LA RIGIDEZZA DELLE FUNI



Documenti analoghi
LA RETTA. Retta per l'origine, rette orizzontali e verticali

f(x) = 1 x. Il dominio di questa funzione è il sottoinsieme proprio di R dato da

Forze come grandezze vettoriali

RESISTENZA DEI MATERIALI TEST

La curva grafico della funzione, partendo dal punto A(a,f(a)), si snoda con continuità, senza interruzioni, fino ad approdare nel punto B(b,f(b)).

Guardiamo ora però la cosa da un altro punto di vista analizzando il seguente grafico a forma di torta. La torta in 5 parti

risulta (x) = 1 se x < 0.

Dimensionamento delle strutture

Macroeconomia, Esercitazione 2. 1 Esercizi. 1.1 Moneta/ Moneta/ Moneta/3. A cura di Giuseppe Gori (giuseppe.gori@unibo.

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI

Usando il pendolo reversibile di Kater

Applicazioni del calcolo differenziale allo studio delle funzioni

Inserimento di distanze e di angoli nella carta di Gauss

4 3 4 = 4 x x x 10 0 aaa

I ricavi ed i costi di produzione

x 2 + y2 4 = 1 x = cos(t), y = 2 sin(t), t [0, 2π] Al crescere di t l ellisse viene percorsa in senso antiorario.

MICROECONOMIA La teoria del consumo: Alcuni Arricchimenti. Enrico Saltari Università di Roma La Sapienza

GEOMETRIA DELLE MASSE

ELASTICITÀ. Sarebbe conveniente per il produttore aumentare ulteriormente il prezzo nella stessa misura del caso

FASCI DI RETTE. scrivere la retta in forma esplicita: 2y = 3x + 4 y = 3 2 x 2. scrivere l equazione del fascio di rette:

LEZIONI N 24 E 25 UNIONI SALDATE

Complementi di Termologia. I parte

Modulo 2. Domanda aggregata e livello di produzione

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/ Esercizi: lezione 24/11/2015

0 ) = lim. derivata destra di f in x 0. Analogamente, diremo che la funzione f è derivabile da sinistra in x 0 se esiste finito il limite

Transitori del primo ordine

LA MASSIMIZZAZIONE DEL PROFITTO ATTRAVERSO LA FISSAZIONE DEL PREZZO IN FUNZIONE DELLE QUANTITÀ

Corso di Macroeconomia. Il modello IS-LM. Appunti

Il concetto di valore medio in generale

Esercizi di Macroeconomia per il corso di Economia Politica

GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω

Fondamenti e didattica di Matematica Finanziaria

CONI, CILINDRI, SUPERFICI DI ROTAZIONE

Capitolo 13: L offerta dell impresa e il surplus del produttore

Esponenziali elogaritmi

APPUNTI SU PROBLEMI CON CALCOLO PERCENTUALE

Formule trigonometriche

I CIRCUITI ELETTRICI. Prima di tutto occorre mettersi d accordo anche sui nomi di alcune parti dei circuiti stessi.

Forza. Forza. Esempi di forze. Caratteristiche della forza. Forze fondamentali CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA

Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R

= variazione diviso valore iniziale, il tutto moltiplicato per 100. \ Esempio: PIL del 2000 = 500; PIL del 2001 = 520:

LA CORRENTE ELETTRICA CONTINUA

Considero 2x e sostituisco elemento del dominio con x, 2(-3)=6, oppure e il doppio?

I SISTEMI TRIFASI B B A N B B

b. Che cosa succede alla frazione di reddito nazionale che viene risparmiata?

Esercizi e considerazioni pratiche sulla legge di ohm e la potenza

PROPULSORE A FORZA CENTRIFUGA

Moto circolare uniforme

Esercitazione n 1: Circuiti di polarizzazione (1/2)

FISICA DELLA BICICLETTA

VERIFICA DELLE IPOTESI

Capitolo 4. Elasticità. Principi di economia (seconda edizione) Robert H. Frank, Ben S. Bernanke. Copyright The McGraw-Hill Companies, srl

13. Campi vettoriali

Vademecum studio funzione

Indice. 1 La disoccupazione di 6

Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012

Le equazioni. Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete.

DOMINIO E LIMITI. Esercizio 3 Studiare gli insiemi di livello della funzione f, nei seguenti casi: 1) f(x,y) = y2 x 2 + y 2.

Master della filiera cereagricola. Impresa e mercati. Facoltà di Agraria Università di Teramo. Giovanni Di Bartolomeo Stefano Papa

LE FUNZIONI A DUE VARIABILI

Statistica e biometria. D. Bertacchi. Variabili aleatorie. V.a. discrete e continue. La densità di una v.a. discreta. Esempi.

CONTINUITÀ E DERIVABILITÀ Esercizi risolti

Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale

Esercizi di Ricerca Operativa II

Esercizi su lineare indipendenza e generatori

Matematica e Statistica

Dipartimento di Economia Aziendale e Studi Giusprivatistici. Università degli Studi di Bari Aldo Moro. Corso di Macroeconomia 2014

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento

DINAMICA DEL PUNTO MATERIALE E CONCETTO DI FORZA. Dinamica: studio delle forze che causano il moto dei corpi

Statistiche campionarie


Capitolo 10 Z Elasticità della domanda

LA CORRENTE ELETTRICA

Funzioni. Funzioni /2

Dispense di Informatica per l ITG Valadier

Calcola l allungamento che subisce un tirante di acciaio lungo l=2,5m (a sez.circolare) con φ =20mm sottoposto ad un carico (in trazione) F=40.000N.

FAM. 1. Sistema composto da quattro PM come nella tabella seguente

F S V F? Soluzione. Durante la spinta, F S =ma (I legge di Newton) con m=40 Kg.

LABORATORIO DI MATEMATICA RENDITE, AMMORTAMENTI, LEASING CON EXCEL

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a)

Facoltà di Scienze Politiche Corso di Economia Politica. Esercitazione di Microeconomia sui capitoli 3 e 4

2 Argomenti introduttivi e generali

Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott.

10. Insiemi non misurabili secondo Lebesgue.

Matematica 1 - Corso di Laurea in Ingegneria Meccanica

Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ

4 Dispense di Matematica per il biennio dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore EQUAZIONI FRATTE E SISTEMI DI EQUAZIONI

Esercitazione #5 di Statistica. Test ed Intervalli di Confidenza (per una popolazione)

Seminario didattico Ingegneria Elettronica. Lezione 5: Dinamica del punto materiale Energia

INTEGRATORE E DERIVATORE REALI

Sulla monotonia delle funzioni reali di una variabile reale

Soluzione degli esercizi sul moto rettilineo uniformemente accelerato

Convertitori numerici in Excel

Probabilità discreta

11 Teorema dei lavori virtuali

Esercizi sul moto rettilineo uniformemente accelerato

Misure di base su una carta. Calcoli di distanze

UNA LEZIONE SUI NUMERI PRIMI: NASCE LA RITABELLA

Elettronica Analogica. Luxx Luca Carabetta. Nello studio dell elettronica analogica ci serviamo di alcune grandezze:

Indice di rischio globale

Transcript:

63 IN QUAL MODO SI POSSA DETERMINARE LA RIGIDEZZA DELLE FUNI applicando le teorie sulle deformazioni elastiche dei corpi solidi fibrosi. Memoria letta nella adunanza 20 gennaio 1868 I. Abbiasi una forza applicata, quale potenza, ad una fune, che si piega su di una puleggia, e sia dessa sul punto di sollevare un peso, che le resiste. Quella fune non troppo pieghevole, rimane per qualche tratto discosta dalla superficie cilindrica su cui trovasi avvolta; essa allontana il peso dall'asse di rotazione, accrescendone il momento rispetto a quell'asse; ed un aumento di potenza sarà necessario per renderla inflessa e farle assecondare la gola della puleggia. Questa forza addizionale, che si suppone agire tangenzialmente al cilindro su cui la fune si avvolge, ne vince e ne misura la rigidezza. Coulomb, che per primo occupossi della rigidità dei canapi, sperimentando in due modi diversi, n'ebbe i risultati concordi ; e da considerazioni di buon senso, anziché da vera teoria, ei fu indotto ad ammettere la rigidezza Z della fune espressa con due termini; costante l'uno e variabile l'altro in diretta proporzione colla forza che tende, amendue proporzionali direttamente ad una certa potenza μ del diametro d

64 l'ipotesi più non sussiste; il peso Q è troppo grande, l'elasticità della fune è troppo debole, il raggio della puleggia non è abbastanza piccolo, perché la fune possa rimanere a partire dal punto A completamente staccata dalla gola della puleggia; essa vi si accavalcierà per un certo tratto e converrà che io riprenda il calcolo in questa seconda ipotesi. Desidero però innanzi tutto cercare, se i due primi casi supposti debbano effettivamente venir considerati. Al diametro delle funi è sempre dai pratici proporzionato il diametro delle puleggie, non che la forza di trazione. Rimanendo in questi limiti nissuno certamente potrà supporre qualche fune di canape cotanto rigida da non potere per quanto piccolo sia il diametro della puleggia, assecondarne per breve tratto la gola. Per queste funi adunque non occorre certo dimostrare colla formula (4') improbabile l'ipotesi su cui questa si fonda, né veramente potrei farlo, avendo cercato invano nei Prontuarii il coefficiente di elasticità dei canapi. Ma per le funi in ferro la stessa conseguenza non è più così facilmente ammessa, mi è però possibile darne la prova scegliendo un caso pratico tra i più sfavorevoli. Le più grosse funi in fili di ferro che si fabbricano in Anzin da Harmegnies, Dumont e Comp. hanno 33 millimetri di diametro, e convengono per tensioni anche superiori a 4300 chilogrammi. Ed io ritengo d =mm. 33, riduco a soli 3000 chilogrammi il peso Q, assumo per valore di E i soliti 18,000 chilogrammi per millimetro quadrato; e sostituendo tali valori nella formula (4') troverei per diametro della puleggia, espresso in metri D = 0.836. 65 Siamo adunque abbastanza lungi dall'ipotesi fatta perché non possa darsi il bisogno di dovercene servire. E diffatti se l'esperienza ha dimostrato che l'aumento del diametro d'una puleggia diminuisce notevolmente l'effetto di rigidezza della fune, come potrà questa diminuzione succedere, se la puleggia non ha diametro tale da poter modificare la curva elastica della fune, e se questa non può appoggiarsi su quella? ne concludo che il diametro di una puleggia dovrà essere sempre notevolmente maggiore di quello dato dalla formula (4'), e sotto questo aspetto il più grande possibile. V. Tralascio l'ipotesi che la curva elastica della fune non abbia di comune colla puleggia altro punto che quello d'origine A, e suppongo invece che la curva AMQ (figura 2 a ) trovisi per un certo tratto A M appoggiata alla circonferenza di raggio 0A della puleggia, essendo l'angolo A O M =φ una nuova incognita del nostro problema. Il braccio di leva della forza Q rispetto al punto M sia l 1 quantità parimenti incognita ; ritengansi del resto tutte le altre denominazioni ed ipotesi del precedente problema. Conducasi la T T tangente alla circonferenza in M, e supposta rotta per un istante la fune in quella sezione, si sostituisca la forza T che faccia le veci del tratto AM; se in un subito cessasse l'azione della forza Q, e se con questa cessasse pure l'azione del peso della fune, essa si disporrebbe secondo la direzione rettilinea MT' giacché si suppone che la sua elasticità non sia stata alterata. Riferisco la curva M Q a due assi ortogonali Mx ed My di origine in M, orizzontale il primo, e verticale il secondo; ed avrò l'equazione differenziale di second'ordine della curva elastica : Un circolo di tal diametro sarebbe dunque osculatore alla curva elastica di quella fune nel punto A ; ma per corde metalliche, dicono i pratici, le puleggie non devono avere mai diametro minore di un metro; ed alcuni asseriscono perfino convenire alle puleggie un diametro eguale a duecento volte quello della stessa fune. che integro una prima volta (1) (2)

66 Osservando che per la sezione M si ha: si trova x =10 e z = tang. φ Cost. = sen. φ Sostituisco questo valore nella (2) e ricavo : 67 stessa della puleggia, ed in M i due tratti devono raccordarsi non solo, ma si ha di più per il punto M, ρ 0 == R; sostituendo questo valore nella (4) si ricaverà l'equazione finale, che determina l'incognita 0. Il valore di l 1 sarà parimenti determinato dalla Equazione (3) sostituendovi per (4') (1 sen.φ) Ancor qui suppongo che la fune sia sufficientemente prolungata, perché un suo tratto si confonda colla direzione stessa del peso Q ; ad x=l 1 corrisponderà z= ed ho così un'equazione determinatrice di l 1 cui ricavasi Rimane solo a conoscersi l'angolo φ ; perciò sostituisco questo valore di l 1 nell'equazione (1) facendovi ad un tempo z = 0 per considerare la sezione di origine M ed ho : (3) il suo valore dato dalla (4'), e verrà semplicemente espresso da Il problema è oramai risolto. Se L è il braccio di leva della forza Q rispetto all'asse di rotazione in 0, sarà L=l 1 + Rsen. φ ossia sostituendovi per sen. φ e per l 1 i valori testé trovati Per trovare a qual forza equivalga la rigidezza della fune, e volendosi che sia diretta tangenzialmente alla puleggia, pongo l'equazione di equilibrio (5) ossia (4) ossia FR = QL Ma pel tratto AM la curva della fune è per ipotesi quella

68 e quindi In questa espressione della rigidezza Z, comincio a sostituire per e il suo valore in funzione del diametro d della fune, ottenendo Il peso Q non supera mai il limite della elasticità non alterata, ed il tratto di fune, che va, deve quindi svolgendosi dalla puleggia rimanere nuovamente disteso; ad ogni diametro di fune corrisponde necessariamente un certo peso od almeno vi corrisponde un limite ; ed oltrepassarlo non è sempre possibile, non è mai prudente. L'allungamento proporzionale limite della fune, di cui si tratta, sia λ, e dicasi ω la sezione della fune, ed n un coefficiente di sicurezza, minore quindi dell'unità; occorrendo di dover sollevare un peso dato Q si dovrà sempre colla formula determinare quale sezione di fune può convenire a quella tensione; e se da questa equazione ricavasi il valore di E per sostituirlo nella (6) si potrà porre in evidenza nella e- spressione della rigidezza il valore della forza Q che implicitamente vi è contenuto. Ecco la formula che ne risulta od ancora, indicando se vuoisi con μ un coefficiente costante (6) 0) (7') 69 È questa finalmente l'espressione proposta per misurare la rigidezza d'una fune. VI. Non rimane più che a determinare il valore del coefficiente μ, e coll'appoggio delle esperienze che si conoscono provarlo costante per funi di eguale sostanza, d'una stessa struttura e soggette inoltre a sforzi proporzionali alla loro sezione. A tale scopo ricorro alla già citata tavola numerica del Morin che riassume i risultati sperimentali di Coulomb su canapi bianchi da 10 a 28 millimetri di diametro avvolgentisi su puleggie di 1 metro di diametro. La rigidezza della fune si calcola per mezzo di quella tavola colla seguente formula: sostituendo per A e per B i valori che corrispondono al diametro della fune di cui si tratta. Scelgo adunque nei limiti di quella tavola alcuni valori del diametro d comprendendovi il più piccolo ed il più grande, e sieno per esempio d=. metri 0.0110. 0.0155. 0.0200. 0.0283. Abbiano queste funi a trarre un peso proporzionato alla loro grossezza ed in cifre tonde Q = chilogr. 200. 500. 1000. 1500. Calcolandola coi coefficienti dati da Morin per caduna fune, troverei la rigidezza rispettivamente uguale a Z= chilogr. 0.68. 3.35. 11.12. 33.57. e cercando infine il valore del coefficiente μ. per caduna delle quattro funi, troverei i seguenti valori: μ = 27.9. 27.9. 27.8. 27.9. Ma invano cercherebbesi la stessa concordanza della formula empirica con quella proposta, qualora il diametro della

70 puleggia fosse molto diverso dall'unità, avendo Coulomb e Navier supposto che la rigidezza dovesse semplicemente variare in ragione inversa di quel diametro, anziché del suo quadrato, come dalla nuova espressione risulterebbe. Ecco però in qual modo stabilivasi ciò, che neppure da quelle poche esperienze si trovò confermato : supponevano l'aumento del braccio di leva della resistenza essere all'incirca lo stesso, qualunque fosse il raggio della puleggia su cui la fune si avvolge, e di qui ne traevano questa conseguenza: se nell'esprimere il lavoro della rigidità si ritiene, che lo spazio descritto dal suo punto d'applicazione sia un arco della circonferenza della puleggia, converrà dividere per il raggio di quella circonferenza l'espressione della forza affinchè quel lavoro riesca indipendente da questo raggio. Ma non è vero che il raggio della puleggia non possa esercitare influenza veruna su quel braccio di leva; dalla formula (5) ricavasi invece l'aumento di quel braccio essere variabile cioè in ragione inversa del raggio della puleggia. Se però si. avesse 71 Dalla formula (5') risulterebbe dunque la convenienza di aumentare fin che si può il diametro delle puleggie ; né più si potrebbe ammettere, come prima facevasi, che quel diametro non ha influenza sulla curva elastica, e quindi sul braccio di leva della resistenza. Converrebbe ad ogni modo ricorrere a nuove esperienze per meglio poter decidere la cosa; e le funi metalliche, per la più omogenea struttura, per la maggiore rigidezza, potranno benissimo soddisfare a quelle ricerche in modo più rigoroso ; tanto più che si potrebbe misurando direttamente la rigidezza che presentano, e ad un tempo le quantità E, X, confermare non solo la formula (7) nei suoi risultati, ma ancora le ipotesi su cui è fondata ed il procedimento col quale si giunse a comporla. Nello scopo tuttavia di far meglio vedere l'applicazione diretta della formula (7) al calcolo della rigidezza delle funi metalliche, anziché di dare un coefficiente meritevole di qualche fiducia, prenderò il caso, che ho già trattato a mezzo, della fune di 33 millimetri di diametro, che deve trarre il peso Q di 3000 chilogrammi, ritenendo come sopra-e=18,000 chilogr. per millimetro quadrato, e supponendo λ = 0.0008 valore corrispondente al ferro dolce di piccole dimensioni, passato alla trafila ; si ricava dalla formula la sua influenza sarebbe nulla, ed il braccio di leva esattamente uguale al doppio di quel raggio; e se il valore di R fosse ancora minore, il braccio di leva continuerebbe ad essere costante ed indipendente da R, si avrebbe sempre in tale ipotesi il valore di si troverebbe con questi dati il valore di μ = 625 (*) Ma non occorre ripetere che quest'ultimo caso supposto, quantunque possibile, non è mai caso pratico. (*) Vale ancor qui la nota del Num. IV.

72 ossia la resistenza Se per esempio si avesse una puleggia di tre metri di diametro, si otterrebbe, Z= chilog. 227. Adunque la rigidezza d'una fune in fili di ferro del diametro di 33 millimetri, che si avvolge su di una puleggia di 3 metri di diametro, e che sopporta un peso di 3000 chilogr. sarebbe di chilogr. 227. Ing. GIOVANNI SACHERI.

Atti della Società degli ingegneri ed industriali. Tav. 1