CALCOLO PORTANZA DI FONDAZIONI SUPERFICIALI

Documenti analoghi
Regione. Regione Calabria. Comune Comune di Rogliano di (CS) ... PROGETTO ESECUTIVO IMPIANTO MINIEOLICO EX SCUOLA MATERNA "POVERELLA"

Fasi del progetto geotecnico di una fondazione

Prima classificazione fondazioni

ESERCIZIO SVOLTO A. P 2 St

Fondazioni superficiali

CAPACITÀ PORTANTE DI FONDAZIONI SUPERFICIALI

PREMESSA...2 PRINCIPALE NORMATIVA DI RIFERIMENTO...2 TEORIA DEL CALCOLO PER LA PORTANZA...3 DI FONDAZIONI SUPERFICIALI...3 VERIFICA PORTANZA TRAVE

Ambito di trasformazione esterna ATE DELLA COMPONENTE GEOLOGICA, GEOTECNICA SISMICA

FONDAZIONI SUPERFICIALI

UNIVERSITA DEGLI STUDI DI FIRENZE. DIPARTIMENTO DI INGEGNERIA CIVILE Sezione geotecnica SPINTA DELLE TERRE

COMUNE DI ARCOLE PROVINCIA DI VERONA. Progetto di Costruzione Scuola secondaria di I grado in via Friuli

Lezione 10 GEOTECNICA

ESERCIZIO SVOLTO B. Verifica al ribaltamento (tipo EQU)

ESERCITAZIONE PER LA QUARTA PROVA DELL' ESAME DI STATO PER L'ABILITAZIONE ALLA PROFESSIONE DI INGEGNERE CIVILE E AMBIENTALE Autore: Marina Roma

COMUNE di VALMONTONE Provincia di ROMA

Metodo del cerchio attrito attrito TAYLOR

CITTÀ DI PIOSSASCO P.IVA

Università IUAV di Venezia

ESERCIZI SVOLTI. Verifica allo SLU di ribaltamento (tipo EQU) 9 Spinta delle terre e muri di sostegno 9.3 Il progetto dei muri di sostegno

PREMESSA FONDAZIONI DIRETTE Coefficiente di sicurezza e stato limite ultimo Scheda programmi: fondazioni dirette...

Spinta delle terre Teoria di Coulomb o del prisma di massima spinta

Relazione di calcolo geotecnica. Parco Area delle Scienze PARMA - Tel. 0521/906218/19/20. Pag. 1

OPERE DI SOSTEGNO. Normativa sismica Diego Lo Presti & Nunziante Squeglia Dipartimento di Ingegneria Civile Università di Pisa

Prontuario Opere Geotecniche (Norme tecniche per le costruzioni D.M. 14/01/2008)

OPEREE DI SOSTEGNO II

OPEREE DI SOSTEGNO II

Si definiscono tali le opere atte a sostenere il terreno che è stato o dovrà essere oggetto di scavo.

RELAZIONE TECNICA MURO DI SOSTEGNO

Valutazione della stabilità, capacità portante e resistenza a scorrimento di una fondazione superficiale.

Meccanica delle Terre Geotecnica Prova scritta di esame

Esercizi d esame risolti

OGGETTO: INTEGRAZIONE RELAZIONE GEOTECNICA DI OTTOBRE 2016

LA SPINTA DELLE TERRE

Normative di riferimento

Criticità e problemi applicativi delle Nuove Norme Tecniche per le Costruzioni

MURI DI SOSTEGNO. a cura del professore. Francesco Occhicone

Test 21 Calcolo del k di Winkler

Teoria di Résal. modulo C Spinta delle terre e muri di sostegno

INDICE 1. PREMESSE INQUADRAMENTO GEOLOGICO E GEOMORFOLOGICO CARATTERIZZAZIONE SISMICA DEL SITO... 12

Indice RELAZIONE GENERALE ILLUSTRATIVA INDAGINI GEOGNOSTICHE MODELLO GEOTECNICO VALORI CARATTERISTICI... 5

Lezione 8 GEOTECNICA. Docente: Ing. Giusy Mitaritonna

ANALISI E PROGETTAZIONE DELLE FONDAZIONI

VERIFICA DI PORTANZA DELLE FONDAZIONI

DIFFICOLTA' APPLICATIVE NELLA GEOTECNICA:

ε' = ε + θ β' = β + θ

ALLEGATO N.9 Portanza e cedimenti - valutazioni preliminari

Comune di Marcianise - Istituto Comprensivo d.d.1 Cavour Plesso Mazzini STRUTTURA VANO ASCENSORE

LEZIONE 7 CRITERI DI RESISTENZA

Lezione n. 7 del 14 marzo 2012

CALCOLO AGLI S.L.U. DI CAPRIATA IN LEGNO TIPO PALLADIO (ai sensi del D.M. 14/01/2008)

Prova scritta di Fondamenti di Geotecnica del 4/07/2005 1

Fondazioni dirette: Plinti

RISTRUTTURAZIONE EDILIZIA DEL NIDO D'INFANZIA DEL CAPOLUOGO "L'ISOLA DI PETER PAN" RELAZIONI TECNICHE E SPECIALISTICHE

Fondazioni superficiali: calcolo del carico limite

Spinta delle terre sulle strutture di sostegno

Esempio 1: trave di fondazione

Mezzo granulare complesso. Blocco scorrevole per attrito. Mezzo granulare elementare. F τ. (stati impossibili) curva limite

MODELLO ELASTICO (Legge di Hooke)

= 1+ = posta a distanza. dalla base del muro.

RELAZIONE GEOLOGICA DI FATTIBILITA

RELAZIONE GEOTECNICA REALIZZAZIONE DELLE INFRASTRUTTURE COMUNALE PER L INSEDIAMENTO DEL TECNOPOLO NELL AREA DENOMINATA EX MACELLO

CALCOLO MURI A GABBIONI

Esercizio su sforzi tangenziali indotti da taglio T in trave inflessa

Via Pinarella. Relazione geotecnica e sulle fondazioni Edificio Sud. Comune di Cervia (Ra)

Muro in c.a. tipo 1. Normative di riferimento

Esercitazione 11: Stato di tensione nella sezione di trave

Relazione di calcolo muri di sostegno 1

Analisi di stabilità del pendio. Normative di riferimento

Ultimate le analisi statica e l'analisi pushover è possibile procedere alla verifica delle fondazioni.

Progetto esecutivo. Calcoli strutturali. Intervento n. 15 km Calcolo terra armata

ESERCIZI DA ESAMI ( ) Stabilità dei pendii

L obiettivo è stato quello di verificare la relazione Rd > Ed, come indicato nelle NTC2008 al paragrafo 2.3.

MECCANICA APPLICATA ALLE MACCHINE L

RELAZIONE DI CALCOLO. P t = K a γ t z = 2

Gianni Michele De Gaetanis MURI DI SOSTEGNO METODO DEL CUNEO DI TENTATIVO, CON LE MODIFICHE DEL METODO MONONOBE-OKABE, E METODO DI FELLENIUS P13 P23

OPERE PER L INCREMENTO DELL EFFICIENZA DEL SISTEMA DI DERIVAZIONE IRRIGUA IN DESTRA SESIA PER LE ROGGE COMUNALE E MARCHIONALE DI GATTINARA

Corso di Geologia Applicata

Analisi di Stabilità ANALISI STABILITA' 1

Muri di sostegno in c.a.

Normative di riferimento

LEZIONE N 48 ELEMENTI TOZZI

Edifici in muratura. Il pannello murario. Catania, 20 aprile 2004 Bruno Calderoni. DAPS, Università di Napoli Federico II

Corso di Progetto di Strutture. POTENZA, a.a Pareti in c.a.

Fasi del progetto geotecnico di una fondazione

Giornata di Lavoro sulle attività di: Verifica sismica delle arginature in sponda destra del fiume Po da Boretto (RE) a Ro (FE) Parma, 11 aprile 2012

Il punzonamento. Catania, 18 marzo 2004 Pier Paolo Rossi

WallCAD Casi di prova per la validazione del software WallCAD+ versione 7.3

Edifici in muratura. L edificio soggetto a carichi verticali. Catania, 21 aprile 2004 Bruno Calderoni. DAPS, Università di Napoli Federico II

Analisi di Stabilità: metodo pendio indefinito PENDIO INDEFINITO 1

OPERE DI SOSTEGNO RIGIDE peso FLESSIBILI DEFORMABILI

Università IUAV di Venezia corso : Fondamenti di Geotecnica a.a

Fasi del progetto geotecnico di una fondazione

Verifica di stabilità globale

Lezione 8 GEOTECNICA. Docente: Ing. Giusy Mitaritonna

Ordine dei Geologi del Friuli Venezia Giulia. STABILITA DEI PENDII IN MATERIALI SCIOLTI 24 aprile 2009

MB Muro ( Ver. 2.0 ) Documento di Validazione. Ing. Mauro Barale

Le azioni sismiche e la stabilità dei pendii Elementi introduttivi SISMICA 1

FONDAZIONI PROFONDE TIPOLOGIA DEI PALI DI FONDAZIONE

PREMESSA...2 PRINCIPALE NORMATIVA DI RIFERIMENTO...2 TEORIA DEL CALCOLO PORTANZA E CEDIMENTI DI FONDAZIONI SUPERFICIALI...3 VERIFICA PORTANZA CORPO

Doc. N. C4133 REV. A. FOGLIO 2 di 25 CODIFICA DOCUMENTO C4133_E_C_AC4_MAJ05_0_IA_RC_007_A CCT

Transcript:

CALCOLO PORTANZA I FONAZIONI SUPERFICIALI NORMATIVE I RIFERIMENTO Norme tecniche per le Costruzioni 008 Norme tecniche per le truzioni.m. 14 gennaio 008. Eurocodice 7 Progettazione geotecnica Parte 1: Regole generali. Eurocodice 8 Indicazioni progettuali per la resistenza sismica delle strutture - Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici. CARICO LIMITE I FONAZIONI SU TERRENI Il carico limite di una fondazione superficiale può essere definito con riferimento a uel valore massimo del carico per il uale in nessun punto del sottosuolo si raggiunge la condizione di rottura (metodo di Frolich), oppure con riferimento a uel valore del carico, maggiore del precedente, per il uale il fenomeno di rottura si è esteso ad un ampio volume del suolo (metodo di Prandtl e successivi). Prandtl ha studiato il problema della rottura di un semispazio elastico per effetto di un carico applicato sulla sua superficie con riferimento all'acciaio, caratterizzando la resistenza a rottura con una legge del tipo: τ c + σ tg ϕ valida anche per i terreni. Le ipotesi e le condizioni introdotte dal Prandtl sono le seguenti: Materiale privo di peso e uindi γ0 Comportamento rigido - plastico Resistenza a rottura del materiale esprimibile con la relazione τc + σ tgϕ Carico uniforme, verticale ed applicato su una striscia di lunghezza infinita e di larghezza b (stato di deformazione piana) Tensioni tangenziali nulle al contatto fra la striscia di carico e la superficie limite del semispazio. All'atto della rottura si verifica la plasticizzazione del materiale racchiuso fra la superficie limite del semispazio e la superficie GFC. Nel triangolo AE la rottura avviene secondo due famiglie di segmenti rettilinei ed inclinati di 45 +ϕ/ rispetto all'orizzontale. Nelle zone AF e EC la rottura si produce lungo due famiglie di linee, l'una tituita da segmenti rettilinei passanti rispettivamente per i punti A ed E e l'altra da archi di de famiglie di spirali logaritmiche. I poli di ueste sono i punti A ed E. Nei triangoli AFG e EC la rottura avviene su segmenti inclinati di ±(45 + ϕ/ ) rispetto alla verticale. 1

b G A E F C Individuato ì il volume di terreno portato a rottura dal carico limite, uesto può essere calcolato scrivendo la condizione di euilibrio fra le forze agenti su ualsiasi volume di terreno delimitato in basso da una ualunue delle superfici di scorrimento. Si arriva uindi ad una euazione c, dove il coefficiente dipende soltanto dall'angolo di attrito ϕ del terreno. πtgϕ cot gϕ (45 + ϕ / ) 1 e tg Per ϕ 0 il coefficiente risulta pari a 5.14, uindi 5.14 c. Nell'altro caso particolare di terreno privo di coesione (c0, γ 0) risulta 0, secondo la teoria di Prandtl, non sarebbe dunue possibile applicare nessun carico sulla superficie limite di un terreno incoerente. a uesta teoria, anche se non applicabile praticamente, hanno preso le mosse tutte le ricerche ed i metodi di calcolo successivi. Infatti Cauot si pose nelle stesse condizioni di Prandtl ad eccezione del fatto che la striscia di carico non è più applicata sulla superficie limite del semispazio, ma a una profondità h, con h b; il terreno compreso tra la superficie e la profondità h ha le seguenti caratteristiche: γ 0, ϕ0, c0 e cioè sia un mezzo dotato di peso ma privo di resistenza. Risolvendo le euazioni di euilibrio si arriva all'espressione: A γ 1 + c che è sicuramente è un passo avanti rispetto a Prandtl, ma che ancora non rispecchia la realtà. Metodo di Terzaghi (1955) Terzaghi, proseguendo lo studio di Cauot, ha apportato alcune modifiche per tenere conto delle effettive caratteristiche dell'insieme opera di fondazione-terreno. Sotto l'azione del carico trasmesso dalla fondazione il terreno che si trova a contatto con la fondazione stessa tende a sfuggire lateralmente, ma ne è impedito dalle resistenze tangenziali che si sviluppano fra la fondazione ed il terreno. Ciò comporta una modifica dello stato tensionale nel terreno posto direttamente al di sotto della fondazione; per tenerne conto Terzaghi assegna ai lati A ed E del cuneo di Prandtl una inclinazione ψ rispetto all'orizzontale, scegliendo il valore di ψ in funzione delle caratteristiche meccaniche del terreno al contatto terreno-opera di fondazione. L'ipotesi γ 0 per il terreno sotto la fondazione viene ì superata ammettendo che le superfici di rottura restino inalterate, l'espressione del carico limite è uindi: A γ h + c + C γ b

in cui C è un coefficiente che risulta funzione dell'angolo di attrito ϕ del terreno posto al di sotto del piano di posa e dell'angolo ϕ prima definito; b è la semilarghezza della striscia. Inoltre, basandosi su dati sperimentali, Terzaghi passa dal problema piano al problema spaziale introducendo dei fattori di forma. Un ulteriore contributo è stato apportato da Terzaghi sull'effettivo comportamento del terreno. Nel metodo di Prandtl si ipotizza un comportamento del terreno rigido-plastico, Terzaghi invece ammette uesto comportamento nei terreni molto compatti. In essi, infatti, la curva carichi-cedimenti presenta un primo tratto rettilineo, seguito da un breve tratto curvilineo (comportamento elasto-plastico); la rottura è istantanea ed il valore del carico limite risulta chiaramente individuato (rottura generale). In un terreno molto sciolto invece la relazione carichi-cedimenti presenta un tratto curvilineo accentuato fin dai carichi più bassi per effetto di una rottura progressiva del terreno (rottura locale); di conseguenza l'individuazione del carico limite non è ì chiara ed evidente come nel caso dei terreni compatti. Per i terreni molto sciolti, Terzaghi consiglia di prendere in considerazione il carico limite il valore che si calcola con la formula precedente introducendo però dei valori ridotti delle caratteristiche meccaniche del terreno e precisamente: tgϕ rid /3 tgϕ e crid /3 c Esplicitando i coefficienti della formula precedente, la formula di Terzaghi può essere scritta: dove: ult c Nc sc + γ N + 0.5 γ Nγ sγ N a (45 + ϕ / ) (0.75π ϕ /)tanϕ a e N c ( N 1) cotϕ tanϕ p γ Nγ 1 ϕ Formula di Meyerhof (1963) Meyerhof propose una formula per il calcolo del carico limite simile a uella di Terzaghi.; le differenze consistono nell'introduzione di ulteriori coefficienti di forma. Egli introdusse un coefficiente s che moltiplica il fattore N, fattori di profondità di e di pendenza ii per il caso in cui il carico trasmesso alla fondazione è inclinato sulla verticale. I valori dei coefficienti N furono ottenuti da Meyerhof ipotizzando vari archi di prova F (v. meccanismo Prandtl), mentre il taglio lungo i piani AF aveva dei valori approssimati. I fattori di forma tratti da Meyerhof sono di seguito riportati, insieme all'espressione della formula. Carico verticale ult c Nc sc dc+ γ N s d+ 0.5 γ Nγ sγ dγ 3

Carico inclinato ul tc Nc ic dc+ γ N i d + 0.5 γ Nγ iγ dγ π tanϕ N e tan N c ( N 1) cot ϕ Nγ N ( 45 + ϕ / ) ( 1) tan( 1.4ϕ ) fattore di forma: fattore di profondità: s c 1+ 0.k p L s sγ 1+ 0.1k p L per ϕ > 10 per ϕ 0 d c 1 + 0. k p d dγ 1 + 0.1 k p d dγ 1 per ϕ > 10 per ϕ 0 inclinazione: θ i c iγ 1 90 θ iγ 1 ϕ iγ 0 per ϕ > 0 per ϕ 0 dove : p tan (45 +ϕ/) θ Inclinazione della risultante sulla verticale. Formula di Hansen (1970) E' una ulteriore estensione della formula di Meyerhof; le estensioni consistono nell'introduzione di bi che tiene conto della eventuale inclinazione sull'orizzontale del piano di posa e un fattore gi per terreno in pendenza. La formula di Hansen vale per ualsiasi rapporto /, uindi sia per fondazioni superficiali che profonde, ma lo stesso autore introdusse dei coefficienti per meglio interpretare il comportamento reale della fondazione, senza di essi, infatti, si avrebbe un aumento troppo forte del carico limite con la profondità. Per valori di / <1 4

Per valori />1: Nel caso ϕ 0 d c 1 + 0.4 d 1 + tan ϕ (1 sin ϕ ) 1 d c 1 + 0.4 tan 1 d 1 + tan ϕ (1 sin ϕ ) tan -------------------------------------------------------------------------------------------- / 0 1 1.1 5 10 0 100 -------------------------------------------------------------------------------------------- d'c 0 0.40 0.33 0.44 0.55 0.59 0.61 0.6 -------------------------------------------------------------------------------------------- Nei fattori seguenti le espressioni con apici (') valgono uando ϕ0. Fattore di forma: s ' 0. ' c L N s c 1+ N c L s c 1 per fondazioni nastriformi s 1+ tanϕ L sγ 1 0.4 L Fattore di profondità: Fattori di inclinazione del carico d ' 0.4k ' c d c 1+ 0.4k d 1+ tan ϕ (1 sin ϕ ) k dγ 1 k se tan 1 k per ualsiasi ϕ 1 se > 1 5

' H i c 0.5 0.5 1 A c f a 1 i i c i N 1 5 0.5H i 1 cot V + A c ϕ f a 5 0.7H iγ 1 cot V + A c ϕ f a 5 (0.7 η / 450) H iγ 1 cot V + A c ϕ f a Fattori di inclinazione del terreno (fondazione su pendio): ( η 0) ( η > 0) ' β gc 147 β gc 1 147 g g (1 0.5 tan β ) 5 γ Fattori di inclinazione del piano di fondazione (base inclinata) ' η b c 147 η b c 1 147 b exp( η tanϕ) b exp(.7η tanϕ) Formula di Vesic (1975) La formula di Vesic è analoga alla formula di Hansen, con N ed Nc come per la formula di Meyerhof ed Nγ come sotto riportato: Nγ(N+1)*tan(ϕ) I fattori di forma e di profondità che compaiono nelle formule del calcolo della capacità portante sono uguali a uelli proposti da Hansen; alcune differenze sono invece riportate nei fattori di inclinazione del carico, del terreno (fondazione su pendio) e del piano di fondazione (base inclinata). Formula rich-hansen (EC 7 EC 8) Affinché una fondazione possa resistere il carico di progetto con sicurezza nei riguardi della rottura generale, per tutte le combinazioni di carico relative allo SLU (stato limite ultimo), deve essere soddisfatta la seguente disuguaglianza: Vd Rd ove Vd è il carico di progettto allo SLU, normale alla base della fondazione, comprendente anche il peso della fondazione stessa; mentre Rd è il carico limite di progetto della fondazione nei confronti di carichi normali, tenendo conto anche dell effetto di carichi inclinati o eccentrici. 6

Nella valutazione analitica del carico limite di progetto Rd si devono considerare le situazioni a breve e a lungo termine nei terreni a grana fine. Il carico limite di progetto in condizioni non drenate si calcola come: ove: R/A ( + π) c u s c i c + A L area della fondazione efficace di progetto, intesa, in caso di carico eccentrico, come l area ridotta al cui centro viene applicata la risultante del carico. c u s c Coesione non drenata. pressione litostatica totale sul piano di posa. Fattore di forma s c 1 + 0, ( /L ) s c 1, per fondazioni rettangolari Per fondazioni uadrate o circolari. i c Fattore correttivo per l inclinazione del carico dovuta ad un carico H. ( + 1 H / A' ) ic 0,51 c u Per le condizioni drenate il carico limite di progetto è calcolato come segue. R/A c N c s c i c + N s i + 0,5 γ N γ s γ i γ ove: N N N c γ e π tan ϕ ' tan ( 45 + φ' / ) ( N 1) cotφ' 1.5( N 1) tanφ' Fattori di forma ( ' / L' ) senφ' s 1+ per forma rettangolare s 1+ senφ' per forma uadrata o circolare ( ' / L' ) sγ 1 0,3 per forma rettangolare s 0,7 γ per forma uadrata o circolare ( s N 1) /( N 1) sc per forma rettangolare, uadrata o circolare. Fattori inclinazione risultante dovuta ad un carico orizzontale H parallelo a L i i 1- H / (V + A c cot ) i c (i N -1) / ( N 1) 7

Fattori inclinazione risultante dovuta ad un carico orizzontale H parallelo a i iγ ic [ 1 0,7H /( V + A' c' cot φ' )] 3 [ 1 H /( V + A' c' cot φ' )] ( i N 1) /( N 1) 3 Oltre ai fattori correttivi di cui sopra sono considerati uelli complementari della profondità del piano di posa e dell inclinazione del piano di posa e del piano campagna (Hansen). Metodo di Richards et. Al. Richards, Helm e udhu (1993) hanno sviluppato una procedura che consente, in condizioni sismiche, di valutare sia il carico limite sia i cedimenti indotti, e uindi di procedere alle verifiche di entrambi gli stati limite (ultimo e di danno). La valutazione del carico limite viene perseguita mediante una semplice estensione del problema del carico limite al caso della presenza di forze di inerzia nel terreno di fondazione dovute al sisma, mentre la stima dei cedimenti viene ottenuta mediante un approccio alla Newmark (cfr. Appendice H di Aspetti geotecnici della progettazione in zona sismica Associazione Geotecnica Italiana ). Glia autori hanno esteso la classica formula trinomia del carico limite: L N + N c + 0.5N γ c γ ove i fattori di capacità portante vengono calcolati con le seguenti formule: N c ( N 1) cot( φ) N pe AE N γ pe AE 1 tan ( ρ ) AE Esaminando con un approccio da euilibrio limite, un meccanismo alla Coulomb e portando in conto le forze d inerzia agenti sul volume di terreno a rottura. In campo statico, il classico meccanismo di Prandtl può essere infatti approssimato come mostrato nella figura che segue, eliminando la zona di transizione (ventaglio di Prandtl) ridotta alla sola linea AC, che viene riguardata come una parete ideale in euilibrio sotto l azione della spinta attiva e della spinta passiva che riceve dai cunei I e III: 8

Schema di calcolo del carico limite (L) Gli autori hanno ricavato le espressioni degli angoli ρa e ρp che definiscono le zone di spinta attiva e passiva, e dei coefficienti di spinta attiva e passiva A e P in funzione dell angolo di attrito interno f del terreno e dell angolo di attrito d terreno parete ideale: ρ A ϕ + tan 1 tan ( ϕ) ( tan( ϕ) cot( ϕ) ) ( 1+ tan( δ ) cot( ϕ) ) tan( ϕ) ( ) ( ( ) ( )) 1+ tan δ tan ϕ + cot ϕ ρ P ϕ + tan 1 tan ( ϕ) ( tan( ϕ) cot( ϕ) ) ( 1+ tan( δ ) cot( ϕ) ) + tan( ϕ) ( ) ( ( ) ( )) 1+ tan δ tan ϕ + cot ϕ A ( δ ) 1 + sin ( ϕ) ( ϕ + δ ) sin( ϕ) ( δ ) P ( δ ) 1 sin ( ϕ) ( ϕ + δ ) sin( ϕ) ( δ ) E comunue da osservare che l impiego delle precedenti formule assumendo φ0.5δ, conduce a valore dei coefficienti di carico limite molto prossimi a uelli basati su un analisi alla Prandtl. Richards et. Al. hanno uindi esteso l applicazione del meccanismo di Coulomb al caso sismico, portando in conto le forze d inerzia agenti sul volume di terreno a rottura. Tali forze di massa, dovute ad accelerazioni kh g e kv g, agenti rispettivamente in direzione orizzontale e verticale, sono a loro volta pari a kh γ e kv γ. Sono state ì ottenute le estensioni delle espressioni di ρa e ρp, nonché di A e P, rispettivamente indicate come ρae e ρpe e come AE e PE per denotare le condizioni sismiche: 9

ρ ρ AE PE ( ϕ ϑ) ( ϕ ϑ) + tan 1 + tan 1 ( 1+ tan ( ϕ ϑ) ) [ 1+ tan( δ + ϑ) cot( ϕ ϑ) ] tan( ϕ ϑ) ( ) ( ( ) ( )) 1+ tan δ + ϑ tan ϕ ϑ + cot ϕ ϑ ( 1+ tan ( ϕ ϑ) ) [ 1+ tan( δ + ϑ) cot( ϕ ϑ) ] tan( ϕ ϑ) ( ) ( ( ) ( )) 1+ tan δ + ϑ tan ϕ ϑ + cot ϕ ϑ AE ( ϑ) ( δ + ϑ) 1 + ( ϕ ϑ) sin( ϕ + δ ) sin( ϕ ϑ) ( δ + ϑ) PE ( ϑ) ( δ + ϑ) 1 ( ϕ ϑ) sin( ϕ + δ ) sin( ϕ ϑ) ( δ + ϑ) I valori di N e Nγ sono determinabili ancora avvalendosi delle formule precedenti, impiegando naturalmente le espressioni degli angoli ρae e ρpe e dei coefficienti AE e PE relative al caso sismico. In tali espressioni compare l angolo θ definito come: kh tan( θ ) 1 k Nella tabella che segue sono mostrati i fattori di capacità portante calcolati per i seguenti valori dei parametri: φ 30 δ 15 Per diversi valori dei coefficienti di spinta sismica: kh/(1-kv) N Nγ Nc v 0 16.51037 3.75643 6.86476 0.087 13.11944 15.88906 0.9915 0.176 9.851541 9.465466 15.3313 0.68 7.97657 5.35747 10.90786 0.364 5.1904.604404 7.141079 0.466 3.16145 0.87910 3.838476 0.577 1.06698 1.103E-03 0.1160159 Tabella dei fattori di capacità portante per φ30 10