantenere

Dettagli

LA COMPATIBILITA tra due misure:

LA COMPATIBILITA tra due misure: LA COMPATIBILITA tra due msure: 0.4 Due msure, supposte affette da error casual, s dcono tra loro compatbl quando la loro dfferenza può essere rcondotta ad una pura fluttuazone statstca attorno al valore

Dettagli

Esempi di canali DMC ed esercizi su: 1) Calcolo della capacità di canale. 2) Calcolo della probabilità di errore

Esempi di canali DMC ed esercizi su: 1) Calcolo della capacità di canale. 2) Calcolo della probabilità di errore Argoment della Lezone Esem d canal DMC ed esercz su: Calcolo della caactà d canale Calcolo della robabltà d errore 3 Verca della dsuguaglanza d Fano Eserczo Sa data una sorgente bnara con smbol ed avent

Dettagli

A.A. 2014/2015 Graduatoria ammessi al corso di laurea magistrale a ciclo unico in Giurisprudenza.

A.A. 2014/2015 Graduatoria ammessi al corso di laurea magistrale a ciclo unico in Giurisprudenza. 1 O.N. RLCNCL94T15L424H 15/12/1994 85,14 Idoneo Ammesso 2 L.L. LNELCU95A18D542E 18/01/1995 78,15 Idoneo Ammesso 3 M.P. MNNPTR95M02C351E 02/08/1995 75,83 Idoneo Ammesso 4 M.S. MNSSRA95L49G535D 09/07/1995

Dettagli

Il condensatore. Carica del condensatore: tempo caratteristico

Il condensatore. Carica del condensatore: tempo caratteristico Il condensaore IASSUNTO: apacia ondensaori a geomeria piana, cilindrica, sferica La cosane dielerica ε r ondensaore ceramico, a cara, eleroliico Il condensaore come elemeno di circuio: ondensaori in serie

Dettagli

CITTÀ DI IMOLA MEDAGLIA D'ORO AL VALOR MILITARE PER ATTIVITA' PARTIGIANA

CITTÀ DI IMOLA MEDAGLIA D'ORO AL VALOR MILITARE PER ATTIVITA' PARTIGIANA Inf.Com. Campanella 1 P.L. Domanda/ricev.N.22080 08/07/2016 Fratelli e Stradario - 95 2 G.G. Domanda/ricev.N.22157 16/05/2016 Fratelli e Stradario - 65 3 B.A. Domanda/ricev.N.22162 23/11/2016 Fratelli

Dettagli

IL DIMENSIONAMENTO DEGLI IMPIANTI IDROSANITARI Vasi d espansione e accumuli

IL DIMENSIONAMENTO DEGLI IMPIANTI IDROSANITARI Vasi d espansione e accumuli FOCUS TECNICO IL DIMENSIONAMENTO DEGLI IMIANTI IDROSANITARI asi d espansione e accumuli RODUZIONE DI ACQUA CALDA SANITARIA Due sono i sisemi normalmene uilizzai per produrre acqua calda saniaria: quello

Dettagli

Risultati simulazione test di accesso per l ammissione al corso di Laurea in Economia

Risultati simulazione test di accesso per l ammissione al corso di Laurea in Economia per Area del Sapere 82720AE 52,00 83738DS 50,00 80966MM 49,00 83737PA 47,75 82866GG 47,50 80724CG 46,75 82972PG 46,75 82612SS 45,00 83377SS 45,00 82722GG 44,75 83739GV 44,75 82318LG 44,25 83361LD 44,25

Dettagli

3. Esercitazioni di Teoria delle code

3. Esercitazioni di Teoria delle code 3. Eserctazon d Teora delle code Poltecnco d Torno Pagna d 33 Prevsone degl effett d una decsone S ndvduano due tpologe d problem: statc: l problema non vara nel breve perodo dnamc: l problema vara Come

Dettagli

AF 1 RITIRATO 26,1 26 2A AL 1 18,2 RITIRATO 25,7 26 3A AL 1 30,2 30 2A AL 0 RITIRATO 23,7 24 5A

AF 1 RITIRATO 26,1 26 2A AL 1 18,2 RITIRATO 25,7 26 3A AL 1 30,2 30 2A AL 0 RITIRATO 23,7 24 5A 1 10538950 AB 1 18 22,1 22 2A 2 10425074 AB 0 3 10561116 AB 0 RITIRATO 4 10498984 AC 0 5 10574752 AF 1 RITIRATO 26,1 26 2A 6 10568818 AL 1 7 10503657 AL 1 18,2 RITIRATO 25,7 26 3A 8 10521184 AL 0 9 10539026

Dettagli

B A N D O D I G A R A D A P P A L T O D I L A V O R I

B A N D O D I G A R A D A P P A L T O D I L A V O R I B A N D O D I G A R A D A P P A L T O D I L A V O R I S E Z I O N E I ) : A M M I N I ST R A Z I O N E A G G I U D I C A T R I C E I. 1 ) D e n o m i n a z i o ne, i n d ir i z z i e p u n t i d i c o

Dettagli

IL RUMORE NEGLI AMPLIFICATORI

IL RUMORE NEGLI AMPLIFICATORI IL RUMORE EGLI AMPLIICATORI Defnzon S defnsce rumore elettrco (electrcal nose) l'effetto delle fluttuazon d corrente e/o d tensone sempre present a termnal degl element crcutal e de dspostv elettronc.

Dettagli

Soluzione esercizio Mountbatten

Soluzione esercizio Mountbatten Soluzone eserczo Mountbatten I dat fornt nel testo fanno desumere che la Mountbatten utlzz un sstema d Actvty Based Costng. 1. Calcolo del costo peno ndustrale de tre prodott Per calcolare l costo peno

Dettagli

Lezione 10. (BAG cap. 9) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia

Lezione 10. (BAG cap. 9) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia Lezione 10 (BAG cap. 9) Il asso naurale di disoccupazione e la curva di Phillips Corso di Macroeconomia Prof. Guido Ascari, Universià di Pavia In queso capiolo Inrodurremo uno degli oggei più conosciui

Dettagli

La programmazione aggregata nella supply chain. La programmazione aggregata nella supply chain 1

La programmazione aggregata nella supply chain. La programmazione aggregata nella supply chain 1 La programmazione aggregaa nella supply chain La programmazione aggregaa nella supply chain 1 Linea guida Il ruolo della programmazione aggregaa nella supply chain Il problema della programmazione aggregaa

Dettagli

Esercizio 1 ( es 1 lez 11) La matrice è diagonalizzabile: verificare, trovando la matrice diagonalizzante, che A è simile a A.

Esercizio 1 ( es 1 lez 11) La matrice è diagonalizzabile: verificare, trovando la matrice diagonalizzante, che A è simile a A. Eserciio ( es le La marice è diagonaliabile: verificare, rovando la marice diagonaliane, che è simile a. Esisono re auovalori: mol.alg(- dim V - ; mol.alg( dim V ; mol.alg(- dim V -. Esise una marice simile

Dettagli

Struttura dei tassi per scadenza

Struttura dei tassi per scadenza Sruura dei assi per scadenza /45-Unià 7. Definizione del modello ramie gli -coupon bonds preseni sul mercao Ipoesi di parenza Sul mercao sono preseni all isane ZCB che scadono fra,2,,n periodi Periodo:

Dettagli

Modelli descrittivi, statistica e simulazione

Modelli descrittivi, statistica e simulazione Modell descrttv, statstca e smulazone Master per Smart Logstcs specalst Roberto Cordone ([email protected]) Statstca descrttva Cernusco S.N., govedì 28 gennao 2016 (9.00/13.00) 1 / 15 Indc d poszone

Dettagli

gestion e ripresen tate nuovo Regola mento IPT tutela venditor e nuovo Regola mento IPT succes sione ereditar ia agevol azioni disabil i

gestion e ripresen tate nuovo Regola mento IPT tutela venditor e nuovo Regola mento IPT succes sione ereditar ia agevol azioni disabil i Provincia % maggiora zione tasso interesse modico valore 2688 cc.nuo vo tutela venditor e nuovo gestion e ripresen tate nuovo agevol azioni disabil i succes sione ereditar ia atti societ ari veicoli ecocompati

Dettagli

Cose della vita . =90 & Q Q Q \ \ Q \ \ . -# D % Q Q & Q Q Q.# ..# % Q Q Q -. Q -. D 15 & Q Q Q! Q D E ..#. ... D E. medium pop INTRO E 2.

Cose della vita . =90 & Q Q Q \ \ Q \ \ . -# D % Q Q & Q Q Q.# ..# % Q Q Q -. Q -. D 15 & Q Q Q! Q D E ..#. ... D E. medium pop INTRO E 2. eu pop 1 & Q Q Q \ \ & Q Q Q \ \ =90 2 NTRO 3 4 ose del va eros raazzot & na tuner 5 6 7 8 9 Q \ \ Q \ \ Q Q 10 ST arrangeent: WLO STRONKS aggio 2010 VRS 1 Q # # doė!! # # 11 Q & Q Q Q #! & Q Q Q! # Q

Dettagli

Macchine. 5 Esercitazione 5

Macchine. 5 Esercitazione 5 ESERCITAZIONE 5 Lavoro nterno d una turbomacchna. Il lavoro nterno massco d una turbomacchna può essere determnato not trangol d veloctà che s realzzano all'ngresso e all'uscta della macchna stessa. Infatt

Dettagli

MACROECONOMIA A.A. 2014/2015

MACROECONOMIA A.A. 2014/2015 MACROECONOMIA A.A. 2014/2015 ESERCITAZIONE 2 MERCATO MONETARIO E MODELLO /LM ESERCIZIO 1 A) Un economa sta attraversando un perodo d profonda crs economca. Le banche decdono d aumentare la quota d depost

Dettagli

Esame Elettronica T-1 Prof. Elena Gnani 19/09/2014

Esame Elettronica T-1 Prof. Elena Gnani 19/09/2014 Esercizio : Con riferimento al circuito illustrato in Fig. e ai valori assegnati dei parametri si risponda ai seguenti quesiti: Parametri del problema V DD=V; n=00 A/V ; p=00 A/V ; V TN=0.5V; V TP=-0.5V;

Dettagli

16/17 maggio CONCORSO DI POESIA III Edizione Anno Scolastico Istituto Comprensivo NASI Moncalieri Voglio la luna...

16/17 maggio CONCORSO DI POESIA III Edizione Anno Scolastico Istituto Comprensivo NASI Moncalieri Voglio la luna... N D PE Ez 2015-2016 N M V EZNE 2: P fz NE 1: EZ P f 1B H z f PN P GN D LE f U z P f f U à à U M z f E DEDE D T FL V f f fò q V é à z : fò q z f è z E H f PN FNT D E f è q q PLN H f Tz LUN M ù L ù f M ù

Dettagli

ESCRIZIONE DELLA PROPOSTA

ESCRIZIONE DELLA PROPOSTA -2015 ESCRIZIONE DELLA PROPOSTA LABORATORI PER LE SCUOLE PROPOSTE DI LABORATORI ARTISTICI, ESPRESSIVI ED ESPERIENZIALI RIVOLTI AI BAMBINI DELLA SCUOLA SECONDARIA DI PRIMO GRADO, DELLA PRIMARIA E DELL INFANZIA

Dettagli

ID_PRATIC C A OGN N OM OME

ID_PRATIC C A OGN N OM OME 1 1188866 MV 2171 86,20 1 2 1190598 AV 2171 82,10 1 3 1188568 BC 2171 79,80 1 4 1191133 NP 2171 79,40 1 5 1192227 PR 2171 78,70 1 6 1188924 SA 2171 77,90 1 7 1175747 MG 2171 77,60 1 8 1191497 ZF 2171 76,80

Dettagli

ATTREZZATURE A TEMPERATURA POSITIVA

ATTREZZATURE A TEMPERATURA POSITIVA ANUGA COLONIA 05-09 OTTOBRE 2013 Ragione Sociale Inviare a : all'attenzione di : Padiglione Koelnmesse Srl Giulia Falchetti/Alessandra Cola Viale Sarca 336 F tel. 02/86961336 Stand 20126 Milano fax 02/89095134

Dettagli

Allocazione Statica. n i

Allocazione Statica. n i Esercazon d Sse Inegra d Produzone Allocazone Saca I eod asa sull'allocazone saca scheazzano l processo d assegnazone delle rsorse alle par consderandolo da un lao ndpendene dal epo e rascurando dall'alro

Dettagli

Prova di verifica n.0 Elettronica I (26/2/2015)

Prova di verifica n.0 Elettronica I (26/2/2015) Proa d erfca n.0 lettronca I (26/2/2015) OUT he hfe + L OUT - Fgura 1 Con rfermento alla rete elettrca d Fg.1, determnare: OUT / OUT / la resstenza sta dal generatore ( V ) la resstenza sta dall uscta

Dettagli

Programmazione e Controllo della Produzione. Analisi dei flussi

Programmazione e Controllo della Produzione. Analisi dei flussi Programmazone e Controllo della Produzone Anals de fluss Clent SERVIZIO Uscta Quanto al massmo produce l mo sstema produttvo? Quanto al massmo produce la ma macchna? Lo rsolvo con la smulazone? Sarebbe

Dettagli

Sviluppare una metodologia di analisi per valutare la convenienza economica di un nuovo investimento, tenendo conto di alcuni fattori rilevanti:

Sviluppare una metodologia di analisi per valutare la convenienza economica di un nuovo investimento, tenendo conto di alcuni fattori rilevanti: Analisi degli Invesimeni Obieivo: Sviluppare una meodologia di analisi per valuare la convenienza economica di un nuovo invesimeno, enendo cono di alcuni faori rilevani: 1. Dimensione emporale. 2. Grado

Dettagli

Localizzare gli oggetti

Localizzare gli oggetti NDC SUU 3^ UN FUNZN CUNCV : Chiedere e dire l'età, il mese e la stagione del compleanno Chiedere che colore è un elemento Chiedere qual è il giocattolo /colore preferito Saper dire cosa una persona ha

Dettagli

Trovare il dominio delle seguenti funzioni: sin2 x + cos 2 x. 3 sin x 3 cos x s sin 2 x cos

Trovare il dominio delle seguenti funzioni: sin2 x + cos 2 x. 3 sin x 3 cos x s sin 2 x cos Trovare il dominio delle seguenti funzioni: sin x + cos x sin x cos x s sin x cos x sin x cos x cos x cos x ln fln (x 4x 5) 4g r 4 x ln(x 4x 5) x log 1 (x 1) log 10 sin x 1 ln (x + 1) + e sin x sin x +

Dettagli

L ipotesi di rendimenti costanti di scala permette di scrivere la (1) in forma intensiva. Ponendo infatti c = 1/L, possiamo scrivere

L ipotesi di rendimenti costanti di scala permette di scrivere la (1) in forma intensiva. Ponendo infatti c = 1/L, possiamo scrivere DIPRTIMENTO DI SCIENZE POLITICHE Modello di Solow (1) 1 a. a. 2015-2016 ppuni dalle lezioni. Uso riservao Maurizio Zenezini Consideriamo un economia (chiusa e senza inerveno dello sao) in cui viene prodoo

Dettagli