Corso di Riabilitazione Strutturale

Documenti analoghi
Corso di Riabilitazione Strutturale

Corso di Riabilitazione Strutturale

ESERCITAZIONE N. 4 Analisi statica e dinamica lineare

EDIFICI ESISTENTI Capacità rotazionali di elementi in c.a.

VALUTAZIONE DEGLI EDIFICI ESISTENTI ANALISI STATICA NON LINEARE A PLASTICITA CONCENTRATA APPLICAZIONE

TIPOLOGIE STRUTTURALI E FATTORI DI STRUTTURA

DUTTILITA STRUTTURALE RIFLESSIONE!

A A N LI A S LI I S I P U P S U H S - H OV

Corso di Riabilitazione Strutturale

MODELLAZIONE STRUTTURALE PER IL CALCOLO AUTOMATICO

Lezione. Progetto di Strutture

Corso di Progetto di Strutture. POTENZA, a.a Pareti in c.a.

INDICE. Pag. STRUTTURA IN ELEVAZIONE

Requisiti di sicurezza, azione sismica, criteri di progetto, metodi di analisi e verifiche per edifici

Stima della vulnerabilità sismica di edifici esistenti in calcestruzzo armato semplici e tamponati. 23 Marzo 2017


Strutture in muratura soggette ad azioni sismiche Analisi della sicurezza

ESERCITAZIONE N. 7 Analisi statica non lineare

Stima della vulnerabilità sismica di edifici esistenti in calcestruzzo armato semplici e tamponati

La PARETE in c.a. e la progettazione in conformità alle NTC 2018

Parte 3: Progetto degli elementi strutturali A cura di: Ing. Leonardo Bandini Ing. Andrea Bidoli

Tecnica delle Costruzioni

Indice. Premessa... 11

Task 3 - COSTRUZIONI IN MURATURA

Pareti In Zona Sismica Norma Italiana. C Nuti

Analisi. Analisi. Analisi lineari 1.1. Analisi statica lineare

Costruzioni in zona sismica A.A Fattore di struttura & Metodi di Analisi

VALUTAZIONE DEL RISCHIO SISMICO

Regione Campania - Genio Civile

ESERCITAZIONE N. 6 Gerarchia delle resistenze

LEZIONE 1. IL PROGETTO STRUTTURALE Parte 2. La modellazione. Corso di TECNICA DELLE COSTRUZIONI Chiara CALDERINI A.A

REGISTRO DELLE LEZIONI 2006/2007. Tipologia. Addì Tipologia. Addì Tipologia

Costruzioni in zona sismica A.A Fattore di struttura & Metodi di Analisi

Lezione 9. Laboratorio progettuale (Tecnica delle Costruzioni)

Costruzioni in zona sismica A.A Metodi di Analisi

Corso di Analisi e Progetto di Strutture A.A. 2012/13 E. Grande. Regolarità Aspettigeneraliecriteridiimpostazione della carpenteria

Indice INDICE GENERALE DELL OPERA VOL. 1: CALCOLO STRUTTURALE - I TELAI VOL. 2: CEMENTO ARMATO - CALCOLO AGLI STATI LIMITE INDICE DEL VOLUME 2

FACOLTA DI INGEGNERIA UNIVERSITA DEL SANNIO. 27 ottobre I danni negli edifici in c.a. e le nuove norme tecniche.

Corso di Riabilitazione Strutturale

PRESSOFLESSIONE NEL PIANO

Pressoflessione. Introduzione

CORSO DI AGGIORNAMENTO SULLA NORMATIVA SISMICA. DI CUI ALL ORDINANZA 3274 DEL Cuneo, 08 aprile 21 maggio 2004 METODI DI ANALISI

INDICE. Capitolo 1 LA TERRA TREMA 1 1 Le costruzioni e il terremoto 1 2 La situazione in Italia 4

R O T T U R E F R A G I L I E L E M E N T I I N C. A.

Edifici in muratura. L edificio soggetto a carichi verticali. Catania, 21 aprile 2004 Bruno Calderoni. DAPS, Università di Napoli Federico II

Ponti Isolati Criteri di progettazione ed analisi

Lezione. Progetto di Strutture

Strutture in muratura soggette ad azioni sismica. Metodi di analisi

DUTTILITÀ DEGLI ELEMENTI

Corso di Riabilitazione Strutturale

Introduzione - Imparando dal terremoto Prime considerazioni sul comportamento delle costruzioni nel terremoto de l Aquila

Lezione. Tecnica delle Costruzioni

La valutazione di edifici in c.a. Il Progetto Simulato

CALCOLO DELLE SEZIONI IN C.A.

ESERCITAZIONE N. 2 Richiami - Analisi modale

3.3.9 Metodo SAM (1996)

Strutture in acciaio

Figura 5.102: legami costitutivi reali di calcestruzzo e acciaio. Figura 5.103: Trave continua in c.a. sottoposta a carichi di esercizio.

DUTTILITÀ DEGLI ELEMENTI

Università IUAV di Venezia S.B.D. A 2544 BIBLIOTECA CENTRALE

Dalla dinamica alla normativa sismica

CORSO DI MODELLAZIONE STRUTTURALE

RELAZIONE SUL SISTEMA DI ISOLAMENTO SISMICO

duttilità globale: u = spostamento ultimo Fattore di struttura

RELAZIONE SUL SISTEMA DI ISOLAMENTO SISMICO

Costruzioni in zona sismica A.A Fattore di struttura & Metodi di Analisi

ORDINE DEGLI INGEGNERI DELLA PROVINCIA DI BERGAMO

Sommario. Verifiche meccanismi duttili e fragili: domanda

PROGETTAZIONE STRUTTURALE DI UN EDIFICIO INDUSTRIALE PREFABBRICATO IN ZONA SISMICA. Dr.ssa Antonella Colombo ASSOBETON

PROGETTO DI RICERCA SPERIMENTALE RELATIVA ALL IMPIEGO DEL GASBETON IN ZONA SISMICA

Università degli studi di Cagliari. Corso di aggiornamento Unità 4: PIASTRE IN C.A. E INSTABILITÀ

Analisi teorica di nodi travicolonna esterni in c.a. rinforzati mediante FRP

Vulnerabilità Sismica ed Adeguamento di Costruzioni Esistenti in Calcestruzzo Armato

Impostazione e controllo del progetto di edifici antisismici in cemento armato secondo le indicazioni delle Norme Tecniche per le Costruzioni 2008

Proposta 2 Valutazione della vulnerabilità di edifici prefabbricati esistenti. Questa tematica ha

CONSULTING. file Al-Costruzioni Esistenti- elementi primari e secondari. file Alicino. Amedeo Vitone

Lezione 5. Laboratorio progettuale (Tecnica delle Costruzioni)

FATTORE DI STRUTTURA E DUTTILITÀ STRUTTURALE

Duttilità delle sezioni in cemento armato secondo le NTC 2018 con IperSpace

METODI DI ANALISI ESEMPI 3

CENNI ALLA DUTTILITÀ DELLE STRUTTURE IN ACCIAIO

ANALISI PUSHOVER DEFINIZIONE DELLE CERNIERE PLASTICHE C.A.

Il comportamento in caso di incendio dei sistemi di solaio composti acciaio-calcestruzzo Il metodo di calcolo semplificato

ELEMENTI DI PROGETTAZIONE INGEGNERIA INDUSTRIALE

UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II CAPACITA SISMICA DEGLI EDIFICI IN C.A.:.: APPROCCIO MECCANICO BASATO SULLA PROGETTAZIONE SIMULATA

CORSO DI TECNICA DELLE COSTRUZIONI ESERCITAZIONE n 16 del 24/04/2018 PROGETTO DI UN EDIFICIO IN C.A. PROGETTO E VERIFICA DI UN PILASTRO

Allegato 2: Edifici esistenti Edifici in Cemento Armato PROGETTO SIMULATO

Test 25 DETTAGLI COSTRUTTIVI C.A. NTC2018: NODI TRAVE-PILASTRO

Nome: Cognome: Data: 01/04/2017

Il problema dell instabilità torsio-flessionale delle travi inflesse

Prontuario Opere Geotecniche (Norme tecniche per le costruzioni D.M. 14/01/2008)

STUDIO DI EDIFICI IN C.A. AD USO RESIDENZIALE COSTRUITI IN ASSENZA DI NORME ANTISISMICHE

Messina 100 anni dopo. Eccentricità correttive per la valutazione della risposta sismica di edifici esistenti mediante analisi statica non lineare

DUTTILITÁ STRUTTURALE LOCALE E GLOBALE

Test 66 Verifica della duttilità delle sezioni in C.A. secondo le Norme Tecniche per le Costruzioni 2018

Scuola di Architettura Corso di Laurea Magistrale quinquennale c.u.

Transcript:

Corso di Riabilitazione Strutturale POTENZA, a.a. 2018 2019 VALUTAZIONE DIEDIFICI ESISTENTI IN C.A. I PARTE ANALISI E STRATEGIE DI INTERVENTO PhD Marco VONA Scuola di Ingegneria - Università di Basilicata marco.vona@unibas.it http://oldwww.unibas.it/utenti/vona/

ANALISI DI EDIFICI IN C.A. ESISTENTI CAMPAGNA DI INDAGINI Geometria, Dettagli costruttivi e Resistenza dei materiali METODI DI ANALISI STRUTTURALE Livello di conoscenza, tipologia di struttura MODELLAZIONE E ANALISI Definizione del comportamento degli elementi strutturali VERIFICHE DEGLI ELEMENTI STRUTTURALI In termini di resistenza e/o deformazione STRATEGIA DI INTERVENTO Globale e/o Locale

ANALISI DI EDIFICI IN C.A. ESISTENTI I METODI DI ANALISI STRUTTURALE Sono ammessi quattro metodi di analisi caratterizzati da complessità e precisione crescenti 1. ANALISI STATICA LINEARE 2. ANALISI DINAMICA MODALE 3. ANALISI STATICA NON LINEARE 4. ANALISI DINAMICA NON LINEARE La scelta dipende dalle caratteristiche (regolarità, periodi propri caratteristici) e dall importanza della struttura che si sta studiando.

METODOLOGIA DI ANALISI 1. ANALISI STATICA LINEARE 2. ANALISI DINAMICA MODALE 3. ANALISI STATICA NON LINEARE 4. ANALISI DINAMICA NON LINEARE Le norme individuano come metodo normale,, per la definizione delle sollecitazioni di progetto, l analisi modale associata allo spettro di risposta di progetto e applicata ad un modello tridimensionale dell edificio Considerazioni sulla regolarità in pianta ed in altezza della struttura permettono di considerare al posto di un modello tridimensionale due modelli piani separati e al posto dell analisi modale una semplice analisi statica lineare

METODOLOGIA DI ANALISI Accuratezza risultati - - ANALISI STATICA LINEARE Difficoltà operative ANALISI DINAMICA MODALE ANALISI STATICA NON LINEARE ANALISI DINAMICA NON LINEARE + +

METODOLOGIA DI ANALISI ANALISI APPLICABILITÀ MODELLO ELEMENTI 1D STATICA LINEARE Scarsa Lineare Lineare DINAMICA MODALE Buona Lineare Lineare STATICA NON LINEARE Dubbia Non Lineare NL concentrata NL diffusa DINAMICA NON LINEARE Sempre Non Lineare NL concentrata NL diffusa

METODOLOGIA DI ANALISI STRUTTURALE STRUTTURA REALE Schematizzazione MODELLO FISICO Modellazione MODELLO MATEMATICO Alla struttura reale si associa un modello fisico matematico ricavando così le sollecitazioni

METODOLOGIA DI ANALISI STRUTTURALE METODI DEGLI ELEMENTI FINITI Grazie al metodo degli Elementi Finiti è possibile analizzare strutture estremamente complesse in modo semplice ricorrendo ad una opportuna discretizzazione Le strutture sono quindi suddivise in tanti elementi più piccoli Per casi semplici (la trave continua, telaio) la discretizzazione è molto semplice poiché, in genere, coincide con gli elementi stessi Tali strutture sono costituite da elementi detti monodimensionali in quanto una dimensione prevale sulle altre

METODOLOGIA DI ANALISI STRUTTURALE MODELLAZIONE AGLI ELEMENTI FINITI La struttura composta di elementi monodimensionali è scomposta in elementi collegati in modo puntuale tramite dei nodi e le incognite del problema sono gli spostamenti dei nodi Noti i carichi esterni è possibile risolvere le equazioni di equilibrio Nel caso semplice di travi continue e telai semplici ogni elemento finito è caratterizzato da due nodi

ANALISI DI EDIFICI IN C.A. ESISTENTI MODELLO DI CALCOLO Definizione dei nodi che definiscono la geometria e la posizione nello spazio degli elementi che definiscono la struttura Scelta dell elemento che meglio schematizza il comportamento degli elementi che definiscono la struttura (ad es. Frames) Caratteristiche meccaniche dei materiali (E, G, masse, etc.) Caratteristiche degli elementi che definiscono la struttura (es. caratteristiche geometriche delle sezioni, A, Ix, Iy, etc.) Vincoli da applicare ai nodi per rendere modellare la realtà fisica Carichi applicati alla struttura (concentrati o ripartiti, statici o dinamici) concentrati ai nodi o lungo gli elementi

ANALISI DI EDIFICI IN C.A. ESISTENTI MODELLO DI CALCOLO Definizione dei nodi Scelta dell elemento

ANALISI DI EDIFICI IN C.A. ESISTENTI MODELLO DI CALCOLO

ANALISI DI EDIFICI IN C.A. ESISTENTI MODELLO DI CALCOLO

MODELLAZIONE MODELLO DI CALCOLO

CARATTERIZZAZIONE TIPOLOGICA: TAMPONATURE Il comportamento globale di un telaio tamponato può essere modellato con puntoni equivalenti inseriti nella maglia strutturale

CARATTERIZZAZIONE TIPOLOGICA: TAMPONATURE Il comportamento globale di un telaio tamponato può essere modellato con puntoni equivalenti inseriti nella maglia strutturale

ANALISI DI EDIFICI IN C.A. ESISTENTI IMPOSTAZIONE DEL MODELLO DI CALCOLO Introdurre le dimensioni correttamente individuate Rispettare gli assi geometrici della struttura esistente Discretizzare correttamente la struttura e le sotto parti Modellare correttamente gli elementi esistenti in base ai modelli disponibili (elem. monodimensionali per pilastri e travi, elem. bidimensionali per pareti) ed alle sollecitazioni che si vogliono analizzare Riportare correttamente tutti i carichi presenti (statici e dinamici) sulla struttura a partire dal peso proprio

ANALISI DI EDIFICI IN C.A. ESISTENTI IMPOSTAZIONE DEL MODELLO DI CALCOLO Considerare attentamente i vincoli esistenti e modellarli correttamente con riferimento al grado di vincolo effettivo esistente Modellare correttamente le proprietà geometriche e meccaniche degli elementi componenti la struttura Controllare accuratamente l input al fine di evitare errori di modellazione

ANALISI DI EDIFICI IN C.A. ESISTENTI ANALISI DINAMICA MODALE Determinazione dei modi di vibrare della costruzione (analisi modale) Calcolo degli effetti dell azione sismica (dallo spettro di risposta di progetto) per ciascuno dei modi di vibrare individuati Combinazione degli effetti (CQC) Devono essere considerati tutti i modi con massa partecipante significativa ovvero con massa partecipante superiore al 5% Il numero dei da considerare deve essere tale che la massa partecipante totale sia superiore all 85%

EDIFICI IN C.A. ESISTENTI Nell'analisi dinamica lineare con spettro di risposta di progetto, le capacità di dissipazione di energia non lineare vengono considerate indirettamente, utilizzando uno spettro di risposta (in accelerazione) di progetto ottenuto dal suo equivalente elastico lineare, riducendo le ordinate attraverso il fattore di comportamento (o di Struttura) a/g 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0 0.5 1 1.5 2 T [sec]

EDIFICI IN C.A. ESISTENTI Il fattore di Struttura consente la valutazione delle forze sismiche reali che agiscono su un sistema non lineare, tenendo conto che una parte dell'input sismico si sta trasformando in spostamento non in forze a/g 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0 0.5 1 1.5 2 T [sec]

EDIFICI IN C.A. ESISTENTI ANALISI LINEARE CON FATTORE DI STRUTTURA Tale metodo è applicabile ai soli stati limite di DS e DL Lo spettro di progetto in termini di accelerazioni si ottiene dallo spettro elastico riducendo le ordinate con il fattore di struttura q q scelto nell intervallo [1.5, 3.0] a/g 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0 0.5 1 1.5 2 T [sec]

EDIFICI IN C.A. ESISTENTI LA SCELTA DEL FATTORE DI STRUTTURA La valutazione del fattore di struttura va effettuata tenendo in conto le diverse caratteristiche (progettuali, di materiali, di dettagli strutturali, ecc) che caratterizzano gli edifici esistenti rispetto a quelli di nuova progettazione q = q o K R dove: q o è legato alla tipologia strutturale K R è un fattore che dipende dalle caratteristiche di regolarità dell edificio

EDIFICI IN C.A. ESISTENTI LA SCELTA DEL FATTORE DI STRUTTURA Gli edifici esistenti sono caratterizzati da criteri di progettazione non finalizzati a soddisfare i principi base di una moderna progettazione sismica La valutazione del fattore q o è subordinata al rapporto di sovraresistenza e alla capacità di spostamento in campo plastico dell edificio Concettualmente la determinazione del rapporto di sovraresistenza ( α u / α 1 ) può effettuarsi solo mediante l esecuzione di una analisi statica non lineare

EDIFICI IN C.A. ESISTENTI LA SCELTA DEL FATTORE DI STRUTTURA A rigore, una valutazione a priori del rapporto (α u /α 1 ) non risulta proponibile senza uno strumento di analisi non lineare La capacità di spostamento in campo plastico (duttilità) degli edifici esistenti risulta senza dubbio limitata, rispetto agli edifici di nuova progettazione Non esiste una gerarchia delle resistenze e generalmente vi è una carenza dei dettagli di armatura presenti nelle zone potenzialmente interessate da una plasticizzazione

EDIFICI IN C.A. ESISTENTI LA SCELTA DEL FATTORE DI STRUTTURA La determinazione della capacità globale di spostamento è subordinata alla capacità di rotazione del singolo elemento strutturale: qualità dei dettagli strutturali (modalità di chiusura delle staffe, lunghezze di sovrapposizione, percentuali di armatura, ecc.); entità dello sforzo assiale normalizzato di compressione nelle colonne grado di confinamento delle colonne (passo delle staffe, ecc.); caratteristiche meccaniche degli acciai (incrudenti o non); presenza di pareti

EDIFICI IN C.A. ESISTENTI LA SCELTA DEL FATTORE DI STRUTTURA Edifici con: caratteristiche di irregolarità in pianta/elevazione dettagli strutturali carenti elevati sforzi assiali normalizzati (ν>0.25) nelle colonne è ipotizzabile un fattore di struttura basso Limite inferiore: q=1.50

EDIFICI IN C.A. ESISTENTI LA SCELTA DEL FATTORE DI STRUTTURA Edifici con: assenza di caratteristiche di irregolarità presenta buoni dettagli strutturali bassi sforzi assiali nelle colonne (normalizzati, ν<0.25) 0 è utilizzabile un fattore di struttura più grande Limite superiore: q=3.00

EDIFICI IN C.A. ESISTENTI LA SCELTA DEL FATTORE DI STRUTTURA In ogni caso gli elementi strutturali fragili devono soddisfare la condizione che la sollecitazione indotta dall'azione sismica ridotta per q = 1.5 sia inferiore o uguale alla corrispondente resistenza a/g 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0 0.5 1 1.5 2 T [sec]

EDIFICI IN C.A. ESISTENTI: FATTORE DI STRUTTURA Generalmente, la definizione più diffusa del fattore di struttura si basa su tre diversi coefficienti di riduzione Rμ, RΩ e RS dipendenti rispettivamente dalla duttilità, sovraresistenza e fattore di ridondanza

EDIFICI IN C.A. ESISTENTI: FATTORE DI STRUTTURA Il fattore di duttilità Rμ consente la riduzione della massima forza elastica sismica Ve alla massima forza di snervamento Vy Per MDOF il valore Rμ ottenuto dipende principalmente dal target di duttilità, dalla rigidità elastica e dalle caratteristiche di azione sismica Rμ aumenta con l'aumento del target di duttilità e viceversa

EDIFICI IN C.A. ESISTENTI: FATTORE DI STRUTTURA Il fattore di ridondanza RS consente un'ulteriore riduzione della forza che tiene conto della ridistribuzione delle cerniere plastiche e del processo di attivazione Dal SDOF equivalente, RS potrebbe essere espresso come Vy / V1y dove Vy massima forza di snervamento globale, V1y prima forza di snervamento (convenzionalmente attivazione della prima cerniera)

EDIFICI IN C.A. ESISTENTI: FATTORE DI STRUTTURA Procedura di valutazione della massima forza sismica Vy di diversi MDOF. Parametri elastici, tipo e andamento del comportamento del ciclo sono noti per diversi target di duttilità

EDIFICI IN C.A. ESISTENTI: FATTORE DI STRUTTURA Un fattore di struttura scorretto potrebbe portare a una valutazione errata del livello di sicurezza sismica, condizionando la conseguente procedura di progettazione retrofit Procedura di valutazione della sicurezza sismica basata sulla forza globale di un edificio esistente

EDIFICI IN C.A. ESISTENTI: FATTORE DI STRUTTURA La procedura di valutazione si basa su un confronto tra domanda Vm e capacità Vy

LA SCELTA DEL FATTORE DI STRUTTURA R = V e / V d R = Ω R μ R R V e R μ V u V y R R Ω V y µ = u / u u u V d d y u y u R = V e / V d = Ω R μ

LA SCELTA DEL FATTORE DI STRUTTURA R μ = ( 2 μ 1 ) (1/2) R μ = μ R μ = 1 + (μ 1 ) T / 0,7 Periodo fondamentale piccolo (sistemi elastici e non lineari sono caratterizzati dalla stessa energia associata alla forza corrispondente allo spostamento massimo) Periodo fondamentale elevato (sistemi elastici e duttili sono caratterizzati dallo stesso spostamento associato alla forza massima

LA SCELTA DEL FATTORE DI STRUTTURA V e R μ V u V y V d R R Ω V y d y u y u Ω = V u / V d R μ = ( 2 μ 1 ) (1/2) R μ = μ R μ = 1 + (μ 1 ) T / 0,7

LA SCELTA DEL FATTORE DI STRUTTURA

LA SCELTA DEL FATTORE DI STRUTTURA 0.20 Bare Frame 0.15 A eff / g 0.10 0.05 0.00 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Drfit/h (%)

LA SCELTA DEL FATTORE DI STRUTTURA 0.20 Infilled Frame 0.15 A eff / g 0.10 0.05 0.00 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Drfit/h (%)

LA SCELTA DEL FATTORE DI STRUTTURA 0.20 Pilotis Frame 0.15 A eff / g 0.10 0.05 0.00 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Drfit/h (%)

LA SCELTA DEL FATTORE DI STRUTTURA

COMPORTAMENTO NON LINEARE NON LINEARITÀ GEOMETRICA NON LINEARITÀ DEL MATERIALE NON LINEARITÀ DI ELEMENTO MATERIALE SEZIONE NON LINEARITÀ DI STRUTTURA

NON LINEARITÀ GEOMETRICA Grandi rotazioni/spostamenti effetti del secondo ordine effetto trave colonna Livelli di spostamento molto elevati variabili in modo non proporzionale ai carichi Non più valida l ipotesi della teoria dell elasticità lineare secondo la quale è possibile confondere configurazione iniziale e finale

NON LINEARITÀ GEOMETRICA Materiale elastico δ H V h Effetti del secondo ordine La configurazione indeformata e deformata non coincidano. Il carico V non è parallelo all asse L elemento cambia configurazione rispetto a quella iniziale Inflettendosi il carico V contribuisce anche al taglio e al momento nell elemento M=V δ+h h

NON LINEARITÀ GEOMETRICA Ipotesi: materiale elastico y LINEARE R F x Reazione NON LINEARE y Spostamento x Comportamento lineare configurazione iniziale e finale coincidono Taglio cresce linearmente con lo spostamento verticale dell estremo libero Comportamento non lineare Il carico cresce e l elemento cambia configurazione La componente del carico ortogonale all asse non cresce più linearmente con lo spostamento

EFFETTO TRAVE-COLONNA Materiale elastico Effetto trave-colonna Configurazione indeformata e deformata coincidono Le due azioni (M, N) sono completamente disaccoppiate Azione assiale Momento flettente Se a causa dell inflessione indotta dal momento, l elemento cambia configurazione rispetto a quella iniziale, risulterà una interazione fra deformazione trasversale indotta dal momento flettente ed azione assiale

EFFETTO TRAVE-COLONNA Materiale elastico Effetto trave-colonna Un azione assiale di compressione riduce la rigidezza flessionale, mentre un azione di trazione ha l effetto opposto Azione assiale e momento sono accoppiati Questo si traduce in termini di modellazione, nell avere una matrice di rigidezza dell elemento in cui i diversi contributi, assiale, flessionale e tagliante sono fra loro accoppiati

6 Lineare 8 7 5 1 1 5 7 8 1500 100 100 0.027 0.004 [kn,m] 0 0 0 0 0 0 0 0 M 1500 100 100 0.04 0.005 Non lineare EFFETTO TRAVE-COLONNA -160.18-156.17-144.35-125.31-125.31-144.35-156.17-160.18-5.34-15.76-25.39-33.75 33.75 25.39 15.76 5.34-1499.99-1499.90-1499.75-1499.56-1499.56-1499.75-1499.90-1499.99-100.00-100.00-100.00-100.00-100.00-100.00-100.00-100.00-1500.00-1500.00-1500.00-1500.00-1500.00-1500.00-1500.00-1500.00 T N

NON LINEARITÀ DEL MATERIALE Deformazione irreversibili Comportamento ciclico Degrado della rigidezza e resistenza I materiali superano i limiti di comportamento elastico

NON LINEARITÀ DEL MATERIALE σ s Acciaio ε s σ = Eε σ c Calcestruzzo σ = f( ε, ε i, α ) non confinato confinato con spirali confinato con staffe ε c

NON LINEARITÀ DEL MATERIALE: CALCESTRUZZO Comportamento ciclico con dissipazione FORTE dipendenza da storia di carico precedente Fessurazione con accumulo di danno

NON LINEARITÀ DEL MATERIALE: ACCIAIO Comportamento ciclico con FORTE dissipazione Dipendenza da storia di carico precedente Grande stabilità ciclica

NON LINEARITÀ DI ELEMENTO Φ e = M E J Zona con plasticità c x Diffusione per taglio Taglio Crisi del calcestruzzo Snervamento al piede Fessurazione Yield penetration Spostamento Irreversibilità Dissipazione Degrado Forza [kn] 250 200 150 100 50 0-50 -100-150 -200-250 S250-30 -20-10 0 10 20 30 Spostamento [mm]

MECCANISMI DI ROTTURA DUTTILI E FRAGILI Gli elementi ed i meccanismi resistenti sono classificati in: DUTTILI: travi, pilastri e pareti inflesse con e senza sforzo normale FRAGILI: meccanismi di taglio in travi, pilastri, pareti e nodi In presenza di pilastri con sforzo normale particolarmente elevato va presa in considerazione la possibilità di comportamento fragile La verifica degli elementi duttili è eseguita confrontando i limiti di capacità con gli effetti indotti dalle azioni sismiche in termini di deformazioni La verifica degli elementi fragili è eseguita confrontando le capacità (resistenze) con gli effetti indotti dalle azioni sismiche in termini di forze

NON LINEARITÀ DELLA STRUTTURA Legami costitutivi calcestruzzo armato e acciaio Sfilamento barre Fessurazione (effetto spinotto, attrito, interlock,..) Interazione non-lineare suolo-struttura Grandi spostamenti/rotazioni (deformazioni) Effetti secondo ordine Fenomeni di instabilità dell equilibrio V Inizio espulsione copriferro Fine espulsione copriferro Cerniere plastiche Prima cerniera plastica Fessurazione y m u Instabilità barre/ crisi calcestruzzo t=3s t=4s

MODELLAZIONE DEL COMPORTAMENTO ANELASTICO Modellazione plasticità concentrata (modello cerniera plastica) analisi veloci difficile da calibrare Modellazione plasticità distribuita (modello di fibre) modellazione più semplificata analisi prolungate difficile da calibrare

MODELLAZIONE A PLASTICITÀ CONCENTRATA Nelle strutture intelaiate soggette ad azioni orizzontali le sollecitazioni flettenti massime si verificano in corrispondenza delle estremità di travi e colonne in cui, superata la soglia elastica, si concentrano le deformazioni anelastiche Alcuni modelli di trave considerano la plasticità tutta concentrata in cerniere plastiche puntuali disposte alle estremità degli elementi Tali modelli vengono denominati modelli a PLASTICITÀ CONCENTRATA

MODELLAZIONE A PLASTICITÀ CONCENTRATA Trascurando gli effetti dei carichi verticali, la distribuzione dei momenti risulta lineare e quindi l elemento può essere riguardato come una trave a mensola, di luce L v e caricata da una forza concentrata all estremo libero

MODELLAZIONE A PLASTICITÀ CONCENTRATA La corretta valutazione del punto di flesso della deformata (punto di nullo del diagramma dei momenti), ossia della luce di taglio L v è un problema di non facile risoluzione Una semplice analisi lineare consente di valutare in maniera esatta la posizione del punto di flesso durante il comportamento lineare della struttura λ 1 F λ 2 F

MODELLAZIONE A PLASTICITÀ CONCENTRATA D altro canto, le prime formazioni di regioni plastiche comportano una ridistribuzione delle sollecitazioni flettenti con conseguente traslazione del punto di flesso. 3*M y (positivo) = M y (negativo) λ 1 F λ 2 F

MODELLAZIONE A PLASTICITÀ CONCENTRATA La caratterizzazione meccanica della cerniera plastica è direttamente influenzata dalla posizione del punto di flesso per cui la sua variazione comporterebbe una diversa caratterizzazione della stessa (problemi di convergenza del calcolo non lineare) Pertanto in genere la posizione del punto di flesso, L v è assunta costante durante il processo di carico (di analisi) λ 1 F λ 2 F

MODELLAZIONE A PLASTICITÀ CONCENTRATA Determinazione luce di taglio (a) la luce di taglio è valutata come metà della luce dell elemento (Lv=0.5L) (b) la luce di taglio è desunta dal diagramma dei momenti flettenti presente lungo l elemento valutato mediante una analisi elastico lineare (statica o modale) (c) la luce di taglio è desunta dal diagramma dei momenti flettenti presente lungo l elemento, valutato mediante una analisi non lineare (es. analisi limite), corrispondente ad una configurazione deformata caratterizzata da uno spostamento del punto di controllo pari allo spostamento sismico richiesto

MODELLAZIONE DEL COMPORTAMENTO ANELASTICO Modellazione plasticità concentrata (modello cerniera plastica) analisi veloci difficile da calibrare Modellazione plasticità distribuita (modello di fibre) modellazione più semplificata analisi prolungate difficile da calibrare

MODELLAZIONE A PLASTICITÀ CONCENTRATA In definitiva si effettuano due assunzioni fondamentali: 1. Lo stato della zona plastica è determinato da quello della sezione di interfaccia trave-colonna. Questa assunzione può introdurre delle discrepanze tra il comportamento reale e quello colto dalla modellazione, legate soprattutto allo spostamento del punto di flesso durante l analisi strutturale 2. La rigidezza è considerata costante nella regione plastica e pari ad un valore che dipende dalla rigidezza della sezione di interfaccia trave-colonna Sovrapposizioni di armatura (ad. es. piede delle colonne) Presenza di ferri sagomati (ad.es estremità delle travi)

MODELLAZIONE A PLASTICITÀ CONCENTRATA Nelle zone di estremità si concentrano e si dispongono elementi non lineari (cerniere plastiche) mentre il resto dell elemento è lineare Per definire gli elementi cerniera bisogna: 1. Decidere la loro localizzazione e il corrispondente tipo di rottura

CARATTERIZZAZIONE DEGLI ELEMENTI CERNIERA 2. Stimare nella sezione critica il diagramma momentocurvatura in presenza di azione assiale e degrado nel tempo per scegliere fra i vari modelli proposti M Φ Modello interazione M-N Modello momento-curvatura isteretico

MODELLI DI COMPORTAMENTO ISTERETICO 3. Scegliere il modello isteretico più opportuno (analisi Dinamica non lineare)

MODELLI DI COMPORTAMENTO ISTERETICO 4. Tener conto della variabilità comportamento non lineare ciclico 5. Lunghezza di cerniera plastica equivalente tale per cui il prodotto di questa per la curvatura, derivante dal modello scelto, definisca una rotazione prossima a quella reale

MODELLAZIONE A PLASTICITÀ CONCENTRATA Vantaggi: Utilizza principalmente elementi elastici, in pochi punti non linearità del materiale minor onere computazionale permette, con opportuna scelta del legame costitutivo della cerniera, di descrivere diversi fenomeni, oltre al comportamento flessionale: deformabilità a taglio, scorrimento dell armatura, flessibilità del nodo trave-colonna, interazione fra telaio e tamponamenti versatilità, adeguata modellazione comportamento di strutture esistenti Limiti: richiede esperienza dell operatore per stabilire dove distribuire gli elementi non lineari, per scegliere lunghezze e curve caratteristiche accuratezza dell intera analisi può essere facilmente compromessa