Kernel Methods. Corso di Intelligenza Artificiale, a.a Prof. Francesco Trovò

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Kernel Methods. Corso di Intelligenza Artificiale, a.a Prof. Francesco Trovò"

Transcript

1 Kernel Methods Corso di Intelligenza Artificiale, a.a Prof. Francesco Trovò 14/05/2018

2 Kernel Methods Definizione di Kernel Costruzione di Kernel Support Vector Machines Problema primale e duale Kernel representation of SVM

3 Kernel Methods Sono metodi memory based (usano direttamente il training set) Veloci a fare training Lenti per fare predizione Richiedono una metrica sullo spazio degli input Quando vogliamo catturare degli effetti nonlineari Possiamo utilizzare degli spazi a dimensioni più grandi (es. base functions φ i ( )) Dobbiamo scegliere degli spazi appropriati al problema analizzato Il loro uso rende i metodi più costosi computazionalmente Abbiamo un numero maggiore di feature Dobbiamo operativamente calcolare le feature

4 Esempio Supponiamo di avere un vettore di input x composto da M elementi e di voler calcolare la sua espansione a feature quadratiche Devo considerare tutte le feature, tutte le feature al quadrato e ogni combinazione a due a due delle variabili originali Mi richiede sia di calcolare le nuove feature composte da 5M+M2 elementi 2 Devo apprendere in uno spazio in cui ho 5M+M2 2 dimensioni

5 Con l utilizzo dei kernel non dobbiamo calcolare esplicitamente le feature utilizzate Una funzione di kernel è data da una funzione simmetrica esprimibile come prodotto di funzioni di base, ovvero: Può essere interpretata come una funzione di similarità tra i due vettori dello spazio degli input

6 Kernel classici Kernel lineare Kernel stazionario Kernel omogeneo Kernel Gaussiano

7 Kernel Trick Idea: ogni volta che la funzione di base appare nella formulazione del modello come un prodotto scalare possiamo sostituirla con il kernel Un kernel per essere valido deve essere esprimibile come prodotto scalare di funzioni di base Molti dei metodi di regressione e classificazione possono essere riformulati in termini di kernel

8 Esempio: Ridge regression Consideriamo la loss della regressione regolarizzata con la norma 2 del vettore dei parametri Mettendo il gradiente a zero abbiamo:

9 Gram Matrix Definiamo la Gram matrix di N vettori come: ovvero ogni elemento è É una matrice N N simmetrica (essendo il kernel simmetrico)

10 Loss in termini di Gram Matrix Esplicitando i termini della loss abbiamo E sostituendo la gram matrix Derivando e ponendo la derivata a zero abbiamo Ovvero abbiamo che la soluzione è una combinazione degli input e dipende solo dalla gram matrix

11 Quindi la predizione diventa La predizione è una combinazione lineare degli output del training set Differenze della formulazione a kernel: Inverto una matrice N N Non lavoro mai esplicitamente con il vettore delle feature φ(x)

12 Costruzione dei kernel Possiamo riformulare i nostri problemi con dei kernel a patto che essi siano validi Due metodi esistono per la costruzione di kernel: Costruzione dalle feature Costruzione diretta Composizione di kernel validi

13 Kernel costruiti con basi di feature k(x, x ) con x =

14 Costruzione diretta Definiamo il kernel da un prodotto scalare in qualche spazio Esempio: kernel in 2D Per calcolare il prodotto delle feature necessito 9 moltiplicazioni, per calcolare il valore del kernel solo 3 (2 moltiplicazioni ed un elevamento a potenza)

15 Testare se una funzione è un kernel Esiste un modo per capire se una funzione può essere un kernel valido, senza scrivere esplicitamente la base φ(x) La Gram matrix deve essere semidefinita positiva ( x 0, x T K x 0) Teorema (Mercer s theorem) Ogni funzione continua, simmetrica e semi definita positiva k(x, y) può essere espressa come un prodotto scalare in uno spazio (potenzialmente con molte dimensioni)

16 Regole di composizione dei Kernel

17 Kernel su oggetti A differenza dei vettori di feature, i kernel possono essere applicati anche elementi non numerici Grafi Oggetti Necessitiamo solo una misura di similarità tra due oggetti considerati Esempio: kernel sugli insiemi

18 Esempio: kernel regression

19 Esempi di metodi con kernel: GP Generalizzazione delle gaussiane multivariate nel caso infinito dimensionale Possono essere usati per: Regressione Classificazione Permettono di stimare sia il valore medio di una funzione, sia l incertezza corrispondente al punto predetto

20 Support Vector Machines Proposte negli anni 90 per problemi di classificazione, rimangono uno dei metodi migliori per questo task Sono state estese anche per risolvere problemi di regressione, clustering e anomaly detection Sono un argomento complesso in quanto richiedono la comprensione di Teoria dell apprendimento Teoria dei kernel Ottimizzazione vincolata Proveremo a descriverne i meccanismi principali per poter operare con esse

21 Definizione di SVM Una SVM è univocamete definita da: Un sottoinsieme S del training set (x, t) detto insieme dei support vector Un vettore di pesi a, uno per ogni support vector Una funzione di similarità tra i vettori di input k(x, x ) La predizione viene effettuata tramite la funzione: Ricorda molto la funzione decisionale del perceptron

22 Oltre il perceptron Idea: massimizzo il margine tra superfice di separazione e i dati

23 Massimizzare il Margine Distanza del più vicino punto del dataset al decision boundary Voglio il parametro che massimizzi questa grandezza

24 Ottimizzazione Purtroppo la cifra da massimizzare risulta essere un problema troppo complesso da risolvere Un problema equivalente risulta essere:

25 Funzione Lagrangiana Dato un problema di ottimizzazione vincolata Posso trasformarlo nelle seguente: Lagrangian function Condizioni KKT

26 Lagrangiana delle SVM Mettendo il gradiente a zero abbiamo Il problema diventa:

27 Primale vs. Duale Entrambi i problemi sono di ottimizzazione quadratica Problema primale Può essere risolto con complessità M 3 Se lo spazio dell è feature abbastanza piccolo posso risolverlo Problema duale Riporta il problema rispetto ad un kernel generico Può lavorare su spazi di feature potenzialmente di dimensioni infinite

28 Soluzione Classifico i punti in base a: Dove ho che molti dei coefficienti α n sono nulli e Posso sommare solo su un sottoinsieme S di N S support vectors, che solitamente è molto minore dei punti del training set

29 SVM con kernel gaussiani

30 Se le classi non sono separabili Posso riformulare il problema nel caso in cui non esista il margine, modificando i vincoli esistenti per rilassare il problema

Apprendimento Automatico

Apprendimento Automatico Apprendimento Automatico Fabio Aiolli www.math.unipd.it/~aiolli Sito web del corso www.math.unipd.it/~aiolli/corsi/1516/aa/aa.html Rappresentazione dei dati con i kernel Abbiamo una serie di oggetti S

Dettagli

Computazione per l interazione naturale: Richiami di ottimizzazione (3) (e primi esempi di Machine Learning)

Computazione per l interazione naturale: Richiami di ottimizzazione (3) (e primi esempi di Machine Learning) Computazione per l interazione naturale: Richiami di ottimizzazione (3) (e primi esempi di Machine Learning) Corso di Interazione Naturale Prof. Giuseppe Boccignone Dipartimento di Informatica Università

Dettagli

Università degli Studi di Roma Tor Vergata

Università degli Studi di Roma Tor Vergata Funzioni kernel Note dal corso di Machine Learning Corso di Laurea Specialistica in Informatica a.a. 2010-2011 Prof. Giorgio Gambosi Università degli Studi di Roma Tor Vergata 2 Queste note derivano da

Dettagli

Sistemi di Elaborazione dell Informazione 170. Caso Non Separabile

Sistemi di Elaborazione dell Informazione 170. Caso Non Separabile Sistemi di Elaborazione dell Informazione 170 Caso Non Separabile La soluzione vista in precedenza per esempi non-linearmente separabili non garantisce usualmente buone prestazioni perchè un iperpiano

Dettagli

Apprendimento statistico (Statistical Learning)

Apprendimento statistico (Statistical Learning) Apprendimento statistico (Statistical Learning) Il problema dell apprendimento Inquadriamo da un punto di vista statistico il problema dell apprendimento di un classificatore Un training set S={(x,y ),,(x

Dettagli

ESAME di OTTIMIZZAZIONE Corso di Laurea Magistrale in Ingegneria Gestionale 1 o anno

ESAME di OTTIMIZZAZIONE Corso di Laurea Magistrale in Ingegneria Gestionale 1 o anno SIMULAZIONE ESAME di OTTIMIZZAZIONE 27 Gennaio 21 ESAME di OTTIMIZZAZIONE Corso di Laurea Magistrale in Ingegneria Gestionale 1 o anno Cognome : Nome : Esercizio 1. Si consideri il seguente problema: min

Dettagli

Apprendimento statistico (Statistical Learning)

Apprendimento statistico (Statistical Learning) Apprendimento statistico (Statistical Learning) Il problema dell apprendimento Inquadriamo da un punto di vista statistico il problema dell apprendimento di un classificatore Un training set S={(x,y ),,(x

Dettagli

Università degli Studi di Bergamo Intelligenza Artificiale (Codice: 38066) 12 Giugno 2019

Università degli Studi di Bergamo Intelligenza Artificiale (Codice: 38066) 12 Giugno 2019 DIPARTIMENTO DI INGEGNERIA GESTIONALE, DELL INFORMAZIONE E DELLA PRODUZIONE Università degli Studi di Bergamo Intelligenza Artificiale (Codice: 38066) 12 Giugno 2019 Nome: Cognome: Matricola: Riga: Colonna:

Dettagli

Funzioni kernel. Docente: Nicolò Cesa-Bianchi versione 18 maggio 2018

Funzioni kernel. Docente: Nicolò Cesa-Bianchi versione 18 maggio 2018 F94) Metodi statistici per l apprendimento Funzioni kernel Docente: Nicolò Cesa-Bianchi versione 18 maggio 2018 I predittori lineari possono soffrire di un errore di bias molto elevato in quanto predittore

Dettagli

Support Vector Machines

Support Vector Machines F94) Metodi statistici per l apprendimento Support Vector Machines Docente: Nicolò Cesa-Bianchi versione 28 maggio 208 La Support Vector Machine d ora in poi SVM) è un algoritmo di apprendimento per classificatori

Dettagli

Computazione per l interazione naturale: processi gaussiani

Computazione per l interazione naturale: processi gaussiani Computazione per l interazione naturale: processi gaussiani Corso di Interazione uomo-macchina II Prof. Giuseppe Boccignone Dipartimento di Scienze dell Informazione Università di Milano boccignone@dsi.unimi.it

Dettagli

Computazione per l interazione naturale: Classificatori non probabilistici

Computazione per l interazione naturale: Classificatori non probabilistici Computazione per l interazione naturale: Classificatori non probabilistici Corso di Interazione Naturale Prof. Giuseppe Boccignone Dipartimento di Informatica Università di Milano boccignone@di.unimi.it

Dettagli

Università degli Studi di Bergamo Intelligenza Artificiale (Codice: 38066) Secondo Parziale - 11 Giugno 2018

Università degli Studi di Bergamo Intelligenza Artificiale (Codice: 38066) Secondo Parziale - 11 Giugno 2018 DIPARTIMENTO DI INGEGNERIA GESTIONALE, DELL INFORMAZIONE E DELLA PRODUZIONE Università degli Studi di Bergamo Intelligenza Artificiale (Codice: 38066) Secondo Parziale - 11 Giugno 2018 Nome: Cognome: Matricola:

Dettagli

Università degli Studi di Bergamo Intelligenza Artificiale (Codice: 38066) 12 Giugno 2019

Università degli Studi di Bergamo Intelligenza Artificiale (Codice: 38066) 12 Giugno 2019 DIPARTIMENTO DI INGEGNERIA GESTIONALE, DELL INFORMAZIONE E DELLA PRODUZIONE Università degli Studi di Bergamo Intelligenza Artificiale (Codice: 38066) 12 Giugno 2019 Nome: Cognome: Matricola: Riga: Colonna:

Dettagli

Regressione Lineare. Corso di Intelligenza Artificiale, a.a Prof. Francesco Trovò

Regressione Lineare. Corso di Intelligenza Artificiale, a.a Prof. Francesco Trovò Regressione Lineare Corso di Intelligenza Artificiale, a.a. 2017-2018 Prof. Francesco Trovò 23/04/2018 Regressione Lineare Supervised Learning Supervised Learning: recap È il sottocampo del ML più vasto

Dettagli

RICERCA OPERATIVA (9 cfu)

RICERCA OPERATIVA (9 cfu) a PROVA scritta di RICERCA OPERATIVA (9 cfu) gennaio Cognome Nome Ai fini della pubblicazione (cartacea e elettronica) del risultato ottenuto nella prova di esame, autorizzo al trattamento dei miei dati

Dettagli

Computazione per l interazione naturale: Regressione lineare

Computazione per l interazione naturale: Regressione lineare Computazione per l interazione naturale: Corso di Interazione uomo-macchina II Prof. Giuseppe Boccignone Dipartimento di Scienze dell Informazione Università di Milano boccignone@dsi.unimi.it http://homes.dsi.unimi.it/~boccignone/l

Dettagli

Computazione per l interazione naturale: Classificatori non probabilistici

Computazione per l interazione naturale: Classificatori non probabilistici Computazione per l interazione naturale: Classificatori non probabilistici Corso di Interazione uomo-macchina II Prof. Giuseppe Boccignone Dipartimento di Scienze dell Informazione Università di Milano

Dettagli

Data Mining and Machine Learning Lab. Lezione 8 Master in Data Science for Economics, Business and Finance 2018

Data Mining and Machine Learning Lab. Lezione 8 Master in Data Science for Economics, Business and Finance 2018 Data Mining and Machine Learning Lab. Lezione 8 Master in Data Science for Economics, Business and Finance 2018 18.05.18 Marco Frasca Università degli Studi di Milano SVM - Richiami La Support Vector Machine

Dettagli

Algoritmi di classificazione supervisionati

Algoritmi di classificazione supervisionati Corso di Bioinformatica Algoritmi di classificazione supervisionati Giorgio Valentini DI Università degli Studi di Milano 1 Metodi di apprendimento supervisionato per problemi di biologia computazionale

Dettagli

Support Vector Machines introduzione

Support Vector Machines introduzione 7 Support Vector Machines introduzione Vittorio Maniezzo Università di Bologna 1 SVM - introduzione Le SV machinessono state sviluppate negli AT&T Bell Laboratoriesda Vapnike colleghi (Boseret al., 1992,

Dettagli

La notazione usata è quella usuale nel caso scalare, ed è estesa al caso generale. Consideriamo una forma quadratica:

La notazione usata è quella usuale nel caso scalare, ed è estesa al caso generale. Consideriamo una forma quadratica: . SU ALCUNI OPERAORI DI DERIVAZIONE Alcune operazioni tipiche dell analisi matematica hanno un diretto riscontro in termini matriciali. Consideriamo ad esempio una forma lineare: f() l l + l +..l n n ;

Dettagli

25 - Funzioni di più Variabili Introduzione

25 - Funzioni di più Variabili Introduzione Università degli Studi di Palermo Facoltà di Economia CdS Statistica per l Analisi dei Dati Appunti del corso di Matematica 25 - Funzioni di più Variabili Introduzione Anno Accademico 2013/2014 M. Tumminello

Dettagli

Richiami di Algebra Lineare

Richiami di Algebra Lineare Richiami di Algebra Lineare Eduardo Rossi Università degli Studi di Pavia Corso di Econometria Marzo 2015 Rossi Algebra Lineare 2015 1 / 41 Vettori Prodotto interno a : (n 1) b : (n 1) a b = a 1 b 1 +

Dettagli

5.6 Metodo di penalità e metodo basato sulle funzioni lagrangiane aumentate. min f(x) s.v. c i (x) 0 i I c i (x) = 0 i E (1) x R n

5.6 Metodo di penalità e metodo basato sulle funzioni lagrangiane aumentate. min f(x) s.v. c i (x) 0 i I c i (x) = 0 i E (1) x R n 5.6 Metodo di penalità e metodo basato sulle funzioni lagrangiane aumentate Consideriamo il generico problema di PNL min f(x) s.v. c i (x) 0 i I c i (x) = 0 i E (1) x R n dove f e le c i sono di classe

Dettagli

5.6 Metodo di penalità e metodo basato sulle funzioni lagrangiane aumentate

5.6 Metodo di penalità e metodo basato sulle funzioni lagrangiane aumentate 5.6 Metodo di penalità e metodo basato sulle funzioni lagrangiane aumentate Consideriamo il generico problema di PNL min f (x) s.v. c i (x) 0 i I c i (x) = 0 i E (1) x R n dove f e le c i sono di classe

Dettagli

Minimi quadrati e massima verosimiglianza

Minimi quadrati e massima verosimiglianza Minimi quadrati e massima verosimiglianza 1 Introduzione Nella scorsa lezione abbiamo assunto che la forma delle probilità sottostanti al problema fosse nota e abbiamo usato gli esempi per stimare i parametri

Dettagli

Classificazione e regressione per mezzo di Support Vector Machine

Classificazione e regressione per mezzo di Support Vector Machine Classificazione e regressione per mezzo di Support Vector Machine Felice Andrea Pellegrino Dipartimento di Elettrotecnica Elettronica e Informatica Università degli Studi di Trieste Il presente documento

Dettagli

Classificazione e regressione per mezzo di Support Vector Machine

Classificazione e regressione per mezzo di Support Vector Machine Classificazione e regressione per mezzo di Support Vector Machine Felice Andrea Pellegrino Dipartimento di Elettrotecnica Elettronica e Informatica Università degli Studi di Trieste fapellegrino@units.it

Dettagli

Gaussian processes (GP)

Gaussian processes (GP) Gaussian processes (GP) Corso di Modelli di Computazione Affettiva Prof. Giuseppe Boccignone Dipartimento di Informatica Università di Milano boccignone@di.unimi.it Giuseppe.Boccignone@unimi.it http://boccignone.di.unimi.it/compaff017.html

Dettagli

Neural Networks. Corso di Intelligenza Artificiale, a.a Prof. Francesco Trovò

Neural Networks. Corso di Intelligenza Artificiale, a.a Prof. Francesco Trovò Neural Networks Corso di Intelligenza Artificiale, a.a. 2017-2018 Prof. Francesco Trovò 28/05/2018 Neural Networks Struttura di una NN Backpropagation algorithm Altre strutture di rete Limiti dei sample-based

Dettagli

RIASSUNTO ARGOMENTI LEZIONI STRUMENTI PER L ANALISI DEI DATI-LM DIP. DI ECONOMIA E MANAGEMENT - UNIV. DI FERRARA A.A. 2018/19

RIASSUNTO ARGOMENTI LEZIONI STRUMENTI PER L ANALISI DEI DATI-LM DIP. DI ECONOMIA E MANAGEMENT - UNIV. DI FERRARA A.A. 2018/19 RIASSUNTO ARGOMENTI LEZIONI STRUMENTI PER L ANALISI DEI DATI-LM DIP. DI ECONOMIA E MANAGEMENT - UNIV. DI FERRARA A.A. 2018/19 25/09/2018 ore 12.00-14.00 Presentazione del corso. Funzioni ad output reale

Dettagli

Università degli Studi di Roma La Sapienza

Università degli Studi di Roma La Sapienza Università degli Studi di Roma La Sapienza Dipartimento di Informatica e Sistemistica A. Ruberti Proff. Gianni Di Pillo and Laura Palagi Note per il corso di OTTIMIZZAZIONE (a.a. 2007-08) Dipartimento

Dettagli

Condizioni di Karush-Kuhn-Tucker e Programmazione Lineare

Condizioni di Karush-Kuhn-Tucker e Programmazione Lineare Condizioni di Karush-Kuhn-Tucker e Programmazione Lineare A. Agnetis 1 Richiami su condizioni di Karush-Kuhn-Tucker e convessità Si consideri il problema di ottimizzazione vincolata: min f(x) (1) x X R

Dettagli

7.9 Il caso vincolato: vincoli di disuguaglianza

7.9 Il caso vincolato: vincoli di disuguaglianza 7.9 Il caso vincolato: vincoli di disuguaglianza Il problema con vincoli di disuguaglianza: g i (x) 0, i = 1,..., p, (51) o, in forma vettoriale: g(x) 0, può essere trattato basandosi largamente su quanto

Dettagli

Sul XIX problema di Hilbert

Sul XIX problema di Hilbert Sul XIX problema di Hilbert Lorenzo Brasco 12 Aprile 2019 Cos è un equazione ellittica? Si tratta di un equazione alle derivate parziali, ovvero di un equazione che contiene una funzione incognita u di

Dettagli

Computazione per l interazione naturale: Regressione probabilistica

Computazione per l interazione naturale: Regressione probabilistica Computazione per l interazione naturale: Regressione probabilistica Corso di Interazione Naturale Prof. Giuseppe Boccignone Dipartimento di Informatica Università di Milano boccignone@di.unimi.it boccignone.di.unimi.it/in_2018.html

Dettagli

Sequenze (Sistemi) di Variabili Aleatorie Se consideriamo un numero di variabili aleatorie, generalmente dipendenti si parla equivalentemente di:

Sequenze (Sistemi) di Variabili Aleatorie Se consideriamo un numero di variabili aleatorie, generalmente dipendenti si parla equivalentemente di: Teoria dei Fenomeni Aleatori AA 01/13 Sequenze (Sistemi) di Variabili Aleatorie Se consideriamo un numero di variabili aleatorie, generalmente dipendenti si parla equivalentemente di: N-pla o Sequenza

Dettagli

ATTENZIONE: : giustificate le vostre argomentazioni! Geometria Canale 3. Lettere J-PE (Prof P. Piazza) Esame scritto del 12/02/2014. Compito A.

ATTENZIONE: : giustificate le vostre argomentazioni! Geometria Canale 3. Lettere J-PE (Prof P. Piazza) Esame scritto del 12/02/2014. Compito A. Geometria Canale. Lettere J-PE (Prof P. Piazza) Esame scritto del 12/02/2014. Compito A. Nome e Cognome: Numero di Matricola: Esercizio Punti totali Punteggio 1 7 2 6 6 4 6+1 5 6+2 Totale 1+ ATTENZIONE:

Dettagli

Polinomio di Taylor del secondo ordine per funzioni di due variabili

Polinomio di Taylor del secondo ordine per funzioni di due variabili Esercitazioni del 15 aprile 2013 Polinomio di Taylor del secondo ordine per funzioni di due variabili Sia f : A R 2 R una funzione di classe C 2. Fissato un p unto (x 0, y 0 A consideriamo il seguente

Dettagli

Richiami di Meccanica Classica

Richiami di Meccanica Classica Richiami di Meccanica Classica Corso di Fisica Matematica 3 (seconda parte), a.a. 2016/17 G. Gaeta 18/4/2017 Questa dispensa, che va vista in connessione a quella sul principio variazionale e la formulazione

Dettagli

SUPPORT VECTOR MACHINES. a practical guide

SUPPORT VECTOR MACHINES. a practical guide SUPPORT VECTOR MACHINES a practical guide 1 SUPPORT VECTOR MACHINES Consideriamo un problema di classificazione binaria, a partire da uno spazio di input X R n e uno spazio di output Y = { 1, 1} Training

Dettagli

Regressione. Apprendimento supervisionato //Regressione. Corso di Sistemi di Elaborazione dell Informazione

Regressione. Apprendimento supervisionato //Regressione. Corso di Sistemi di Elaborazione dell Informazione Regressione SCUOLA DI SPECIALIZZAZIONE IN FISICA MEDICA Corso di Sistemi di Elaborazione dell Informazione Prof. Giuseppe Boccignone Dipartimento di Informatica Università di Milano boccignone@di.unimi.it

Dettagli

Computazione per l interazione naturale: Regressione probabilistica

Computazione per l interazione naturale: Regressione probabilistica Computazione per l interazione naturale: Regressione probabilistica Corso di Interazione Naturale Prof. Giuseppe Boccignone Dipartimento di Informatica Università di Milano boccignone@di.unimi.it boccignone.di.unimi.it/in_2016.html

Dettagli

Le condizioni di Karush-Kuhn-Tucker

Le condizioni di Karush-Kuhn-Tucker Capitolo 9 Le condizioni di Karush-Kuhn-Tucker 9. Introduzione In questo capitolo deriveremo le condizioni necessarie di Karush-Kuhn-Tucker (KKT) per problemi vincolati in cui S è descritto da vincoli

Dettagli

Sequenze (Sistemi) di Variabili Aleatorie Se consideriamo un numero di variabili aleatorie, generalmente dipendenti si parla equivalentemente di:

Sequenze (Sistemi) di Variabili Aleatorie Se consideriamo un numero di variabili aleatorie, generalmente dipendenti si parla equivalentemente di: Teoria dei Fenomeni Aleatori AA 01/13 Sequenze (Sistemi) di Variabili Aleatorie Se consideriamo un numero di variabili aleatorie, generalmente dipendenti si parla equivalentemente di: N-pla o Sequenza

Dettagli

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ. ESERCIZI SVOLTI DI ALGEBRA LINEARE (Sono svolti alcune degli esercizi proposti nei fogli di esercizi su vettori linearmente dipendenti e vettori linearmente indipendenti e su sistemi lineari ) I. Foglio

Dettagli

Indice. Prefazione Ringraziamenti

Indice. Prefazione Ringraziamenti Prefazione Ringraziamenti xi xiv Argomento di ripasso Argomento più difficile 1 Matrici e vettori 1 1.1 Matrici 1 1.2 Esercizi 11 1.3 Vettori di R 2 14 1.4 Esercizi 20 1.5 Vettori di R 3 21 1.6 Rette 24

Dettagli

Massimi e minimi vincolati

Massimi e minimi vincolati Massimi e minimi vincolati Sia f una funzione differenziabile, definita su un aperto A di R N. Se K è un sottoinsieme chiuso e limitato di A, per il teorema di Weierstrass f assume massimo e minimo su

Dettagli

Programmazione Matematica / A.A Soluzioni di alcuni esercizi

Programmazione Matematica / A.A Soluzioni di alcuni esercizi Programmazione Matematica / A.A. 8-9 Soluzioni di alcuni esercizi Esercizi - I 3. Aggiungiamo al problema una variabile v, e richiediamo che v soddisfi v n a ij x j b i. j= Fissato x, il minimo v che soddisfa

Dettagli

Lezione 10: Teorema di Rouchè-Capelli e la classificazione dei sistemi lineari

Lezione 10: Teorema di Rouchè-Capelli e la classificazione dei sistemi lineari Lezione 10: Teorema di Rouchè-Capelli e la classificazione dei sistemi lineari In questa lezione ci dedicheremo a studiare a fondo quali proprietà della matrice dei coefficienti di un sistema (e della

Dettagli

CALCOLO NUMERICO. Francesca Mazzia. Calcolo degli autovalori. Dipartimento Interuniversitario di Matematica. Università di Bari

CALCOLO NUMERICO. Francesca Mazzia. Calcolo degli autovalori. Dipartimento Interuniversitario di Matematica. Università di Bari CALCOLO NUMERICO Francesca Mazzia Dipartimento Interuniversitario di Matematica Università di Bari Calcolo degli autovalori 1 Calcolo degli autovalori Gli autovalore e gli autovettore di una matrice quadrata

Dettagli

Programmazione Matematica / A.A Soluzioni di alcuni esercizi

Programmazione Matematica / A.A Soluzioni di alcuni esercizi Programmazione Matematica / A.A. 7-8 Soluzioni di alcuni esercizi Esercizi - I. Aggiungiamo al problema una variabile v, e richiediamo che v soddisfi v n a ij x j b i. j= Fissato x, il minimo v che soddisfa

Dettagli

Geometria BAER I canale Foglio esercizi 3

Geometria BAER I canale Foglio esercizi 3 Geometria BAER I canale Foglio esercizi 3 Esercizio. Discutere le soluzioni del seguente sistema lineare nelle incognite,, z al variare del parametro k. 3 + kz = k k + 3z = k k + z = Soluzione: Il determinante

Dettagli

Metodi supervisionati di classificazione

Metodi supervisionati di classificazione Metodi supervisionati di classificazione Giorgio Valentini e-mail: valentini@dsi.unimi.it DSI - Dipartimento di Scienze dell'informazione Classificazione bio-molecolare di tessuti e geni Diagnosi a livello

Dettagli

Outline. 1 Teorema dei moltiplicatori di Lagrange. 2 Uso pratico dei moltiplicatori di Lagrange. 3 Derivazione alternativa dei moltiplicatori

Outline. 1 Teorema dei moltiplicatori di Lagrange. 2 Uso pratico dei moltiplicatori di Lagrange. 3 Derivazione alternativa dei moltiplicatori Outline Minimi Vincolati (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi DIMS Università di Trento anno accademico 2006/2007 1 2 3 Derivazione alternativa dei moltiplicatori 4 Minimi Vincolati

Dettagli

Note sulle funzioni convesse/concave

Note sulle funzioni convesse/concave Note sulle funzioni convesse/concave 4th December 2008 1 Definizioni e proprietà delle funzioni convesse/concave. Definizione 1.1 Un insieme A IR n è detto convesso se per ogni x 1 e x 2 punti di A, il

Dettagli

Richiami di algebra delle matrici a valori reali

Richiami di algebra delle matrici a valori reali Richiami di algebra delle matrici a valori reali Vettore v n = v 1 v 2. v n Vettore trasposto v n = (v 1, v 2,..., v n ) v n = (v 1, v 2,..., v n ) A. Pollice - Statistica Multivariata Vettore nullo o

Dettagli

Esercizi su ottimizzazione vincolata

Esercizi su ottimizzazione vincolata Esercizi su ottimizzazione vincolata 1. Rispondere alle seguenti domande (a) Quando un vincolo di disuguaglianza è detto attivo? (b) Cosa è l insieme delle soluzioni ammissibili? Gli algoritmi di ricerca

Dettagli

Geometria BAER I canale Foglio esercizi 2

Geometria BAER I canale Foglio esercizi 2 Geometria BAER I canale Foglio esercizi 2 Esercizio 1. Calcolare il determinante e l inversa (quando esiste) della matrice ( ) cos θ sin θ R θ =, θ [0, 2π] sin θ cos θ Soluzione: Il determinante ( é cos

Dettagli

Computazione per l interazione naturale: Richiami di ottimizzazione (3) (e primi esempi di Machine Learning)

Computazione per l interazione naturale: Richiami di ottimizzazione (3) (e primi esempi di Machine Learning) Computazione per l interazione naturale: Richiami di ottimizzazione (3) (e primi esempi di Machine Learning) Corso di Interazione Naturale Prof. Giuseppe Boccignone Dipartimento di Informatica Università

Dettagli

Richiami di Algebra Lineare

Richiami di Algebra Lineare Richiami di Algebra Lineare Eduardo Rossi Università degli Studi di Pavia Corso di Econometria Marzo 2012 Rossi Algebra Lineare 2012 1 / 59 Vettori Prodotto interno a : (n 1) b : (n 1) a b = a 1 b 1 +

Dettagli

FUNZIONI DI DUE VARIABILI REALI. f(x, y) = ax + by + c. f(x, y) = x 2 + y 2

FUNZIONI DI DUE VARIABILI REALI. f(x, y) = ax + by + c. f(x, y) = x 2 + y 2 0.1 FUNZIONI DI DUE VARIABILI REALI Sia A R 2. Una applicazione f : A R si chiama funzione reale di due variabili reali ESEMPI: 1. La funzione affine di due variabili reali: 2. f(x, y) = ax + by + c f(x,

Dettagli

0.1 Coordinate in uno spazio vettoriale

0.1 Coordinate in uno spazio vettoriale .1. COORDINATE IN UNO SPAZIO VETTORIALE 1.1 Coordinate in uno spazio vettoriale Sia V uno spazio vettoriale di dimensione finita n costruito sul campo K. D ora in poi, ogni volta che sia fissata una base

Dettagli

Sistemi Lineari. Andrea Galasso

Sistemi Lineari. Andrea Galasso Sistemi Lineari Andrea Galasso Esercizi svolti Teorema. (Rouché-Capelli. Un sistema lineare Ax = b ammette soluzioni se e solo se il rango della matrice dei coefficienti A è uguale al rango della matrice

Dettagli

Tecniche di riconoscimento statistico

Tecniche di riconoscimento statistico Tecniche di riconoscimento statistico Applicazioni alla lettura automatica di testi (OCR) Parte 8 Support Vector Machines Ennio Ottaviani On AIR srl ennio.ottaviani@onairweb.com http://www.onairweb.com/corsopr

Dettagli

I Componenti del processo decisionale 7

I Componenti del processo decisionale 7 Indice Introduzione 1 I Componenti del processo decisionale 7 1 Business intelligence 9 1.1 Decisioni efficaci e tempestive........ 9 1.2 Dati, informazioni e conoscenza....... 12 1.3 Ruolo dei modelli

Dettagli

Si consideri il seguente tableau ottimo di un problema di programmazione lineare

Si consideri il seguente tableau ottimo di un problema di programmazione lineare ESERCIZIO 1 Si consideri il seguente tableau ottimo di un problema di programmazione lineare -25/3 0 4/3 19/6 9/2 0 0 0 7/6 1 0 1-1/2-3/2 1 0 0 3/2 11/3 1-2/3-1/3 0 0 0 0 2/3 2/3 0 1/3 1/6-1/2 0 1 0 7/6

Dettagli

Geometria per Fisica e Astrofisica

Geometria per Fisica e Astrofisica Geometria per Fisica e Astrofisica Soluzione esercizi - Foglio 3 Esercizio. Risolvere i seguenti sistemi lineari al variare dei parametri reali α β e k < < (a) x + y z = αx + αy + βz = x + y z = β. (b)

Dettagli

Metodi di Ricerca Lineare

Metodi di Ricerca Lineare Metodi di Ricerca Lineare Stefano Gualandi Università di Pavia, Dipartimento di Matematica email: twitter: blog: stefano.gualandi@unipv.it @famo2spaghi http://stegua.github.com Metodi di Ottimizzazione

Dettagli

Analisi Matematica 2

Analisi Matematica 2 Analisi Matematica Appunti delle lezioni tenute dal Prof. A. Fonda Università di Trieste CdL Matematica a.a. 07/08 La derivata direzionale In questa sezione E sarà un sottoinsieme aperto di R N x 0 un

Dettagli

La crittografia a curve iperellittiche

La crittografia a curve iperellittiche Dott. Stefania Vanzetti Torino 2011. Crittografia a chiave pubblica: oltre RSA Università degli Studi di Torino 13 maggio 2011 1.LE CURVE IPERELLITTICHE Motivazioni al loro utilizzo Motivazioni al loro

Dettagli

Constraint Satisfaction Problems

Constraint Satisfaction Problems Constraint Satisfaction Problems Corso di Intelligenza Artificiale, a.a. 2017-2018 Prof. Francesco Trovò 19/03/2018 Constraint Satisfaction problem Fino ad ora ogni stato è stato modellizzato come una

Dettagli

Richiami di Algebra Lineare

Richiami di Algebra Lineare Università di Pavia Richiami di Algebra Lineare Eduardo Rossi Vettori a : (n 1) b : (n 1) Prodotto interno a b = a 1 b 1 + a 2 b 2 +... + a n b n Modulo (lunghezza): a = a 2 1 +... + a2 n Vettori ortogonali:

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 3: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 3: soluzioni Corso di Geometria - BIAR, BSIR Esercizi : soluzioni Rango e teorema di Rouché-Capelli Esercizio. Calcolare il rango di ciascuna delle seguenti matrici: ( ) ( ) ( ) A =, A =, A =, A 4 = ( ). a a a Soluzione.

Dettagli

Valutazione e Selezione del Modello

Valutazione e Selezione del Modello Valutazione e Selezione del Modello Fondamenti Matematici della Teoria dell Apprendimento Statistico Laura Lo Gerfo Dipartimento di Informatica e Scienze dell Informazione 18 maggio 2007 Laura Lo Gerfo

Dettagli

Sistemi lineari - Parte Seconda - Esercizi

Sistemi lineari - Parte Seconda - Esercizi Sistemi lineari - Parte Seconda - Esercizi Terminologia Operazioni elementari sulle righe. Equivalenza per righe. Riduzione a scala per righe. Rango di una matrice. Forma canonica per righe. Eliminazione

Dettagli

Sistemi lineari e spazi vettoriali 1 / 14

Sistemi lineari e spazi vettoriali 1 / 14 Sistemi lineari e spazi vettoriali 1 / 14 Sistemi lineari 2 / 14 Studieremo sistemi lineari costituiti da m equazioni in n incognite (m,n N, m,n 1): cioè a 11 x 1 + +a 1n x n = b 1 a 21 x 1 + +a 2n x n

Dettagli

Geometria A. Università degli Studi di Trento Corso di laurea in Matematica A.A. 2017/ Maggio 2018 Prova Intermedia

Geometria A. Università degli Studi di Trento Corso di laurea in Matematica A.A. 2017/ Maggio 2018 Prova Intermedia Geometria A Università degli Studi di Trento Corso di laurea in Matematica A.A. 7/8 Maggio 8 Prova Intermedia Il tempo per la prova è di ore. Durante la prova non è permesso l uso di appunti e libri. Esercizio

Dettagli

Criteri alternativi all Entropia

Criteri alternativi all Entropia Sistemi Intelligenti 94 Criteri alternativi all Entropia Altri criteri suggeriti al posto dell Entropia: - Variance Impurity (per due classi) - (Weighted) Gini Impurity (generalizzazione di Variance Impurity

Dettagli

Appunti sui Codici di Reed Muller. Giovanni Barbarino

Appunti sui Codici di Reed Muller. Giovanni Barbarino Appunti sui Codici di Reed Muller Giovanni Barbarino Capitolo 1 Codici di Reed-Muller I codici di Reed-Muller sono codici lineari su F q legati alle valutazioni dei polinomi sullo spazio affine. Per semplicità

Dettagli

UNIVERSITÀ DEGLI STUDI DI MILANO. Matteo Re. Bioinformatica. A.A semestre I modulo 2 parte B.2. Kernel e funzioni di score kernelizzate

UNIVERSITÀ DEGLI STUDI DI MILANO. Matteo Re. Bioinformatica. A.A semestre I modulo 2 parte B.2. Kernel e funzioni di score kernelizzate Docenti: Giorgio Valentini Matteo Re UNIVERSITÀ DEGLI STUDI DI MILANO C.d.l. Informatica Bioinformatica A.A. 2012-2013 semestre I modulo 2 parte B.2 2 Kernel e funzioni di score kernelizzate Bio MOTIVAZIONI

Dettagli

a + 2b + c 3d = 0, a + c d = 0 c d

a + 2b + c 3d = 0, a + c d = 0 c d SPAZI VETTORIALI 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x,

Dettagli

Minimi quadrati vincolati e test F

Minimi quadrati vincolati e test F Minimi quadrati vincolati e test F Impostazione del problema Spesso, i modelli econometrici che stimiamo hanno dei parametri che sono passibili di interpretazione diretta nella teoria economica. Consideriamo

Dettagli

CORSI DI LAUREA IN MATEMATICA E FISICA

CORSI DI LAUREA IN MATEMATICA E FISICA CORSI DI LAUREA IN MATEMATICA E FISICA FOGLIO DI ESERCIZI # 6 GEOMETRIA 1 Esercizio 6.1 (Esercizio 5.1). Scrivere un vettore w R 3 linearmente dipendente dal vettore v ( 1, 9, 0). Per esempio il vettore

Dettagli

IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA

IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA Metodi per l Analisi dei Dati Sperimentali AA009/010 IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA Sommario Massima Verosimiglianza Introduzione La Massima Verosimiglianza Esempio 1: una sola misura sperimentale

Dettagli

5.5 Programmazione quadratica (PQ)

5.5 Programmazione quadratica (PQ) 5.5 Programmazione quadratica (PQ Minimizzare una funzione quadratica soggetta a vincoli lineari: 1 min x t Qx + c t x 2 s.v. a t i x b i i D (P a t i x = b i i U x R n dove Q matrice n n, D e U sono gli

Dettagli

Algoritmi e Strutture Dati II: Parte B Anno Accademico Lezione 8

Algoritmi e Strutture Dati II: Parte B Anno Accademico Lezione 8 Algoritmi e Strutture Dati II: Parte B Anno Accademico 2004-2005 Docente: Ugo Vaccaro Lezione 8 Ricordiamo ancora una volta il nostro meta-algoritmo per il progetto di algoritmi di approssimazione: 1.

Dettagli

1 Fit di dati sperimentali: il χ 2. Il metodo dei minimi quadrati.

1 Fit di dati sperimentali: il χ 2. Il metodo dei minimi quadrati. 1 Fit di dati sperimentali: il χ 2. Il metodo dei minimi quadrati. Per comprendere dei fenomeni fisici, non basta raccogliere buoni dati sperimentali, occorre anche interpretarli. Molto spesso lo scopo

Dettagli

Geometria BAER A.A. Canale I Foglio esercizi 4

Geometria BAER A.A. Canale I Foglio esercizi 4 Geometria BAER A.A. Canale I Foglio esercizi 4 Esercizio. Si trovino basi degli spazi delle soluzioni dei seguenti sistemi lineari Soluzione: Sol(S ) = L[ x + 3x x 3 + 5x 4 = S : x + 3x x 3 + x 4 = S x

Dettagli

1 1, { x1 2x 2 + x 3 = 0 2x 2 8x 3 = 1 x 1 x 4 = = 0

1 1, { x1 2x 2 + x 3 = 0 2x 2 8x 3 = 1 x 1 x 4 = = 0 a.a. 5-6 Esercizi. Sistemi lineari. Soluzioni.. Determinare quali delle quaterne, 3,, sono soluzioni del sistema di tre equazioni in 4 incognite { x x + x 3 = x 8x 3 = x x 4 =. Sol. Sostituendo ad x, x,

Dettagli

Calcolo Numerico Laurea di base in Ingegneria Elettronica e Ingegneria delle Comunicazioni e Clinica. Prof.ssa Laura Pezza (A.A.

Calcolo Numerico Laurea di base in Ingegneria Elettronica e Ingegneria delle Comunicazioni e Clinica. Prof.ssa Laura Pezza (A.A. Calcolo Numerico Laurea di base in Ingegneria Elettronica e Ingegneria delle Comunicazioni e Clinica Prof.ssa Laura Pezza (A.A. 2018-2019) VIII Lezione del 14.03.2019 http://www.dmmm.uniroma1.it/ laura.pezza

Dettagli

Computazione per l interazione naturale: classificazione probabilistica

Computazione per l interazione naturale: classificazione probabilistica Computazione per l interazione naturale: classificazione probabilistica Corso di Interazione Naturale Prof. Giuseppe Boccignone Dipartimento di Informatica Università di Milano boccignone@di.unimi.it boccignone.di.unimi.it/in_2016.html

Dettagli

Frame. Frame. Otteniamo il concetto di frame a partire da quello di base di Riesz facendo cadere l ipotesi di indipendenza lineare

Frame. Frame. Otteniamo il concetto di frame a partire da quello di base di Riesz facendo cadere l ipotesi di indipendenza lineare Frame Frame Otteniamo il concetto di frame a partire da quello di base di Riesz facendo cadere l ipotesi di indipendenza lineare Un frame è quindi un insieme di vettori φ i tali che esistono A > 0 e B

Dettagli

b vettore(termine noto) y* proiezione ortogonale di b

b vettore(termine noto) y* proiezione ortogonale di b Carla Guerrini 1 Sistemi sovradeterminati Sia A una matrice m n ove m > n sia b R m trovare una soluzione del sistema sovradeterminato Ax = b significa cercare di esprimere un vettore di R m come combinazione

Dettagli

Lezione 13 Maggio Ricapitolazione del Controllo Ottimo LQ

Lezione 13 Maggio Ricapitolazione del Controllo Ottimo LQ PSC: Progettazione di sistemi di controllo III rim. 2007 Lezione 13 Maggio 16 Docente: Luca Schenato Stesori: Comin, Dal Bianco,Fabris, Parmeggiani 13.1 Ricapitolazione del Controllo Ottimo LQ Ripassiamo

Dettagli

Reti Neurali. Corso di AA, anno 2016/17, Padova. Fabio Aiolli. 2 Novembre Fabio Aiolli Reti Neurali 2 Novembre / 14. unipd_logo.

Reti Neurali. Corso di AA, anno 2016/17, Padova. Fabio Aiolli. 2 Novembre Fabio Aiolli Reti Neurali 2 Novembre / 14. unipd_logo. Reti Neurali Corso di AA, anno 2016/17, Padova Fabio Aiolli 2 Novembre 2016 Fabio Aiolli Reti Neurali 2 Novembre 2016 1 / 14 Reti Neurali Artificiali: Generalità Due motivazioni diverse hanno spinto storicamente

Dettagli