Lezione 9: Cambio di base In questa lezione vogliamo affrontare uno degli argomenti piu ostici per lo studente e cioè il cambio di base all interno di uno spazio vettoriale, inoltre cercheremo di capire come cambia la matrice associata ad un applicazione lineare se cambiamo la base nel dominio e nel codominio. 1 L identita Fino a questo momento abbiamo considerato le applicazioni lineari da R n a R m come matrici m n, piu precisamente la matrice associata ad una applicazione lineare f : R n R m ha per colonne le immagini dei vettori della base canonica di R n. Ricordiamo con un esempio. Consideriamo l applicazione f : R 2 R 2, f(e 1 ) = e 1 e 2, f(e 2 ) = 3e 2. Questa applicazione è associata, fissando la base canonica nel dominio e codominio, alla matrice: ( ) 1 0 A =. 1 3 Possiamo facilmente generalizzare il concetto di matrice associata ad una applicazione lineare in basi diverse dalla canonica. Definizione 1.1. Sia f : R n R m una applicazione lineare, e siano B, B rispettivamente una base del dominio e una base del codominio. Definiamo A B,B la matrice associata a f nelle basi B e B una matrice m n tale che: x 1 f. x n B x 1 = A B,B. x n B y 1 =. y m B. Sappiamo bene che la scelta della base canonica per rappresentare i vettori in R n è arbitraria, pur essendo estremamente conveniente. Ad esempio abbiamo gia visto che un vettore espresso in due basi diverse ha ovviamente coordinate diverse. Per il momento usare una base diversa dalla canonica per rappresentare i vettori sembra una cosa inutilmente faticosa, tuttavia vedremo nella lezione successiva che ci fornisce la chiave per capire i concetti di autovalori e autovettori, data l importanza che essi hanno in analisi numerica oltre che in innumerevoli altre parti della matematica. 1
Torniamo all esempio sopra. Se scegliamo la base di R 2 data dai vettori: v 1 = e 1 e 2, v 2 = 3e 2, ci poniamo le domande: 1. Come si rappresentano i vettori v 1 e v 2 nella nuova base B? 2. Come possiamo scrivere la matrice associata a f nella base canonica del dominio e nella base B del codominio? Se lo studente comprende la teoria(come dovrebbe essere a questo punto!), la risposta alla prima domanda è ovvia. I vettori v 1 e v 2 hanno rispettivamente coordinate (1,0) e (0,1) (se cio non è chiaro si vada a rileggere la definizione di coordinate). Anche la risposta alla seconda domanda come vedremo, è abbastanza semplice, tuttavia procederemo nel dettaglio, dato che si tratta di un concetto nuovo. Abbiamo gia visto che modificare la base che noi scegliamo per rappresentare i vettori all interno di uno spazio vettoriale, non cambia i vettori, ma soltanto appunto il modo di scriverli. Quello che vogliamo dire e che nell esempio sopra i vettori v 1 e v 2 sono sempre gli stessi (possiamo anche disegnarli su di un grafico), quello che cambia passando dalla base canonica alla base B sono le loro coordinate che passano da (1, 1), (0,3) a (1,0), (0,1). Ora vogliamo fare la stessa cosa per le applicazioni lineari, dove il concetto di coordinate è sostituito dal concetto di matrice associata all applicazione lineare in due basi date di dominio e codominio. L applicazione lineare che vogliamo considerare è f : R 2 R 2, tale che f(e 1 ) = v 1, f(e 2 ) = v 2. Vediamo ora di esprimere quanto abbiamo scritto usando le coordinate nella base canonica C = (e 1,e 2 ) nel dominio e la base B = (v 1,v 2 ) nel codominio. f(1,0) C = (1,0) B, f(0,1) C = (0,1) B, ove mettiamo un indice per ricordarci che si tratta di coordinate in una base che non è necessariamente la canonica. Quindi abbiamo che la matrice associata a f nella base C del dominio e B del codominio e ( ) 1 0 A C,B =. 0 1 Infatti questa matrice facendo il prodotto righe per colonne manda proprio (1,0) in (1,0) e (0,1) in (0,1). In realta quanto abbiamo detto si puo facilmente generalizzare. 2
Proposizione 1.2. Sia f : R n R n una applicazione lineare tale che f(u 1 ) = v 1,..., f(u n ) = v n ove B = (u 1,...,u n ), B = (v 1,...,v n ) sono due basi di R n. Allora la matrice associata a f nella base B del dominio e nella base B del codominioè la matrice identita. La dimostrazione è un facile esercizio se uno ha capito il ragionamento scritto sopra. Ora ci poniamo una domanda in un qualche modo inversa a quanto abbiamo stabilito nella proposizione precedente. DomandaQual èlamatriceassociataall applicazioneidentita id : R n R n nelle basi B = (u 1...u n ), B = (v 1...v n ) rispettivamente del dominio e codominio? Senz altro sappiamo che la matrice identita è associata all applicazione identita qualora fissiamo le basi canoniche in dominio e codominio, tuttavia abbiamo gia capito dall esempio precedente, che cambiando la base puo cambiare radicalmente l aspetto della matrice associata alla stessa applicazione lineare. Come sempre vediamo un esempio semplice. Consideriamo l applicazione identita id : R 2 R 2 e supponiamo di fissare la base B = (v 1 = 2e 1,v 2 = e 1 +e 2 ) nel dominio e la base canonica C nel codominio. All applicazione identita non importa cosa noi usiamo per rappresentarla: id mandera comunque un vettore in se stesso. Vediamo che cosa accade: Se lo scriviamo in coordinate: id(v 1 ) = v 1 = 2e 1, id(v 2 ) = e 1 +e 2 id(1,0) B = (2,0) C, id(0,1) B = (1,1) C Dunque la matrice associata nella base B del dominio e nella base canonica C del codominio e : ( ) 2 1 I B,C =. 0 1 Ora chiediamoci invece che cosa accade se vogliamo la base canonica C nel dominio e la base B nel codominio. Come prima l identita manda ogni vettore in se stesso, il problema è capire quali sono le coordinate giuste. id(e 1 ) = e 1 = (1/2)v 1, id(e 2 ) = e 2 = (1/2)v 1 +v 2 3
Quindi: id(1,0) = (1,1/2), id(0,1) = (1/2,0) Dunque la matrice associata nella base canonica C del dominio e nella base B del codominio e : ( ) 1/2 1/2 I C,B =. 0 1 In questo esempio molto semplice è stato possibile calcolare facilmente le coordinate di e 1 ed e 2 nella base B = (v 1,v 2 ), in generale cio non e cosi facile. Tuttavia lo studente attento avra notato che I C,B = I 1 B,C. Dunque le coordinatedei vettori e 1 ede 2 nella base B si possono leggerecome le colonne della matrice I 1 B,C (e la matrice I B,C è facilmente calcolabile in quanto ha per colonne le coordinate dei vettori v 1, v 2 nella base canonica). Questo fenomeno è vero in generale come è attestato dal seguente teorema che è la chiave per la comprensione del cambiamento di base per le applicazioni lineari. Teorema 1.3. Sia id : R n R n l applicazione lineare identita che manda ogni vettore in se stesso. Sia B = (v 1,...,v n ) una base per R n. Allora abbiamo che: la matrice associata a id nella base B del dominio e nella base canonica C del codominio e : I B,C = ( (v 1 ) C,...,(v n ) C ) ove (v i ) C sono le coordinate del vettore v i nella base canonica; la matrice associata a id nella base canonica C del dominio e B del codominio e : I 1 B,C. Proof. Il primo punto è chiaro, sostanzialmente è quanto abbiamo visto nell esempio precedente. Infatti id(v 1 ) = (1,0,...,0) nella base B ed è dato proprio dalle coordinate del vettore v 1 nella base canonica. Lo stesso per v 2...v n. Per il secondo punto invece andiamo a vedere come vengono trasformati i vettori. Se A = I B,C e A = (a ij ) allora abbiamo: v 1 = a 11 e 1 +a 21 e 2 + +a n1 e n. v n = a 1n e 1 +a 2n e 2 + +a nn e n 4
Dunque (v) = A(e) in forma sintetica. (Questo non è un sistema lineare, in quanto non abbiamo delle incognite, perchè sia v che e sono noti). Se voglio trovare e in funzione di v: (e) = A 1 (v), cioe : e 1 = b 11 v 1 +b 21 v 2 + +b n1 v n. e n = b 1n v 1 +b 2n v 2 + +b nn v n ove B = (b ij ) è la matrice inversa di A. Nel corso della dimostrazione di questo teorema abbiamo in effetti dato anche la risposta ad un altra domanda che ci eravamo posti in precedenza e cioe : Domanda: Sia B una base fissata di R n. Come posso scrivere le coordinate di un vettore v nella base B? Fino a questo momento abbiamo risposto con un calcolo molto esplicito caso per caso. Ora pero questo teorema ci da un corollario che contiene la risposta generale. Corollario 1.4. Sia B una base di R n. Le coordinate (α 1,...,α n ) B di un vettore v nella base B sono date da: α 1. α n B = I 1 B,C β 1. Proof. Si ha che v = id(v), quindi basta scegliere la base canonica C nel dominio e la base B nel codominio. A questo punto sappiamo che, rispetto a queste basi, l applicazione lineare identita è rappresentata dalla matrice I C,B = I 1 B,C. Se ad esempio consideriamo la base B = {v 1 = e 1 + 2e 2,v 2 = e 2 } di R 2 e vogliamo trovare ( le coordinate ) del vettore v = (( 1,3) nella ) base B 1 0 1 0 sappiamo che I B,C =. Si ottiene che I 1 2 1 B,C =, quindi le ( ) ( )( ) 2 1 1 1 0 1 coordinate sono: = 3 2 1 3 B β n. C C 5
2 Cambio di base per una applicazione lineare Poniamoci ora il seguente problema, che è una generalizzazione del problema affrontato nella sezione precedente. Problema. Sef : R n R m èunaapplicazionelineareacui èassociata la matrice A nelle basi canoniche C e C di dominio e codominio rispettivamente, come cambia A se fissiamo le basi B per R n e B per R m? Cioè qual è la matrice associata ad f nelle basi B per R n e B per R m? Abbiamo gia affrontato e risolto questo problema per f = id nella sezione precedente, vedremo che se abbiamo capito bene quello che succede per l identita, qui non avremo problemi. Cerchiamo di descrivere la situazione. Sia l applicazione lineare f che i vettori dello spazio vettoriale si comportano in modo indipendente dalla base che noi arbitrariamente scegliamo per rappresentarli. L esempio dell identita è particolarmente utile, perchè l identita resta sempre quell applicazione che ad ogni vettore associa se stesso, ma se cambiamo la base in cui rappresentarla, la matrice associata subisce variazioni drastiche. Guardiamo il seguente diagramma 1 : C R n id B R n f R m C id f R m B ove abbiamo posto accanto ad ogni spazio vettoriale la base che scegliamo per rappresentare i vettori. Nella riga superiore, scegliamo le basi canoniche, in quella inferiore, due basi B e B scelte a piacere. Ora associamo ad ogni applicazione lineare la matrice corrispondente, cioè scriviamo lo stesso diagramma nelle coordinate, cioè usando le matrici per rappresentare le applicazioni lineari. Per quanto sappiamo dalla sezione precedente: 1 che si dice commutativo in quanto il risultato che otteniamo non dipende dal percorso scelto nel diagramma 6
C R n A C,C R m C I B,C I C,B B R n A B,B R m B ove A B,B è la nostra incognita e cioè la matrice associata ad f nelle basi B del dominio e B nel codominio. Ricordando quanto sappiamo sulla corrispondenza tra composizione di applicazioni lineari e moltiplicazione riga per colonna di matrici 2 : A B,B = I C,B A C,C I B,C = I 1 B,C A C,C I B,C. Abbiamo pertanto dimostrato il seguente teorema. Teorema 2.1. Sia f : R n R m una applicazione lineare, A C,C, la matrice ad essa associata nelle basi canoniche C e C del dominio e del codominio rispettivamente. Allora la matrice associata ad f nelle basi B del dominio e B del codominio è data da: ove: A B,B = I 1 B,C A C,C I B,C A C,C ha per colonne le immagini dei vettori della base canonica, cioè f(e 1 ),...,f(e n ) espressi nelle coordinate delle basi canoniche; I B,C ha per colonne i vettori della base B espressi nelle coordinate della base canonica C ; I B,C ha per colonne i vettori della base B espressi nelle coordinate della base canonica C; Vediamo un esempio per chiarire questo tipo di calcolo. 2 Ricordiamo che V f W g Z è g f e corrisponde a A g A f ove A g e A f sono le matrici associate a f e g nelle basi opportune 7
Esempio 2.2. Sia data l applicazione f : R 2 R 3 espressa nelle basi canoniche dalla matrice 1 2 A C,C = 0 1 1 0 Vogliamo trovare la matrice à = A B,B che esprime f nelle basi: B = {e 1 + e 2, e 1 2e 2 } nel dominio e B = {2e 3,e 1 +e 3,e 1 +e 2 } nel codominio. Troviamo le matrici B = I B,C e C = I B,C : B = ( ) 1 1, C = 1 2 0 1 1 0 0 1 2 1 0 Calcoliamo con un qualunque metodo C 1 : 1/2 1/2 1/2 C 1 = 1 1 0 0 1 0 La matrice à è data dalla formula: 1/2 1/2 1/2 1 2 à = C 1 AB = 1 1 0 0 1 0 1 0 1 0 Esercizi ( ) 1 1 1 2 1. Sia data l applicazione lineare f : R 3 R 3 definita da f(x,y,z) = (8x 9y,6x 7y,2x 3y z). a) Scrivere la matrice A associata adf nella base canonica, e la matrice B assciata ad f nella base B = { e 1 +e 2, 2e 1 +3e 2, e 3 }. b) Si dica se f è un isomorfismo. Motivare la risposta. c) In caso di risposta affermativa al punto (b) si calcoli l inversa di f. 2. Si scrivano le coordinate del vettore v = (1, 1,1) rispetto alla base B = {(2,0,5),(0, 1,0),(1,1,3)} di R 3 3. Si scrivano le coordinate del vettore v = (1, 2, 3) rispetto alla base B = {e 1 e 2,e 1 +e 2 e 3, e 1 +e 3 } di R 3. 8