5.5 Programmazione quadratica (PQ)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "5.5 Programmazione quadratica (PQ)"

Transcript

1 5.5 Programmazione quadratica (PQ Minimizzare una funzione quadratica soggetta a vincoli lineari: 1 min x t Qx + c t x 2 s.v. a t i x b i i D (P a t i x = b i i U x R n dove Q matrice n n, D e U sono gli insiemi di indici dei vincoli di disuguaglianza e uguaglianza. Senza perdita di generalità: Q è simmetrica (stesso valore f. o. con Q non simmetrica e Q = 1 2 (Q + Qt. Difficoltà dipende dalla natura di Q: se Q è semidefinita positiva, (P è convesso e relativamente facile da risolvere, altrimenti può avere molti ottimi locali. Esempio: min{ x t x : 1 x i 1, i = 1,..., n} dove i 2 n vertici sono minimi locali. Edoardo Amaldi (PoliMI Ottimizzazione A.A / 13

2 Programmi quadratici sono i più semplici problemi di PNL, sono noti algoritmi efficienti. Molte applicazioni ma anche ruolo importante nei metodi efficaci per problemi più generali. Edoardo Amaldi (PoliMI Ottimizzazione A.A / 13

3 PQ con solo vincoli di uguaglianza min{ 1 2 x t Qx + c t x : Ax = b } (1 dove A matrice m n, con m n, di rango pieno m (non vi sono vincoli ridondanti. Poiché solo equazioni lineari, qualifica dei vincoli soddisfatta in tutti i punti della regione ammissibile e le condizioni di KKT si semplificano: m Qx + c + u i a i = 0 Ax = b. N.B.: Condizioni degli scarti complementari automaticamente soddisfatte. i=1 Soluzione più o meno diretta del sistema: ( ( Q A t x = A 0 u ( c b. Se A è di rango pieno e Q è definita positiva sul sottospazio {x R n matrice (di sinistra è non singolare. : Ax = 0}, la Edoardo Amaldi (PoliMI Ottimizzazione A.A / 13

4 Metodo dello spazio nullo Si determina una matrice Z R n (n m di cui le colonne costituiscono una base dello spazio nullo {x R n : Ax = 0} di A. Z si ottiene fattorizzando una sottomatrice di A (e.g., se A sparsa fattorizzazione LU. Dato x 0 ammissibile, ogni altra soluzione ammissibile può esprimersi per un opportuno vettore w R n m. x = x 0 + Zw Con semplici passaggi algebrici si verifica che il problema (1 è equivalente al PQ non vincolato: min{ 1 2 w t (Z t QZw + (Qx 0 + c t Zw : w R n m } Se l Hessiano ridotto Z t QZ è definito positivo, l unica soluzione ottima w si può ottenere risolvendo il sistema lineare: (Z t QZw = Z t (Qx 0 + c. Esistono altri metodi per risolvere (1 ma quelli dello spazio nullo sono i più utilizzati. Edoardo Amaldi (PoliMI Ottimizzazione A.A / 13

5 PQ con vincoli di uguaglianza e disuguaglianza Metodi di tipo active set 1 min x t Qx + c t x 2 s.v. a t i x b i i D (P a t i x = b i i U x R n dove Q matrice n n, D e U sono gli insiemi di indici dei vincoli di disuguaglianza e uguaglianza. Idea: Determinare il sottoinsieme I (x degli indici dei vincoli attivi in x ottimo, risolvendo una sequenza di problemi con solo vincoli di uguaglianza. Edoardo Amaldi (PoliMI Ottimizzazione A.A / 13

6 Metodo active set per PQ convessi Inizializzazione: Trovare una soluzione ammissibile iniziale x 0 e scegliere W 0 I (x 0 = {i D : a t i x 0 = b i} U sottoinsieme degli indici dei vincoli attivi in x 0. Iterazione k: Data la soluzione x k ammissibile corrente si determina una direzione d k risolvendo il sottoproblema: min{ q(x k + d : a t i (x k + d = b i, i W k }, dove W k è il corrente insieme di lavoro, con W k I (x k = {i D : a t i x k = b i} U. Sottoproblema equivalente: min{ q(x k + d : a t i d = 0, i W k }. (2 N.B.: Se Hessiano ridotto Z t QZ è definito positivo (sempre vero se Q lo è, il sottoproblema (2 ha una soluzione unica d k. In base al tipo di soluzione d k di (2, si calcola α k, si pone x k+1 = x k + α k d k e si determina W k+1. Edoardo Amaldi (PoliMI Ottimizzazione A.A / 13

7 Se d k 0, si determina il passo più lungo possibile che soddisfa anche tutti i vincoli non in W k : e si pone x k+1 = x k + α k d k. α k = min{1, min i W k, a t i d k >0 b i a t i x k a t i d k }. (3 W k+1 si ottiene aggiungendo a W k l indice di uno dei nuovi vincoli attivi in x k+1. Se d k = 0, allora x k è il minimo della f. o. sul sottospazio definito da W k e si pone x k+1 = x k. Si determinano i moltiplicatori u k i dalle condizioni di ottimalità del primo ordine di (2: Qx k + c + i W k u k i a i = 0. (4 Se ui k 0 per ogni i W k D, allora x k è un ottimo locale del problema di PQ di partenza. Se ui k < 0 per almeno uno degli indici i W k D, si ottiene W k+1 eliminando da W k l indice i con ui k più negativo. Edoardo Amaldi (PoliMI Ottimizzazione A.A / 13

8 Proposizione: Se Q è definita positiva (f.o. strettamente convessa, il metodo (con regola anticiclo trova la soluzione ottima in un numero finito di iterazioni. N.B.: numero finito di insiemi di lavoro. Esempio: min q(x 1, x 2 = (x (x s.v. x 1 + 2x x 1 + 2x x 1 2x x 1 0 x 2 0 dove i vincoli sono numerati nell ordine, da 1 a 5. Figura: partendo da x 0 = ( 2 0. Tratto da J. Nocedal, S. Wright, Numerical optimization, First Edition, Springer 1999, p Edoardo Amaldi (PoliMI Ottimizzazione A.A / 13

9 Dettagli esempio algoritmo active set : min q(x 1, x 2 = (x (x s.v. x 1 + 2x x 1 + 2x x 1 2x x 1 0 x 2 0 dove i vincoli sono numerati nell ordine, da 1 a 5 Iterazione 0: Partiamo dalla soluzione iniziale x 0 = scegliamo W 0 = {3, 5}. ( 2 0 Poiché x 0 è un vertice del poliedro delle soluzioni ammissibili, x 0 minimizza q(x rispetto a W 0 (su {x R n. I vincoli 3 e 5 essendo attivi in x 0, : a t i x = b i, i W 0} e la soluzione ottima del sottoproblema min{ q(x 0 + d : a t i d = 0, i W0 } è d 0 = 0. Edoardo Amaldi (PoliMI Ottimizzazione A.A / 13

10 Quindi x 1 = x 0 + α 0d 0 = x 0. Risolvendo le condizioni di KKT (4 ( 2 q(x 0 = 5 = u 3 ( u 5 ( 0 1 si determinano i moltiplicatori u 3 e u 5 associati ai vincoli attivi, ossia (u 3, u 5 = ( 2, 1. Poiché u 3 < u 5 < 0 si elimina dall insieme di lavoro il terzo vincolo, ponendo W 1 = {5}. Iterazione 1: La soluzione ottima del sottoproblema min{ q(x 1 + d : a t i d = 0, i W1 ( } è 1 d 1 =. 0 Visto che d 1 non viola nessuno dei vincoli ( con indici non in W 1, la formula (3 fornisce 1 un passo α 1 = 1 e x 2 = x 1 + α 1d 1 =. 0 Poiché in x 2 non sono attivi altri vincoli, si pone W 2 = W 1 = {5}. Edoardo Amaldi (PoliMI Ottimizzazione A.A / 13

11 Iterazione 2: La soluzione del sottoproblema min{ q(x 2 + d : a t i d = 0, i W2 } è d 2 = 0. Risolvendo le condizioni di KKT (4, ossia ( ( 0 0 q(x 2 = = u si ottiene u 5 = 5., Quindi x 3 = x 2 e si pone W 3 = W 2 \ {5} =. Iterazione 3: La soluzione del sottoproblema non vincolato min{ q(x 3 + d : a t i d = 0, i W3 ( } è 0 d 3 =. 2.5 Visto che d 3 viola entrambi i vincoli con ( indici 1 e 2 non in W 1, la formula (3 fornisce 1 un passo α 3 = 0.6 e x 4 = x 3 + α 3d 3 =. 1.5 Poiché in x 4 solo il vincolo di indice 1 diventa attivo, si pone W 4 = {1}. Edoardo Amaldi (PoliMI Ottimizzazione A.A / 13

12 Iterazione 4: La soluzione ottima del sottoproblema min{ q(x 4 + d : a t i d = 0, i W4 ( } è 0.4 d 4 =. 0.2 Visto ( che d 4 non viola nessuno dei vincoli con indici non in W 1, si ottiene α 4 = 1, 1.4 x 5 = e W = W 4 = {1}. Iterazione 5: La soluzione ottima del sottoproblema min{ q(x 5 + d : a t i d = 0, i W5 } è d 5 = 0. Poiché risolvendo ( le condizioni di KKT (4 si ottiene u 1 = , la soluzione 1.4 ammissibile x 5 = è ottima per il problema di partenza. 1.7 Edoardo Amaldi (PoliMI Ottimizzazione A.A / 13

13 PQ non convessi e codici Metodo active set per problemi non convessi Se l Hessiano ridotto Z t QZ è indefinito, (2 è inferiormente illimitato. Si cerca quindi d k tale che q(x k + αd k sia inferiormente illimitata con opportune tecniche di fattorizzazione del Hessiano ridotto. Si determina il più grande α k che soddisfa tutti gli altri vincoli, e si pone x k+1 = x k + α k d k. W k+1 si ottiene aggiungendo a W k l indice di uno dei nuovi vincoli attivi in x k+1. Codici di PQ Codici efficienti procedono per aggiornamento (W k cambia poco ad ogni iterazione. Esistono vari risolutori basati su metodi di tipo active set (LINDO, LSSOL, QPOPT, NAG Library, Matlab,... Edoardo Amaldi (PoliMI Ottimizzazione A.A / 13

4.4 Programmazione quadratica

4.4 Programmazione quadratica 4.4 Programmazione quadratica Minimizzare una funzione quadratica soggetta a vincoli lineari: min 1 2 xt Qx + c t x s.v. a t i x b i i D (P) a t i x = b i i U x R n dove Q matrice n n, D e U sono gli insiemi

Dettagli

5.6 Metodo di penalità e metodo basato sulle funzioni lagrangiane aumentate

5.6 Metodo di penalità e metodo basato sulle funzioni lagrangiane aumentate 5.6 Metodo di penalità e metodo basato sulle funzioni lagrangiane aumentate Consideriamo il generico problema di PNL min f (x) s.v. c i (x) 0 i I c i (x) = 0 i E (1) x R n dove f e le c i sono di classe

Dettagli

5.6 Metodo di penalità e metodo basato sulle funzioni lagrangiane aumentate. min f(x) s.v. c i (x) 0 i I c i (x) = 0 i E (1) x R n

5.6 Metodo di penalità e metodo basato sulle funzioni lagrangiane aumentate. min f(x) s.v. c i (x) 0 i I c i (x) = 0 i E (1) x R n 5.6 Metodo di penalità e metodo basato sulle funzioni lagrangiane aumentate Consideriamo il generico problema di PNL min f(x) s.v. c i (x) 0 i I c i (x) = 0 i E (1) x R n dove f e le c i sono di classe

Dettagli

4.8 Metodi quasi-newton

4.8 Metodi quasi-newton 4.8 Metodi quasi-newton Varianti del metodo di Newton in cui invece di usare/invertire la matrice Hessiana di f (x) si estraggono informazioni relative alle derivate seconde dalle variazioni di f (x).

Dettagli

ESAME di OTTIMIZZAZIONE - Compito A Corso di Laurea in Ingegneria Gestionale 2 o anno

ESAME di OTTIMIZZAZIONE - Compito A Corso di Laurea in Ingegneria Gestionale 2 o anno ESAME di OTTIMIZZAZIONE 7 aprile 006 ESAME di OTTIMIZZAZIONE - Compito A Corso di Laurea in Ingegneria Gestionale o anno Cognome : Nome : VALUTAZIONE Per gli esercizi,,3,4: ogni risposta CORRETTA vale

Dettagli

4.3 Esempio metodo del simplesso

4.3 Esempio metodo del simplesso 4.3 Esempio metodo del simplesso (P ) min -5x 4x 2 3x 3 s.v. 2x + 3x 2 + x 3 5 4x + x 2 + 2x 3 3x + 4x 2 + 2x 3 8 x, x 2, x 3 Per mettere il problema in forma standard si introducono le variabili di scarto

Dettagli

4.3 Esempio metodo del simplesso

4.3 Esempio metodo del simplesso 4.3 Esempio metodo del simplesso (P ) min -5x 4x 2 3x 3 s.v. 2x + 3x 2 + x 3 5 4x + x 2 + 2x 3 3x + 4x 2 + 2x 3 8 x, x 2, x 3 Per mettere il problema in forma standard si introducono le variabili di scarto

Dettagli

7.9 Il caso vincolato: vincoli di disuguaglianza

7.9 Il caso vincolato: vincoli di disuguaglianza 7.9 Il caso vincolato: vincoli di disuguaglianza Il problema con vincoli di disuguaglianza: g i (x) 0, i = 1,..., p, (51) o, in forma vettoriale: g(x) 0, può essere trattato basandosi largamente su quanto

Dettagli

4.5 Metodo del gradiente

4.5 Metodo del gradiente 4.5 Metodo del gradiente Si cerca un punto stazionario di f : R n R con f C 1. Metodo del gradiente con ricerca 1-D esatta: Scegliere x 0, porre k := 0 Iterazione: d k := f(x k ) Determinare α k > 0 tale

Dettagli

min 2x 1 +4x 2 2x 3 +2x 4 x 1 +4x 2 +2x 3 + x 4 =6 2x 1 + x 2 +2x 3 + x 5 =3 x 0.

min 2x 1 +4x 2 2x 3 +2x 4 x 1 +4x 2 +2x 3 + x 4 =6 2x 1 + x 2 +2x 3 + x 5 =3 x 0. 5 IL METODO DEL SIMPLESSO 6.4 IL METODO DEL SIMPLESSO In questo paragrafo sono riportati alcuni esercizi risolti sul metodo del simplesso. Alcuni sono risolti utilizzando la procedura di pivot per determinare,

Dettagli

Capitolo 2: Preliminari ed elementi di analisi convessa. E. Amaldi DEIB, Politecnico di Milano

Capitolo 2: Preliminari ed elementi di analisi convessa. E. Amaldi DEIB, Politecnico di Milano Capitolo 2: Preliminari ed elementi di analisi convessa E. Amaldi DEIB, Politecnico di Milano 2.1 Concetti di base In R n con norma euclidea x S R n è un punto interno di S se ε > 0 tale che B ε (x) =

Dettagli

3.6 Metodi basati sui piani di taglio

3.6 Metodi basati sui piani di taglio 3.6 Metodi basati sui piani di taglio Problema generale di Programmazione Lineare Intera (PLI) con A matrice m n e b vettore n 1 razionali min{ c t x : x X = {x Z n + : Ax b} } Sappiamo che esiste una

Dettagli

Introduzione al Metodo del Simplesso. 1 Soluzioni di base e problemi in forma standard

Introduzione al Metodo del Simplesso. 1 Soluzioni di base e problemi in forma standard Introduzione al Metodo del Simplesso Giacomo Zambelli 1 Soluzioni di base e problemi in forma standard Consideriamo il seguente problema di programmazione lineare (PL), relativo all esempio di produzione

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I)

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I) Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I) Luigi De Giovanni Giacomo Zambelli 1 Problemi di programmazione lineare Un problema

Dettagli

3.3 Problemi di PLI facili

3.3 Problemi di PLI facili 3.3 Problemi di PLI facili Consideriamo un generico problema di PLI espresso in forma standard min{c t x : Ax = b, x Z n +} (1) dove A Z m n con n m, e b Z m. Supponiamo che A sia di rango pieno. Sia P

Dettagli

Università degli Studi di Roma La Sapienza

Università degli Studi di Roma La Sapienza Università degli Studi di Roma La Sapienza Dipartimento di Informatica e Sistemistica A. Ruberti Proff. Gianni Di Pillo and Laura Palagi Note per il corso di OTTIMIZZAZIONE (a.a. 2007-08) Dipartimento

Dettagli

Soluzione dei Problemi di Programmazione Lineare

Soluzione dei Problemi di Programmazione Lineare Soluzione dei Problemi di Programmazione Lineare Consideriamo un problema di Programmazione Lineare (PL) con m vincoli ed n variabili in Forma Standard dove: ma 0 c A b ( ) 0 ( 2) R è il vettore n delle

Dettagli

9.1 Ottimizzazione di portafoglio: selezione di titoli in presenza di rischio

9.1 Ottimizzazione di portafoglio: selezione di titoli in presenza di rischio 9.1 Ottimizzazione di portafoglio: selezione di titoli in presenza di rischio Consideriamo il problema di costituire un portafoglio di titoli, sfruttando un budget B. Il mercato offre n titoli, con un

Dettagli

RICERCA OPERATIVA (9 cfu)

RICERCA OPERATIVA (9 cfu) a PROVA scritta di RICERCA OPERATIVA (9 cfu) gennaio Cognome Nome Ai fini della pubblicazione (cartacea e elettronica) del risultato ottenuto nella prova di esame, autorizzo al trattamento dei miei dati

Dettagli

Esercizi su ottimizzazione vincolata

Esercizi su ottimizzazione vincolata Esercizi su ottimizzazione vincolata 1. Rispondere alle seguenti domande (a) Quando un vincolo di disuguaglianza è detto attivo? (b) Cosa è l insieme delle soluzioni ammissibili? Gli algoritmi di ricerca

Dettagli

4.5 Metodo del simplesso

4.5 Metodo del simplesso 4.5 Metodo del simplesso min z = c T x s.v. Ax = b x 0 PL in forma standard Esamina una sequenza di soluzioni di base ammissibili con valori non crescenti della funzione obiettivo fino a raggiungerne una

Dettagli

Il metodo del simplesso

Il metodo del simplesso Capitolo 5 Il metodo del simplesso 5. La forma standard Esercizio 5.. Porre il problema di Programmazione Lineare: in forma standard. min x +x + x + x x +x 5 x 4 x, x Si trasformano i vincoli di disuguaglianza

Dettagli

4.5 Metodo del simplesso

4.5 Metodo del simplesso 4.5 Metodo del simplesso min z = c T x s.v. Ax = b x PL in forma standard Esamina una sequenza di soluzioni di base ammissibili con valori non crescenti della funzione obiettivo fino a raggiungerne una

Dettagli

Le condizioni di Karush-Kuhn-Tucker

Le condizioni di Karush-Kuhn-Tucker Capitolo 9 Le condizioni di Karush-Kuhn-Tucker 9. Introduzione In questo capitolo deriveremo le condizioni necessarie di Karush-Kuhn-Tucker (KKT) per problemi vincolati in cui S è descritto da vincoli

Dettagli

5.3 Metodo dei piani di taglio

5.3 Metodo dei piani di taglio 5.3 Metodo dei piani di taglio (PLI) min s.v. c T x Ax b x interi X Ipotesi: a ij, c j e b i interi Osservazione: La regione ammissibile di un PLI può essere descritta mediante dei vincoli più o meno stringenti

Dettagli

5.5 Metodi dei piani di taglio

5.5 Metodi dei piani di taglio 5.5 Metodi dei piani di taglio Problema generale di Programmazione Lineare Intera (PLI) max{c t x : x X} dove X = {x Z n + : Ax b}, con A matrice m n e b vettore n 1 razionali Proposizione: conv(x) = {x

Dettagli

Esercizi di Programmazione Lineare

Esercizi di Programmazione Lineare Esercizi di Programmazione Lineare 1 grafica Si consideri il seguente problema di programmazione lineare: max 3x 1 + 2x 2 s.t. + 2x 1 + x 2 4 2x 1 + x 2 2 + x 1 x 2 1 x 1, x 2 0 a) Risolvere il problema

Dettagli

Ricerca Operativa. Programmazione Lineare. Università Mediterranea di Reggio Calabria Decisions Lab

Ricerca Operativa. Programmazione Lineare. Università Mediterranea di Reggio Calabria Decisions Lab Ricerca Operativa Programmazione Lineare Università Mediterranea di Reggio Calabria Decisions Lab Ottimizzazione In un problema di ottimizzazione si cerca di massimizzare o minimizzare una quantità specifica,

Dettagli

RICERCA OPERATIVA (a.a. 2018/19)

RICERCA OPERATIVA (a.a. 2018/19) Secondo appello //9 RICERCA OPERATIVA (a.a. 8/9) Nome: Cognome: Matricola: ) Si consideri il seguente problema di PL: min y + y y y y y = y + y y = y, y, y, y Si verifichi se la soluzione ȳ =,,, sia ottima

Dettagli

Scuola di Dottorato in Ingegneria L. da Vinci. Problemi di estremo vincolato ed applicazioni. Introduzione ai problemi di estremo

Scuola di Dottorato in Ingegneria L. da Vinci. Problemi di estremo vincolato ed applicazioni. Introduzione ai problemi di estremo Scuola di Dottorato in Ingegneria L. da Vinci Problemi di estremo vincolato ed applicazioni Pisa, 28-29 Maggio, 2009 Introduzione ai problemi di estremo G. Mastroeni Ricercatore, Dipartimento di Matematica

Dettagli

Soluzione. 8.1 Campagna pubblicitaria. Exercise session 8 Optimization Prof. E. Amaldi. Insiemi. I = {1,...,m}: insieme delle radio

Soluzione. 8.1 Campagna pubblicitaria. Exercise session 8 Optimization Prof. E. Amaldi. Insiemi. I = {1,...,m}: insieme delle radio Soluzione 8.1 Campagna pubblicitaria Insiemi I = {1,...,m}: insieme delle radio J = {1,...,n}: insieme dei giornali Variabili r i r 1 i : minuti sulla stazione radiofonica i I (sotto i 25) : minuti sulla

Dettagli

PROGRAMMAZIONE LINEARE E DUALITA'

PROGRAMMAZIONE LINEARE E DUALITA' PROGRAMMAZIONE LINEARE E DUALITA' 1) Dati i punti di R 2 (1, 2), (1, 4), (2, 3), (3, 5), (4, 1), (4, 2), (5, 5), (6, 2), (6, 5). Determinare graficamente: A - L'involucro convesso di tali punti. B - Quali

Dettagli

x 1 x 2 x 3 x 5 La base iniziale è B 0 = I e risulta x B 0 = , x N 0 = Iterazione 0. Calcolo dei costi ridotti. γ 0 = c N 0 (N 0 ) T c B 0 =

x 1 x 2 x 3 x 5 La base iniziale è B 0 = I e risulta x B 0 = , x N 0 = Iterazione 0. Calcolo dei costi ridotti. γ 0 = c N 0 (N 0 ) T c B 0 = 56 IL METODO DEL SIMPLESSO 7.4 IL METODO DEL SIMPLESSO In questo paragrafo sono riportati alcuni esercizi risolti sul metodo del simplesso. Alcuni sono risolti utilizzando la procedura di pivot per determinare,

Dettagli

Progr. Non Lineare: algoritmi

Progr. Non Lineare: algoritmi Progr. Non Lineare: algoritmi Fabio Schoen schoen@ing.unifi.it http://globopt.dsi.unifi.it/users/schoen A.A. 22-23 Programmazione Non Lineare: Cenni sugli algoritmi di ottimizzazione locale Schema generale

Dettagli

Geometria della programmazione lineare

Geometria della programmazione lineare Geometria della programmazione lineare poliedri punti estremi, vertici, soluzioni di base esistenza di punti estremi rif. Fi 3.1; BT 2.1, 2.2, 2.5 Iperpiani, semispazi Definizione Sia a un vettore non

Dettagli

La notazione usata è quella usuale nel caso scalare, ed è estesa al caso generale. Consideriamo una forma quadratica:

La notazione usata è quella usuale nel caso scalare, ed è estesa al caso generale. Consideriamo una forma quadratica: . SU ALCUNI OPERAORI DI DERIVAZIONE Alcune operazioni tipiche dell analisi matematica hanno un diretto riscontro in termini matriciali. Consideriamo ad esempio una forma lineare: f() l l + l +..l n n ;

Dettagli

Programmazione Non Lineare

Programmazione Non Lineare Capitolo 1 Programmazione Non Lineare 1.1 Introduzione Un problema di ottimizzazione viene definito come la minimizzazione o la massimizzazione di una funzione a valori reali su un insieme specificato.

Dettagli

Geometria della programmazione lineare

Geometria della programmazione lineare Geometria della programmazione lineare poliedri punti estremi, vertici, soluzioni di base esistenza di punti estremi rif. Fi 3.1; BT 2.1, 2.2, 2.5 Iperpiani, semispazi Definizione Sia a un vettore non

Dettagli

Capitolo 3: Ottimizzazione non vincolata parte III. E. Amaldi DEI, Politecnico di Milano

Capitolo 3: Ottimizzazione non vincolata parte III. E. Amaldi DEI, Politecnico di Milano Capitolo 3: Ottimizzazione non vincolata parte III E. Amaldi DEI, Politecnico di Milano 3.4 Metodi di ricerca unidimensionale In genere si cerca una soluzione approssimata α k di min g(α) = f(x k +αd k

Dettagli

Capitolo 3: Ottimizzazione non vincolata parte II. E. Amaldi DEI, Politecnico di Milano

Capitolo 3: Ottimizzazione non vincolata parte II. E. Amaldi DEI, Politecnico di Milano Capitolo 3: Ottimizzazione non vincolata parte II E. Amaldi DEI, Politecnico di Milano 3.3 Metodi basati su direzioni di ricerca Problema di ottimizzazione non vincolata: min x R n f(x) con f : R n R di

Dettagli

3.3 FORMULAZIONE DEL MODELLO E CONDIZIONI DI

3.3 FORMULAZIONE DEL MODELLO E CONDIZIONI DI 3.3 FORMULAZIONE DEL MODELLO E CONDIZIONI DI ESISTENZA DI UN PUNTO DI OTTIMO VINCOLATO Il problema di ottimizzazione vincolata introdotto nel paragrafo precedente può essere formulato nel modo seguente:

Dettagli

UNIVERSITÀ DEGLI STUDI DI GENOVA

UNIVERSITÀ DEGLI STUDI DI GENOVA UNIVERSITÀ DEGLI STUDI DI GENOVA Corso di Laurea Specialistica in Ingegneria Gestionale Corso di Ricerca Operativa 2 (CD) codice 60204 A.A. 2011/2012 Docente: Mauro Gaggero PROGRAMMA DEL CORSO 1. Introduzione

Dettagli

Università Ca Foscari Venezia

Università Ca Foscari Venezia Università Ca Foscari Venezia Dipartimento di Scienze Ambientali, Informatica e Statistica Giovanni Fasano Brevi FAQ sul Metodo del SIMPLESSO Università Ca Foscari Venezia, Dipartimento di Management,

Dettagli

Domini di funzioni di due variabili. Determinare i domini delle seguenti funzioni di due variabili (le soluzioni sono alla fine del fascicolo):

Domini di funzioni di due variabili. Determinare i domini delle seguenti funzioni di due variabili (le soluzioni sono alla fine del fascicolo): UNIVERSITA DEGLI STUDI DI SALERNO C.d.L. in INGEGNERIA GESTIONALE Esercizi di Ricerca Operativa Prof. Saverio Salerno Corso tenuto nell anno solare 2009 I seguenti esercizi sono da ritenersi di preparazione

Dettagli

5 PROGRAMMAZIONE LINEARE INTERA (PLI) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

5 PROGRAMMAZIONE LINEARE INTERA (PLI) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 5 PROGRAMMAZIONE LINEARE INTERA (PLI) E. Amaldi Fondamenti di R.O. Politecnico di Milano Programma lineare intero: (PLI) min c T x Ax b x 0 intero Ipotesi: A, b interi La condizione di interezza non è

Dettagli

Geometria della programmazione lineare

Geometria della programmazione lineare Geometria della programmazione lineare poliedri punti estremi, vertici, soluzioni di base esistenza di punti estremi rif. Fi 3.1; BT 2.1, 2.2, 2.5 Iperpiani, semispazi, poliedri Sia a un vettore non nullo

Dettagli

FACOLTA DI ECONOMIA ESAME SCRITTO DI RICERCA OPERATIVA. Verona, 6 Giugno 1996

FACOLTA DI ECONOMIA ESAME SCRITTO DI RICERCA OPERATIVA. Verona, 6 Giugno 1996 Verona, Giugno ) E dato il seguente problema di Programmazione Lineare: min( x + ) x x x Rappresentare il problema geometricamente e successivamente scriverlo in forma standard. a) Determinare una soluzione

Dettagli

Programmazione Lineare

Programmazione Lineare Programmazione Lineare Andrea Scozzari a.a. 2012-2013 March 14, 2013 Andrea Scozzari (a.a. 2012-2013) Programmazione Lineare March 14, 2013 1 / 18 Metodo del Simplesso Dato un problema di PL in forma standard

Dettagli

8.3 Condizioni di ottimalità (qualifica dei vincoli e KKT) 2

8.3 Condizioni di ottimalità (qualifica dei vincoli e KKT) 2 8.1 Campagna pubblicitaria Una agenzia di pubblicità deve effettuare una campagna promozionale con due mezzi di comunicazione: gli annunci alla radio e quelli sui giornali. Vengono considerate m stazioni

Dettagli

4 PROGRAMMAZIONE LINEARE (PL) E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 1

4 PROGRAMMAZIONE LINEARE (PL) E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 1 4 PROGRAMMAZIONE LINEARE (PL) E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 1 Problemi di programmazione matematica: min f () s.v. X n insieme delle soluzioni ammissibili con funzione obiettivo

Dettagli

1) Data la seguente istanza di TSP (grafo completo con 5 nodi): c 12 = 52; c 13 = 51; c 14 = 40; c 15 = 53; c 23 = 44;

1) Data la seguente istanza di TSP (grafo completo con 5 nodi): c 12 = 52; c 13 = 51; c 14 = 40; c 15 = 53; c 23 = 44; 1) Data la seguente istanza di TSP (grafo completo con 5 nodi): c 12 = 52; c 13 = 51; c 14 = 40; c 15 = 53; c 23 = 44; c 24 = 15; c 25 = 12; c 34 = 32; c 35 = 55; c 45 = 24 Si calcoli l ottimo duale (formulazione

Dettagli

Esame di Ricerca Operativa del 19/02/2019. Esercizio 1. Risolvere il seguente problema di programmazione lineare applicando l algoritmo del simplesso:

Esame di Ricerca Operativa del 19/02/2019. Esercizio 1. Risolvere il seguente problema di programmazione lineare applicando l algoritmo del simplesso: Esame di Ricerca Operativa del 9/0/09 (Cognome) (Nome) (Numero di Matricola) Esercizio. Risolvere il seguente problema di programmazione lineare applicando l algoritmo del simplesso: max x x x 0 x + x

Dettagli

Programmazione lineare: basi e soluzioni di base

Programmazione lineare: basi e soluzioni di base Programmazione lineare:basi e soluzioni di base p. 1/33 Programmazione lineare: basi e soluzioni di base Mariantonia Cotronei Facoltà di Ingegneria Università degli Studi Mediterranea di Reggio Calabria

Dettagli

Ricerca Operativa. G. Liuzzi. Lunedí 23 Marzo Il Metodo del Simplesso Java API Problema di Trasporto

Ricerca Operativa. G. Liuzzi. Lunedí 23 Marzo Il Metodo del Simplesso Java API Problema di Trasporto 1 Lunedí 23 Marzo 2015 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR SHHHHH... Simplesso in 2 fasi Fase I (rg(a) m) Se P non è ammissibile, STOP Altrimenti 1 elimina da (A... b) eventuali

Dettagli

4 PROGRAMMAZIONE LINEARE (PL) E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 1

4 PROGRAMMAZIONE LINEARE (PL) E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 1 4 PROGRAMMAZIONE LINEARE (PL) E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 1 Problemi di programmazione matematica: min s.v. f () X n dove X è la regione delle soluzioni ammissibili con funzione

Dettagli

Sviluppando ancora per colonna sulla prima colonna della prima matrice e sulla seconda della seconda matrice si ottiene:

Sviluppando ancora per colonna sulla prima colonna della prima matrice e sulla seconda della seconda matrice si ottiene: M. CARAMIA, S. GIORDANI, F. GUERRIERO, R. MUSMANNO, D. PACCIARELLI RICERCA OPERATIVA Isedi Esercizi proposti nel Cap. 5 - Soluzioni Esercizio 5. - La norma Euclidea di è 9 6 5 - Il versore corrispondente

Dettagli

Prova d esame di Ottimizzazione (LM)

Prova d esame di Ottimizzazione (LM) Corso di Laurea Magistrale e Laurea Specialistica in Ingegneria Gestionale Prova d esame di Ottimizzazione (LM) 4 Luglio 2011 Domanda 1 (11 punti) Sia f : R n R una funzione quadratica: f(x) = 1 2 xt Qx

Dettagli

Geometria della programmazione lineare

Geometria della programmazione lineare Geometria della programmazione lineare p. 1/39 Geometria della programmazione lineare Mariantonia Cotronei Facoltà di Ingegneria Università degli Studi Mediterranea di Reggio Calabria Geometria della programmazione

Dettagli

Programmazione Lineare Intera

Programmazione Lineare Intera Programmazione Lineare Intera Andrea Scozzari a.a. 2012-2013 May 10, 2013 Andrea Scozzari (a.a. 2012-2013) Programmazione Lineare Intera May 10, 2013 1 / 16 Programmazione Lineare Intera: Metodo dei Piani

Dettagli

ESAME di OTTIMIZZAZIONE - Compito A (bianco) Corso di Laurea in Ingegneria Gestionale 2 o anno

ESAME di OTTIMIZZAZIONE - Compito A (bianco) Corso di Laurea in Ingegneria Gestionale 2 o anno ESAME di OTTIMIZZAZIONE 16 gennaio 2009 ESAME di OTTIMIZZAZIONE - Compito A (bianco) Corso di Laurea in Ingegneria Gestionale 2 o anno Cognome : Nome : VALUTAZIONE Per gli esercizi 1,2,3,4: ogni risposta

Dettagli

ESAME di OTTIMIZZAZIONE Corso di Laurea Magistrale in Ingegneria Gestionale 1 o anno

ESAME di OTTIMIZZAZIONE Corso di Laurea Magistrale in Ingegneria Gestionale 1 o anno SIMULAZIONE ESAME di OTTIMIZZAZIONE 27 Gennaio 21 ESAME di OTTIMIZZAZIONE Corso di Laurea Magistrale in Ingegneria Gestionale 1 o anno Cognome : Nome : Esercizio 1. Si consideri il seguente problema: min

Dettagli

Esame di Ricerca Operativa. Corso di Laurea in Ingegneria Informatica e Automatica. Compito A

Esame di Ricerca Operativa. Corso di Laurea in Ingegneria Informatica e Automatica. Compito A Esame di Ricerca Operativa Corso di Laurea in Ingegneria Informatica e Automatica 6 settembre 218 Compito A Istruzioni Usate i fogli bianchi allegati per calcoli, ragionamenti e quanto altro reputiate

Dettagli

Condizioni di Karush-Kuhn-Tucker e Programmazione Lineare

Condizioni di Karush-Kuhn-Tucker e Programmazione Lineare Condizioni di Karush-Kuhn-Tucker e Programmazione Lineare A. Agnetis 1 Richiami su condizioni di Karush-Kuhn-Tucker e convessità Si consideri il problema di ottimizzazione vincolata: min f(x) (1) x X R

Dettagli

Esame di Ricerca Operativa del 11/1/19

Esame di Ricerca Operativa del 11/1/19 Esame di Ricerca Operativa del // (Cognome) (Nome) (Numero di Matricola) Esercizio. (a) Risolvere il seguente problema di programmazione lineare, determinandone il problema duale ed applicando l algoritmo

Dettagli

Algoritmo del simplesso

Algoritmo del simplesso Algoritmo del simplesso Ipotesi : si parte da una S.A.B. e dal tableau A=b in forma canonica. Si aggiunge una riga costituita dagli r j, j =,., n e da -z (valore, cambiato di segno, della f.o. nella s.a.b.)

Dettagli

(a) Si proponga una formulazione di programmazione nonlineare a variabili misto-intere per problema.

(a) Si proponga una formulazione di programmazione nonlineare a variabili misto-intere per problema. 6. Clustering In molti campi applicativi si presenta il problema del data mining, che consiste nel suddividere un insieme di dati in gruppi e di assegnare un centro a ciascun gruppo. Ad esempio, in ambito

Dettagli

Esercizi su algebra lineare, fattorizzazione LU e risoluzione di sistemi lineari

Esercizi su algebra lineare, fattorizzazione LU e risoluzione di sistemi lineari Esercizi su algebra lineare, fattorizzazione LU e risoluzione di sistemi lineari 4 maggio Nota: gli esercizi più impegnativi sono contrassegnati dal simbolo ( ) Esercizio Siano 3 6 8 6 4 3 3 ) determinare

Dettagli

2. ALGORITMO DEL SIMPLESSO

2. ALGORITMO DEL SIMPLESSO . ALGORITMO DEL SIMPLESSO R. Tadei Una piccola introduzione R. Tadei SIMPLESSO L obiettivo del capitolo è quello di fornire un algoritmo, l algoritmo del simplesso, che risolve qualsiasi problema di programmazione

Dettagli

Corso di Matematica Applicata A.A

Corso di Matematica Applicata A.A Corso di Matematica Applicata A.A. 2012-2013 Programmazione lineare (III parte) Prof.ssa Bice Cavallo Iterazioni del simplesso Basi teoriche dell algoritmo Operazione di pivot Sottomatrice di base B=I

Dettagli

ESAME di OTTIMIZZAZIONE - Compito A Corso di Laurea in Ingegneria Gestionale 2 o anno

ESAME di OTTIMIZZAZIONE - Compito A Corso di Laurea in Ingegneria Gestionale 2 o anno ESAME di OTTIMIZZAZIONE 12 gennaio pomeriggio 2005 ESAME di OTTIMIZZAZIONE - Compito A Corso di Laurea in Ingegneria Gestionale 2 o anno Cognome : Nome : VALUTAZIONE Per gli esercizi 1,2,3,4 le risposte

Dettagli

Algoritmi per la programmazione lineare: il metodo del simplesso

Algoritmi per la programmazione lineare: il metodo del simplesso Algoritmi per la programmazione lineare: il metodo del simplesso Dipartimento di Informatica, Universita' di Pisa A.A. 2018/2019 Contenuti della lezione Problemi di programmazione lineare, forma standard

Dettagli

NLP KKT 1. Le condizioni necessarie di ottimo per il problema min f o (x) con vincoli g i (x) 0 i I h j (x) = 0 j J

NLP KKT 1. Le condizioni necessarie di ottimo per il problema min f o (x) con vincoli g i (x) 0 i I h j (x) = 0 j J NLP KKT 1 Le condizioni necessarie di ottimo per il problema min f o (x) g i (x) 0 i I h j (x) = 0 j J sono, riferite ad un punto ammissibile x*, μ 0 f o (x*) + i I μ i g i (x*) + j J λ j h j (x*) = 0

Dettagli

Programmazione Matematica / A.A Soluzioni di alcuni esercizi

Programmazione Matematica / A.A Soluzioni di alcuni esercizi Programmazione Matematica / A.A. 8-9 Soluzioni di alcuni esercizi Esercizi - I 3. Aggiungiamo al problema una variabile v, e richiediamo che v soddisfi v n a ij x j b i. j= Fissato x, il minimo v che soddisfa

Dettagli

Capitolo 4: Ottimizzazione non lineare non vincolata

Capitolo 4: Ottimizzazione non lineare non vincolata Capitolo 4: Ottimizzazione non lineare non vincolata Edoardo Amaldi DEIB Politecnico di Milano edoardo.amaldi@polimi.it Sito web: http://home.deib.polimi.it/amaldi/ott-13-14.shtml A.A. 2013-14 Edoardo

Dettagli

Esercizi sulla Programmazione Lineare. min. cx Ax b x 0

Esercizi sulla Programmazione Lineare. min. cx Ax b x 0 Soluzioni 4.-4. Fondamenti di Ricerca Operativa Prof. E. Amaldi Esercizi sulla Programmazione Lineare 4. Risoluzione grafica e forma standard. Si consideri il problema min x cx Ax b x dove x = (x, x )

Dettagli

RICERCA OPERATIVA (a.a. 2015/16) Nome: Cognome: Matricola:

RICERCA OPERATIVA (a.a. 2015/16) Nome: Cognome: Matricola: o Appello // RICERCA OPERATIVA (a.a. /) Nome: Cognome: Matricola: ) Si consideri il seguente problema di PL: max x + x x x x x x + x x Si applichi l algoritmo del Simplesso Duale, per via algebrica, a

Dettagli

5.1 Metodo Branch and Bound

5.1 Metodo Branch and Bound 5. Metodo Branch and Bound Si consideri il problema min{ c(x) : x X } Idea: Ricondurre la risoluzione di un problema difficile a quella di sottoproblemi più semplici effettuando una partizione (ricorsiva)

Dettagli

3.4 Metodo di Branch and Bound

3.4 Metodo di Branch and Bound 3.4 Metodo di Branch and Bound Consideriamo un generico problema di Ottimizzazione Discreta dove X è la regione ammissibile. (P ) z = max{c(x) : x X} Metodologia generale di enumerazione implicita (Land

Dettagli

3.7 Metodi quasi-newton

3.7 Metodi quasi-newton 3.7 Metodi quasi-newton Varianti del metodo di Newton in cui invece di usare/invertire la matrice Hessiana di f si estraggono informazioni relative alle derivate seconde dalle variazioni di f. Si genera

Dettagli

Problemi di Ottimizzazione

Problemi di Ottimizzazione Problemi di Ottimizzazione x = (x 1,..., x n ) R n : vettore di variabili decisionali F R n : insieme delle soluzioni ammissibili (regione ammissibile) : F R: funzione obiettivo (P) min (x) x F ovvero

Dettagli

SQP (Sequential Quadratic Programming ) La soluzione del problema min f o (x) g i (x) = 0, i I

SQP (Sequential Quadratic Programming ) La soluzione del problema min f o (x) g i (x) = 0, i I SQP (Sequential Quadratic Programming ) La soluzione del problema min f o (x) g i (x) = 0, i I e caratterizzata dalle condizioni f o (x) + i I μ i g i (x) = 0 e dall ammissibilita ( g i (x) = 0, i I )

Dettagli

Programmazione Matematica / A.A Soluzioni di alcuni esercizi

Programmazione Matematica / A.A Soluzioni di alcuni esercizi Programmazione Matematica / A.A. 7-8 Soluzioni di alcuni esercizi Esercizi - I. Aggiungiamo al problema una variabile v, e richiediamo che v soddisfi v n a ij x j b i. j= Fissato x, il minimo v che soddisfa

Dettagli

ALGORITMO DEL SIMPLESSO. Una piccola introduzione. Ricerca Operativa. Prof. R. Tadei. Politecnico di Torino. Simplesso / 1.

ALGORITMO DEL SIMPLESSO. Una piccola introduzione. Ricerca Operativa. Prof. R. Tadei. Politecnico di Torino. Simplesso / 1. ALGORITMO DEL SIMPLESSO Una piccola introduzione R. Tadei R. Tadei 2 SIMPLESSO L obiettivo del capitolo è quello di fornire un algoritmo, l algoritmo del simplesso, che risolve qualsiasi problema di programmazione

Dettagli

A.A Fondamenti di Ricerca Operativa Esercizi ottobre min 2x 1 + x 2 + 4x 3 3x 4 x 1 + x 3 = 5 x 2 + x 4 = 2

A.A Fondamenti di Ricerca Operativa Esercizi ottobre min 2x 1 + x 2 + 4x 3 3x 4 x 1 + x 3 = 5 x 2 + x 4 = 2 . Si consideri il problema A.A. 07-08 Fondamenti di Ricerca Operativa Esercizi ottobre 07 min x + x + 4x 3 3x 4 x + x 3 = 5 x + x 4 = x, x, x 3, x 4 0 Stabilire se il problema ha insieme ammissibile vuoto,

Dettagli

LEZIONE ICO

LEZIONE ICO LEZIONE ICO 9-10-2009 Argomento. Rassegna dei metodi numerici utilizzabili per la soluzione di problemi di ottimizzazione statica. Metodi del gradiente e di Newton e loro derivati. Metodi di penalita e

Dettagli

Teoria della Programmazione Lineare Intera

Teoria della Programmazione Lineare Intera Teoria della Programmazione Lineare Intera Laura Galli Dipartimento di Informatica Largo B. Pontecorvo, 567 Pisa laura.galli@unipi.it http://www.di.unipi.it/~galli 7 Ottobre 0 Ricerca Operativa Laurea

Dettagli

UNIVERSITÀ DEGLI STUDI DI PADOVA

UNIVERSITÀ DEGLI STUDI DI PADOVA UNIVERSITÀ DEGLI STUDI DI PADOVA Facoltà di Ingegneria Corso di Laurea in Ingegneria dell Informazione Convex Optimization Relatore:Chiarissimo Prof. Sandro Zampieri Tesi di Laurea di: Stefano Zorzi Matr.

Dettagli

Programmazione lineare

Programmazione lineare Capitolo 1 Programmazione lineare ESERCIZIO 1.1. Porre in forma canonica i seguenti programmi lineari. min 3x 1 + 4x 2 2x 3 x 1 + 2x 2 x 3 5 2x 1 + 4x 3 = 12 x 1 + x 2 + x 3 15 x 1, x 2 0, x 3 libera.

Dettagli

Risoluzione di sistemi lineari

Risoluzione di sistemi lineari Risoluzione di sistemi lineari Teorema (Rouché-Capelli) Dato il sistema di m equazioni in n incognite Ax = b, con A M at(m, n) b R n x R n [A b] si ha che: matrice dei coefficienti, vettore dei termini

Dettagli

Metodo del Simplesso. Ricerca Operativa. G. Liuzzi. Lunedí 16 Marzo logo.pdf. 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR

Metodo del Simplesso. Ricerca Operativa. G. Liuzzi. Lunedí 16 Marzo logo.pdf. 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR 1 Lunedí 16 Marzo 2015 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR SHHHHH... Forma standard di PL min c x Ax = b x 0 n (1 P = {x R n : Ax = b, x 0 n } Forma Canonica Data una base ammissibile

Dettagli

Metodi di Ricerca Lineare

Metodi di Ricerca Lineare Metodi di Ricerca Lineare Stefano Gualandi Università di Pavia, Dipartimento di Matematica email: twitter: blog: stefano.gualandi@unipv.it @famo2spaghi http://stegua.github.com Metodi di Ottimizzazione

Dettagli

Esercizi di ottimizzazione vincolata

Esercizi di ottimizzazione vincolata Esercizi di ottimizzazione vincolata A. Agnetis, P. Detti Esercizi svolti 1 Dato il seguente problema di ottimizzazione vincolata max x 1 + x 2 x 1 4x 2 3 x 1 + x 2 2 0 x 1 0 studiare l esistenza di punti

Dettagli

Tagli Split per Programmazione Lineare Intera Mista

Tagli Split per Programmazione Lineare Intera Mista Tagli Split per Programmazione Lineare Intera Mista Domenico Salvagnin 2011-05-29 1 Introduzione Consideriamo la regione ammissibile di un problema di programmazione lineare intera mista Ax + Gy = b (1.1)

Dettagli

RICERCA OPERATIVA (a.a. 2015/16) Nome: Cognome: Matricola:

RICERCA OPERATIVA (a.a. 2015/16) Nome: Cognome: Matricola: o Appello 8// RICERCA OPERATIVA (a.a. /) Nome: Cognome: Matricola: ) Si risolva il seguente problema di PL max x x x x x x + x x per via algebrica, mediante l algoritmo del Simplesso Primale a partire

Dettagli

Quinto appello 27/6/ = 4. B b B = 2 b N = 4

Quinto appello 27/6/ = 4. B b B = 2 b N = 4 Quinto appello // RICERCA OPERATIVA (a.a. /) Nome: Cognome: Matricola: ) Si risolva il problema di PL dato applicando l algoritmo del Simplesso Duale, per via algebrica, a partire dalla base B {, }. Per

Dettagli

Algoritmo del Simplesso

Algoritmo del Simplesso Algoritmo del Simplesso Renato Bruni bruni@dis.uniroma.it Univertà di Roma Sapienza Corso di Ricerca Operativa, Corso di Laurea Ingegneria dell Informazione Vertici e Punti Estremi di un Poliedro Un poliedro

Dettagli

Tecniche di Decomposizione per Programmazione Lineare Intera (Mista)

Tecniche di Decomposizione per Programmazione Lineare Intera (Mista) Tecniche di Decomposizione per Programmazione Lineare Intera (Mista) Domenico Salvagnin 2011-06-12 1 Introduzione Dato un problema di programmazione lineare intera (mista), non è sempre possibile (o conveniente)

Dettagli

Teoria della Programmazione Lineare Intera

Teoria della Programmazione Lineare Intera 0 Teoria della Programmazione Lineare Intera 0. INTRODUZIONE Come visto precedentemente, molti problemi particolarmente importanti dal punto di vista applicativo sono riconducibili alla soluzione di un

Dettagli