Verifica di Matematica Classe Quinta Valutazione Conoscenze. Fornisci la definizione di funzione continua in un punto x del dominio. Una funzione f(x) è continua in x 0 D se i iti destro e sinistro in x 0 esistono e sono coincidenti x x + 0 f(x) = x x 0 2. Calcola il valore dei seguenti iti precisando quando si tratta di una forma indeterminata e specificando il tipo di forma indeterminata ( 0 0, ) (a) (b) (c) x 2 6x+8 x 2 x 3 non è una forma indeterminata perchè il denominatore non si annulla per x = 2, basta sostituire 2 alla frazione e si ha f(x) x 2 6x+8 = 22 6 2+8 = 4 2+8 = 2 2 x 2 x 3 2 3 2 3 2 3 = 0 = 0 il numeratore si annulla ma questo non da alcun problema. x 3 + 2x+8 x 5 2x+4 è una forma indeterminata del tipo perché al numeratore abbiamo e al denominatore abbiamo x3 + 2x+8 = x3 = x5 2x+4 = x5 = ma il denominatore è un infinito di ordine superiore, domina rispetto al numeratore e quindi lindeterminazione di eina facilmente x 3 + 2x+8 x 5 2x+4 = x3 + 2x+8 x5 2x+4 = x3 4 x + x+ x5 = x 3 x 5 = x 2 = 0 qui non abbiamo forme indeterminate, abbiamo una divisione per zero perché il numeratore è costante ed denominatore si annulla in corrispondenza di, lunico problema e capire se il ite destro sia + o. Basta analizzare il segno del denominatore considerando un valore che approssima per eccesso (è un ite destro!), prendiamo ad esempio 0.99 ed avremo x+ = 0.99+ = 0.0 > 0 per cui il denominatore è positivo nell intorno destro di. Il numeratore è 4, sempre positivo ed i rapporto di due quantità positive è un numero positivo per cui potremo scrivere x + 4 x+ = +
(d) x 6 (x+6) 2 qui non abbiamo forme indeterminate, abbiamo una divisione per zero perchè il denominatore si annulla in corrispondenza di 6 ed il numeratore è costante, lunico problema e capire se il ite sia + o. Il numeratore è pari a, sempre positivo, è presente un segno meno all esterno della frazione, il denominatore e un quadrato e quindi, indipendentemente dal segno che assume (x + 6) sarà sempre positivo. Il rapporto di due numeri positivi con un segno meno all esterno è negativo per cui avremo x 6 (x+6) 2 = (e) Si noti che sia il ite destro che quello sinistro danno sempre x5 +x+4 Non abbiamo forme indeterminate ed in questo caso avremo (f) (g) x5 +x+4 = x5 = se molitplichiamo per se stessa una quantità positiva un numero dispari di volte otterremo un numero positivo ma siccome ci sta il segno meno davanti avremo. x 4 + 4 x 2 + 5x+6 e una forma indeterminata del tipo perché al numeratore abbiamo e al denominatore abbiamo x4 + 4 = x4 = + x2 + 5x+6 = x2 = + ma il numeratore e un infinito di ordine superiore e domina rispetto al denominatore e quindi lindeterminazione di eina facilmente x 4 + 4 x 2 + 5x+6 = x4 + 4 x2 + 5x+6 = x4 x 2 x 0 x 4 x2 = x 4 x 2 = x2 = + qui non abbiamo forme indeterminate, abbiamo una divisione per zero perché il denominatore si annulla in corrispondenza di 0 ed il numeratore in corrispondenza di 0 vale 2, lunico problema è capire se il ite sia + o. Il numeratore per x = 0 e pari a 2, sempre negativo, il denominatore è un quadrato e quindi, indipendentemente dal segno della base sara sempre positivo. Il rapporto tra un numero negativo ed un numero positivo è negativo per cui avremo x 2 x 0 x 4 = 2
(h) x 2 6 x 0 x 3 x qui non abbiamo forme indeterminate, abbiamo una divisione per zero perché il denominatore si annulla in corrispondenza di 0 ed il numeratore in corrispondenza di 0 vale 6, lunico problema è capire se il ite sinistro sia + o. Il numeratore per x = 0 e pari a 6, sempre negativo, il denominatore va valutato per un valore di x che approssima 0 per difetto, ad es., 0.0 x 3 x = x(x 2 ) = ( 0.0) (( 0.0) 2 ) 0.0 < 0 ed è quindi negativo nell intorno sinistro di 0. Il rapporto tra un numero negativo ed un numero negativo è positivo per cui avremo x 2 6 x 0 x 3 x = + (i) x4 + 2x 2 + 6 Non abbiamo forme indeterminate ed in questo caso avremo (j) x4 + 2x 2 + 6 = x4 = + se molitplichiamo per se stessa una quantita negativa un numero pari di volte otterremo un numero positivo x 3 +x+2 4x 3 +x 2 +x+3 è una forma indeterminata del tipo perché al numeratore abbiamo e al denominatore abbiamo x3 +x+2 = x3 = 4x3 +x 2 +x+3 = 4x3 = + numeratore e denominatore hanno lo stesso ordine per cui il ite è il rapporto dei coefficienti di grado massimo al numeratore ed al denominatore x 3 +x+2 4x 3 +x 2 +x+3 = x3 +x+2 4x3 +x 2 +x+3 = x3 4x3 = x 3 4x 3 = 4 = 4 (k) x x+ 2x 2 + 4x+2 in questo caso abbiamo una forma indeterminata 0 0 perche il numeratore si annulla perx = e stessa cosa fa il denominatore 2x 2 + 4x+2 = 2 ( x 2 + 2x+ ) = 2 (x+) 2 = 2 ( +) 2 = 0 il denominatore è un quadrato di binomio e sulla frazione avremo x+ 2x 2 + 4x+2 = x+ 2 (x+) 2 = 2 (x+) 3
per cui largomento del ite si semplifica ed avremo x x+ 2x 2 + 4x+2 = x x + 2 (x+) = + 2 (x+) perché il denominatore è positivo nell intorno destro di e x 2 (x+) = (l) perché il denominatore è negativo nell intorno sinistro di x 0 x 3 +x x 3 2x in questo caso abbiamo una forma indeterminata 0 0 perche il numeratore si annulla per x = 0 e stessa cosa fa il denominatore. Semplichiamo allora numeratore e denominatore x 3 +x x 3 2x = x2 + x 2 2 per cui largomento del ite diventa x 0 x 3 +x x 3 2x = x 2 + x 0 x 2 2 = 2 3. Determina il dominio della seguenti funzioni dopo averle classificate a) y = x3 5x+5, D =R 3 b) y = 5+x x 4, D =R\4 { c) log(2x+), 2x+ > 0, D = x R : x > } 2 4
4. Dato il grafico della seguente funzione 0.2 y 0.5 0. 0.05-5 -4-3 -2-2 3 4 5 x -0.05-0.5-0.574-0.2-0.25-0.3 completa: (a) Dominio: D = {x R : x 3} (b) Codominio: C =R (c) f(0) = 0.05 (d) f( 2) = 0.574 (e) f() = 0 (f) la funzione interseca gli assi? Si, nei punti di coordinate (0, 0.05) e (, 0) (g) f(x) > 0 per x appartenente all intervallo (, 3) (h) f(x) < 0 per x appartenente all intervallo (, ) (3, + ) (i) f(x) = 0 nel punto x = (j) f(x) è crescente nell intervallo ( 2, 3) (3, + ) (k) f(x) è decrescente nell intervallo (, 2) (l) la funzione ha i seguenti asintoti: orizzontali di equazione y = 0; verticali di equazione x = 3; obliqui di equazione (NESSUNO). 5
5. Calcola il valore dei iti indicati, leggendo il grafico y 30 20 0-2 3 x -0-20 (a) (b) (c) (d) f(x) = + f(x) = 0 x 2 +f(x) = + x 2 f(x) = 6