4 PROGRAMMAZIONE LINEARE (PL) E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 1

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "4 PROGRAMMAZIONE LINEARE (PL) E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 1"

Transcript

1 4 PROGRAMMAZIONE LINEARE (PL) E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 1

2 Problemi di programmazione matematica: min s.v. f () X n dove X è la regione delle soluzioni ammissibili con funzione obiettivo f lineare e X={ n : g i () 0, i {1,, m} } (=) con g i lineari i = 1,, m E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 2

3 Forma generale: min z = c c n n a a 1n n b 1 (=) A b 0 ( ) a m a mn n b m (=) ( ) 1,, n 0 Notazione matriciale: 1 min min z = c T c 1 c n n a 11 a 1n 1 b 1 a m1 a mn n b m 1 0 E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano n 3

4 X = { n : A b, 0 } regione delle soluzioni ammissibili Def. Un * X è soluzione ottima di un problema di minimizzazione se c T * c T X Una classe molto ampia di problemi decisionali possono essere formulati come programmi lineari Spesso si tratta di problemi di allocazione ottimale di risorse limitate fra varie attività Origini: modelli di PL (L. Kantorovich 1939) algoritmo del simplesso (G. Dantzig 1947) E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 4

5 Dati n m a i b i c Problema della dieta cibi = 1,, n sostanze nutritive i = 1,, m quantità di i-esima sostanza contenuta in ogni unità del -esimo cibo fabbisogno sostanza i costo di un unità del cibo Determinare una dieta di costo minimo che soddisfa tutti i fabbisogni. E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 5

6 E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 6 = quantità di -esimo cibo, con = 1,..., n n m i b a c n i i n 1,..., 0 1,..., min 1 1 Variabili di decisione:

7 Problema del trasporto (monoprodotto) m impianti produttivi i = 1,, m n clienti = 1,, n c i p i d q i costo di trasporto di una unità di prodotto dall impianto i al cliente disponibilità ma di prodotto presso l impianto i domanda del cliente massima quantità trasportabile da i a Determinare un piano di trasporto che minimizzi i costi rispettando le domande e i limiti di disponibilità. E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 7

8 Ipotesi: m i1 p i d n 1 Variabili di decisione: i = quantità trasportata da i a min m n i1 1 c i i n 1 i p i i = 1,, m (disponibilità) m i1 i d = 1,, n (domanda) 0 i q i i, (capacità) E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 8

9 Problema di mi produttivo n prodotti ( = 1,, n) che competono per l utilizzo di m risorse (i = 1,, m) con disponibilità limitate c a i b i margine lordo (ricavo costi) per unità di -esimo prodotto quantità di i-esima risorsa necessaria per una unità di -esimo prodotto disponibilità massima di i-esima risorsa Determinare un piano di produzione che massimizzi il margine lordo totale rispettando i limiti di disponibilità. E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 9

10 E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 10 = quantità di -esimo prodotto, con = 1,..., n n m i b a c n i i n 1,..., 0 1,..., ma 1 1 Variabili di decisione:

11 Ipotesi dei modelli di PL 1) Linearità della funzione obiettivo e dei vincoli Proporzionalità: contributo di ogni variabile = costante variabile Non si tiene conto di economie di scala! Addittività: contributo di tutte le variabile = somma dei singoli contributi Prodotti in competizione guadagni non indipendenti! E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 11

12 2) Divisibilità Le variabili possono assumere valori frazionari (reali) Parametri: Si suppone che tutti i parametri numerici del modello possano essere considerati costanti, ovvero stimati con un grado di precisione sufficiente. Diversi scenari analisi di sensitività E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 12

13 Forma generale : min (ma) Def. Forma standard min 4.1 Forme equivalenti z = c T A 1 b 1 A 2 b 2 A 3 = b 3 0 per J {1,, n} libera per {1,, n} \ J z = c T A = b 0 vincoli di disuguaglianza vincoli di uguaglianza solo vincoli di uguaglianza e tutte variabili non negative E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 13

14 Le due forme sono equivalenti Delle regole di trasformazioni permettono di passare dalla forma generale a quella standard e viceversa. NB: il passaggio dall una all altra può comportare una variazione del numero di vincoli e di variabili E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 14

15 ma c T = - min c T Regole di trasformazione a T b a T + s = b s 0 variabile di scarto a T b a T - s = b s 0 variabile di surplus E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 15

16 E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 16 Sostituendo con + si elimina dal problema Alternativamente può essere ricavata da una equazione e sostituita dappertutto (si elimina un equazione e una variabile). 0 0 libera

17 Esempio Forma generale: ma , 2 libera ma = 3 4 3, , 3, 4 0 E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 17

18 introducendo 5 e 6 di scarto e surplus + cambiando di segno la funzione obiettivo min = = 4 1, 3, 4, 5, 6 0 E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 18

19 4.2 Geometria della PL Esempio Problema di investimenti Capitale di e due possibili investimenti A e B con rendimenti previsti rispettivamente del 4% e 6% Determinare un piano di investimento che massimizzi il ritorno, rispettando le condizioni di diversificazione: non più del 75% del capitale investito in A non più del 50% del capitale investito in B E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 19

20 Modello A = somma investita in A B = somma investita in B ma z = 0,04 A + 0,06 B s.v. A + B A B A, B 0 E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 20

21 4.2.1 Risoluzione grafica B A regione delle soluzioni ammissibili B A A + B A, B 0 K euro E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 21

22 K euro B z crescente linee di livello sono le rette 0,04 A + 0,06 B = z 10 8 z = z = 500 z = A costante Soluzione ottima: * A * B = z * = Gradiente f () = 0,04 0,06 indica la direzione di massimo aumento di f E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 22

23 4.2.2 Vertici della regione ammissibile Def.: H = { H - = { n : a T = b} è un iperpiano n : a T b} è un semispazio affine semipiano in 2 Ogni vincolo (a T b o a T b) definisce un semispazio affine nello spazio delle variabili a H - ={ n : a T b} a 0 b = 0 E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 23

24 Def.: La regione ammissibile X è un poliedro P P può essere vuoto e non limitato semispazi # finito Def.: Un insieme X n è convesso se y 1, y 2 X X contiene tutto il segmento che congiunge y 1 e y 2.. y 1 y 2 y 1 y 2 convesso [y 1, y 2 ] = { n : = y 1 + (1 - ) y 2 con [0, 1] } segmento tutte le combinazione convesse di y 1 e y 2 E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 24

25 Proprietà: un poliedro P è un insieme convesso di n Infatti: un semispazio è chiaramente convesso y 1 y 2 e l intersezione di un numero finito di insiemi convessi è anch esso un insieme convesso. E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 25

26 non è un vertice! 2 (0,3,1) (0,3,0) H 1 (0,1,3)... H 2 3 (0,0,0) (1,3,0) (0,0,3) (2,2,0) (1,0,3). (2,0,2) (2,0,0) faccetta spigolo ~ è un vertice di P se y 1, y 2 P, y 1 y 2 e (0, 1) tale che ~ = y 1 + (1 - ) y 2 Def.: I vertici di P sono i punti di P che non possono essere espressi come combinazione convessa di altri due punti di P. H 3 Poliedro P ~ vertice 1 E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 26

27 Proprietà: Un poliedro P ={ n : A = b, 0 } ø ha un numero finito ( 1) di vertici. Def.: Sia P un poliedro, un vettore d n con d 0 è una direzione ammissibile di P se per ogni punto 0 P n il raggio { : = 0 + d, 0 } è completamente contenuto in P.. P d. d 0 0 E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 27

28 Rappresentazione dei poliedri: Ogni punto di un poliedro P può essere espresso come combinazione convessa dei suoi vertici più una eventuale direzione ammissibile d di P : = k k + d dove 1,..., k sono i vertici di P e i moltiplicatori i 0 soddisfano k = 1. P [ 1, 2 ], d = d 1 2 E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 28

29 Conseguenza: (Weyl-Minkowski) Ogni punto di un poliedro limitato P (polítopo) può essere espresso come combinazione convessa dei suoi vertici P 2. = con i 0 e = 1 (d = 0) E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 29

30 Teorema fondamentale della PL: Se il poliedro P ={ n : A = b, 0 } delle soluzioni ammissibili del PL min{ c T : P } non è vuoto, esiste almeno un vertice ottimo o il valore della funzione obiettivo non è limitato inferiormente su P. Dim. Caso 1: P ha una direzione ammissibile d tale che c T d < 0 P è illimitato e il valore z = c T - lungo la direzione d E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 30

31 E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 31 Caso 2: P non ha direzioni ammissibili d tali che c T d < 0 i T k i T k i i T i k i i i T T c d c c d c c min Per qualsiasi P, d = 0 o c T d 0 e quindi Ogni punto di P può essere espresso come: dove 1,..., k sono i vertici di P, i 0 con k =1, e d = 0 oppure d è una direzione ammissibile. d k i i i 1 visto che i 0 i e k =1. 0

32 Nonostante le variabili assumano valori frazionari la PL si riconduce ad un problema di natura combinatoria: basta esaminare i vertici del poliedro delle soluzioni ammissibili! # finito Metodo grafico applicabile solo se n 3 algoritmo? E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 32

33 Un punto interno P non può essere una soluzione ottima: c = direzione di massimo aumento di z (gradiente costante) spostamento che migliora il valore di z In un vertice ottimo tutte le direzioni che permettono (passo suff. piccolo) di rispettare l ammissibilità sono peggioranti: vertici direzioni miglioranti direzioni che permettono di non violare l ammissibilità E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 33

34 4.2.3 Quattro tipi di programmi lineari La soluzione ottima è unica 2. c 1 Numero infinito di soluzioni ottime c E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 34

35 PL illimitato c poliedro illimitato e non esiste una soluzione ottima PL inammissibile poliedro vuoto (nessuna soluzione ammissibile) E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 35

4 PROGRAMMAZIONE LINEARE (PL) E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 1

4 PROGRAMMAZIONE LINEARE (PL) E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 1 4 PROGRAMMAZIONE LINEARE (PL) E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 1 Problemi di programmazione matematica: min f () s.v. X n insieme delle soluzioni ammissibili con funzione obiettivo

Dettagli

Programmazione Lineare

Programmazione Lineare Programmazione Lineare Andrea Scozzari a.a. 2012-2013 March 14, 2013 Andrea Scozzari (a.a. 2012-2013) Programmazione Lineare March 14, 2013 1 / 18 Metodo del Simplesso Dato un problema di PL in forma standard

Dettagli

Programmazione Matematica: III.1 - Programmazione Lineare

Programmazione Matematica: III.1 - Programmazione Lineare Programmazione Matematica: III.1 - Programmazione Lineare Daniele Vigo D.E.I.S. Università di Bologna dvigo@deis.unibo.it rev. 1.0 ottobre 2003 Programmazione Lineare Def.: (F, ϕ ) è un problema di Programmazione

Dettagli

Ricerca Operativa. G. Liuzzi. Lunedí 9 Marzo Programmazione Matematica Geometria di R n Esempi Teoria della PL Forma Standard. logo.

Ricerca Operativa. G. Liuzzi. Lunedí 9 Marzo Programmazione Matematica Geometria di R n Esempi Teoria della PL Forma Standard. logo. 1 Lunedí 9 Marzo 2015 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR Problema di Ottimizzazione min(o max) f (x) con la restrizione x S dove f (x) : R n R è detta funzione obiettivo S R n

Dettagli

Ricerca Operativa. Ricerca Operativa p. 1/6

Ricerca Operativa. Ricerca Operativa p. 1/6 Ricerca Operativa Ricerca Operativa p. 1/6 Ricerca Operativa Disciplina basata sulla modellizzazione e la risoluzione tramite strumenti automatici di problemi di decisione complessi. In tali problemi la

Dettagli

4.3 Esempio metodo del simplesso

4.3 Esempio metodo del simplesso 4.3 Esempio metodo del simplesso (P ) min -5x 4x 2 3x 3 s.v. 2x + 3x 2 + x 3 5 4x + x 2 + 2x 3 3x + 4x 2 + 2x 3 8 x, x 2, x 3 Per mettere il problema in forma standard si introducono le variabili di scarto

Dettagli

5.3 Metodo dei piani di taglio

5.3 Metodo dei piani di taglio 5.3 Metodo dei piani di taglio (PLI) min s.v. c T x Ax b x interi X Ipotesi: a ij, c j e b i interi Osservazione: La regione ammissibile di un PLI può essere descritta mediante dei vincoli più o meno stringenti

Dettagli

4.3 Esempio metodo del simplesso

4.3 Esempio metodo del simplesso 4.3 Esempio metodo del simplesso (P ) min -5x 4x 2 3x 3 s.v. 2x + 3x 2 + x 3 5 4x + x 2 + 2x 3 3x + 4x 2 + 2x 3 8 x, x 2, x 3 Per mettere il problema in forma standard si introducono le variabili di scarto

Dettagli

Teoria della Programmazione Lineare. Teoria della Programmazione Lineare p. 1/8

Teoria della Programmazione Lineare. Teoria della Programmazione Lineare p. 1/8 Teoria della Programmazione Lineare Teoria della Programmazione Lineare p. 1/8 I problemi di PL in forma canonica In forma scalare: max n j=1 c jx j n j=1 a ijx j b i x j 0 i = 1,...,m j = 1,...,n Teoria

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I)

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I) Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I) Luigi De Giovanni Giacomo Zambelli 1 Problemi di programmazione lineare Un problema

Dettagli

Programmazione Matematica / A.A Soluzioni di alcuni esercizi

Programmazione Matematica / A.A Soluzioni di alcuni esercizi Programmazione Matematica / A.A. 7-8 Soluzioni di alcuni esercizi Esercizi - I. Aggiungiamo al problema una variabile v, e richiediamo che v soddisfi v n a ij x j b i. j= Fissato x, il minimo v che soddisfa

Dettagli

5 PROGRAMMAZIONE LINEARE INTERA (PLI) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

5 PROGRAMMAZIONE LINEARE INTERA (PLI) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 5 PROGRAMMAZIONE LINEARE INTERA (PLI) E. Amaldi Fondamenti di R.O. Politecnico di Milano Programma lineare intero: (PLI) min c T x Ax b x 0 intero Ipotesi: A, b interi La condizione di interezza non è

Dettagli

Geometria della programmazione lineare

Geometria della programmazione lineare Geometria della programmazione lineare poliedri punti estremi, vertici, soluzioni di base esistenza di punti estremi rif. Fi 3.1; BT 2.1, 2.2, 2.5 Iperpiani, semispazi Definizione Sia a un vettore non

Dettagli

Geometria della programmazione lineare

Geometria della programmazione lineare Geometria della programmazione lineare poliedri punti estremi, vertici, soluzioni di base esistenza di punti estremi rif. Fi 3.1; BT 2.1, 2.2, 2.5 Iperpiani, semispazi, poliedri Sia a un vettore non nullo

Dettagli

Programmazione Matematica / A.A Soluzioni di alcuni esercizi

Programmazione Matematica / A.A Soluzioni di alcuni esercizi Programmazione Matematica / A.A. 8-9 Soluzioni di alcuni esercizi Esercizi - I 3. Aggiungiamo al problema una variabile v, e richiediamo che v soddisfi v n a ij x j b i. j= Fissato x, il minimo v che soddisfa

Dettagli

Geometria della programmazione lineare

Geometria della programmazione lineare Geometria della programmazione lineare p. 1/39 Geometria della programmazione lineare Mariantonia Cotronei Facoltà di Ingegneria Università degli Studi Mediterranea di Reggio Calabria Geometria della programmazione

Dettagli

Soluzione dei Problemi di Programmazione Lineare

Soluzione dei Problemi di Programmazione Lineare Soluzione dei Problemi di Programmazione Lineare Consideriamo un problema di Programmazione Lineare (PL) con m vincoli ed n variabili in Forma Standard dove: ma 0 c A b ( ) 0 ( 2) R è il vettore n delle

Dettagli

Parte IV: Rafforzamento di formulazioni e algoritmo dei piani di taglio

Parte IV: Rafforzamento di formulazioni e algoritmo dei piani di taglio Parte IV: Rafforzamento di formulazioni e algoritmo dei piani di taglio Nozioni di geometria Definizione: Un vettore y R n è combinazione conica dei vettori { 1,, k } se esistono k coefficienti reali λ

Dettagli

4.5 Metodo del simplesso

4.5 Metodo del simplesso 4.5 Metodo del simplesso min z = c T x s.v. Ax = b x 0 PL in forma standard Esamina una sequenza di soluzioni di base ammissibili con valori non crescenti della funzione obiettivo fino a raggiungerne una

Dettagli

Geometria della programmazione lineare

Geometria della programmazione lineare Geometria della programmazione lineare poliedri punti estremi, vertici, soluzioni di base esistenza di punti estremi rif. Fi 3.1; BT 2.1, 2.2, 2.5 Iperpiani, semispazi Definizione Sia a un vettore non

Dettagli

4.5 Metodo del simplesso

4.5 Metodo del simplesso 4.5 Metodo del simplesso min z = c T x s.v. Ax = b x PL in forma standard Esamina una sequenza di soluzioni di base ammissibili con valori non crescenti della funzione obiettivo fino a raggiungerne una

Dettagli

1. Dare la definizione di funzione lineare. R: Una funzione lineare di n variabili è una funzione del tipo. c 1 x 1 + c 2 x c n x n,

1. Dare la definizione di funzione lineare. R: Una funzione lineare di n variabili è una funzione del tipo. c 1 x 1 + c 2 x c n x n, VERTICIDIUNPOLIEDRO 31 Esercizi di riepilogo sui Capitoli 1 5 1. Dare la definizione di funzione lineare. R: Una funzione lineare di n variabili è una funzione del tipo dove c 1,c 2,...,c n sono numeri

Dettagli

PROGRAMMAZIONE LINEARE E DUALITA'

PROGRAMMAZIONE LINEARE E DUALITA' PROGRAMMAZIONE LINEARE E DUALITA' 1) Dati i punti di R 2 (1, 2), (1, 4), (2, 3), (3, 5), (4, 1), (4, 2), (5, 5), (6, 2), (6, 5). Determinare graficamente: A - L'involucro convesso di tali punti. B - Quali

Dettagli

Problemi di Ottimizzazione

Problemi di Ottimizzazione Problemi di Ottimizzazione x = (x 1,..., x n ) R n : vettore di variabili decisionali F R n : insieme delle soluzioni ammissibili (regione ammissibile) : F R: funzione obiettivo (P) min (x) x F ovvero

Dettagli

Registro dell'insegnamento

Registro dell'insegnamento Registro dell'insegnamento Anno accademico 2016/2017 Prof. MARCO SCIANDRONE Settore inquadramento MAT/09 - RICERCA OPERATIVA REGISTRO Scuola Ingegneria NON CHIUSO Dipartimento Ingegneria dell'informazione

Dettagli

3.3 Problemi di PLI facili

3.3 Problemi di PLI facili 3.3 Problemi di PLI facili Consideriamo un generico problema di PLI espresso in forma standard min{c t x : Ax = b, x Z n +} (1) dove A Z m n con n m, e b Z m. Supponiamo che A sia di rango pieno. Sia P

Dettagli

Introduzione alla programmazione lineare

Introduzione alla programmazione lineare Introduzione alla programmazione lineare struttura del problema di PL forme equivalenti rappresentazione e soluzione grafica rif. Fi 1.2; BT 1.1, 1.4 Problema di programmazione lineare Dati: un vettore

Dettagli

3.3 FORMULAZIONE DEL MODELLO E CONDIZIONI DI

3.3 FORMULAZIONE DEL MODELLO E CONDIZIONI DI 3.3 FORMULAZIONE DEL MODELLO E CONDIZIONI DI ESISTENZA DI UN PUNTO DI OTTIMO VINCOLATO Il problema di ottimizzazione vincolata introdotto nel paragrafo precedente può essere formulato nel modo seguente:

Dettagli

Capitolo 2: Preliminari ed elementi di analisi convessa. E. Amaldi DEIB, Politecnico di Milano

Capitolo 2: Preliminari ed elementi di analisi convessa. E. Amaldi DEIB, Politecnico di Milano Capitolo 2: Preliminari ed elementi di analisi convessa E. Amaldi DEIB, Politecnico di Milano 2.1 Concetti di base In R n con norma euclidea x S R n è un punto interno di S se ε > 0 tale che B ε (x) =

Dettagli

Esercizi sulla Programmazione Lineare. min. cx Ax b x 0

Esercizi sulla Programmazione Lineare. min. cx Ax b x 0 Soluzioni 4.-4. Fondamenti di Ricerca Operativa Prof. E. Amaldi Esercizi sulla Programmazione Lineare 4. Risoluzione grafica e forma standard. Si consideri il problema min x cx Ax b x dove x = (x, x )

Dettagli

Ricerca Operativa. Programmazione Lineare. Università Mediterranea di Reggio Calabria Decisions Lab

Ricerca Operativa. Programmazione Lineare. Università Mediterranea di Reggio Calabria Decisions Lab Ricerca Operativa Programmazione Lineare Università Mediterranea di Reggio Calabria Decisions Lab Ottimizzazione In un problema di ottimizzazione si cerca di massimizzare o minimizzare una quantità specifica,

Dettagli

Esempi di Problemi di Programmazione Lineare

Esempi di Problemi di Programmazione Lineare Esempi di Problemi di Programmazione Lineare Esempio 1: Soluzione con l algoritmo del simplesso dell esempio in forma standard ma = 2 + 0 1 2 + + = 5 1 2 3 + + = 0 1 2 4 6 + 2 + = 21 1 2 5 1 2 3 4 5 Il

Dettagli

IL METODO DEL SIMPLESSO

IL METODO DEL SIMPLESSO IL METODO DEL SIMPLESSO Il metodo del Simplesso 1 si applica nella risoluzione di un problema di Programmazione Lineare 2 (funzione e vincoli lineari) quando le variabili di azione o iniziali sono almeno

Dettagli

FONDAMENTI DI RICERCA OPERATIVA Prof. M.Trubian a.a. 2008/09 Prima prova in itinere: 25/11/08

FONDAMENTI DI RICERCA OPERATIVA Prof. M.Trubian a.a. 2008/09 Prima prova in itinere: 25/11/08 FONDAMENTI DI RICERCA OPERATIVA Prof. M.Trubian a.a. 2008/09 Prima prova in itinere: 25/11/08 Nome studente:... Matricola:...... Esercizio 3 4 5 6 Valore % 0.25 0.15 0.15 0.15 0.15 0.15 Valutazione A [1]

Dettagli

Soluzione dei problemi di Programmazione Lineare Intera

Soluzione dei problemi di Programmazione Lineare Intera Fondamenti di Ricerca Operativa T-A a.a. 2014-2015 Soluzione dei problemi di Programmazione Lineare Intera Andrea Lodi, Enrico Malaguti, Daniele Vigo rev. 1.1.a ottobre 2014 Fondamenti di Ricerca Operativa

Dettagli

5.2 IL TEOREMA FONDAMENTALE DELLA PROGRAMMAZIONE LINEARE

5.2 IL TEOREMA FONDAMENTALE DELLA PROGRAMMAZIONE LINEARE 94 TEORIA DELLA PROGRAMMAZIONE LINEARE 5.2 IL TEOREMA FONDAMENTALE DELLA PROGRAMMAZIONE LINEARE Quanto fino ad ora esaminato permette di enunciare e dimostrare un risultato di fondamentale importanza che

Dettagli

PROGRAMMAZIONE LINEARE ESEMPIO INTRODUTTIVO. L azienda usa l officina A e l officina B con le seguenti ORE UNITARIE: A B Testing 30 10

PROGRAMMAZIONE LINEARE ESEMPIO INTRODUTTIVO. L azienda usa l officina A e l officina B con le seguenti ORE UNITARIE: A B Testing 30 10 ESEMPIO INTRODUTTIVO Una azienda metalmeccanica deve produrre 2 tipi di Prodotti (Cuscinetti): Cuscinetto a sfera (P1): Profitto=5000ITL/pezzo Cuscinetto a rulli (P2): Profitto=4000 ITL/pezzo L azienda

Dettagli

TEORIA della DUALITÀ. Una piccola introduzione. Ricerca Operativa. Prof. R. Tadei. Politecnico di Torino. Teoria della Dualità / 1.

TEORIA della DUALITÀ. Una piccola introduzione. Ricerca Operativa. Prof. R. Tadei. Politecnico di Torino. Teoria della Dualità / 1. Prof. R. adei EORIA della DUALIÀ Una piccola introduzione R. adei 1 R. adei 2 EORIA DELLA DUALIA' Il concetto di dualità fu introdotto nel 1947 da Von Neumann, anche se il teorema della dualità fu formulato

Dettagli

Soluzione grafica di problemi PM in 2 variabili

Soluzione grafica di problemi PM in 2 variabili Capitolo 4 Soluzione grafica di problemi PM in 2 variabili In questo paragrafo si vuole fornire una interpretazione geometrica di un problema di Programmazione matematica. In particolare, quando un problema

Dettagli

1.4 Si risolva mediante gli scarti complementari il duale del problema dato.

1.4 Si risolva mediante gli scarti complementari il duale del problema dato. FONDAMENTI DI RICERCA OPERATIVA (turno unico) Prof. M.Trubian a.a. 2006/07 Prima prova in itinere: 24/11/06 Nome studente:... Matricola:...... A Esercizio 3 4 5 6 Valore % 0.3 0.2 0.2 0.15 0.1 0.05 Valutazione

Dettagli

4.4 Programmazione quadratica

4.4 Programmazione quadratica 4.4 Programmazione quadratica Minimizzare una funzione quadratica soggetta a vincoli lineari: min 1 2 xt Qx + c t x s.v. a t i x b i i D (P) a t i x = b i i U x R n dove Q matrice n n, D e U sono gli insiemi

Dettagli

5.5 Programmazione quadratica (PQ)

5.5 Programmazione quadratica (PQ) 5.5 Programmazione quadratica (PQ Minimizzare una funzione quadratica soggetta a vincoli lineari: 1 min x t Qx + c t x 2 s.v. a t i x b i i D (P a t i x = b i i U x R n dove Q matrice n n, D e U sono gli

Dettagli

Programmazione Non Lineare

Programmazione Non Lineare Capitolo 1 Programmazione Non Lineare 1.1 Introduzione Un problema di ottimizzazione viene definito come la minimizzazione o la massimizzazione di una funzione a valori reali su un insieme specificato.

Dettagli

Bilanciamento di tempi e costi Progetti a risorse limitate Note bibliografiche

Bilanciamento di tempi e costi Progetti a risorse limitate Note bibliografiche Indice Prefazione 1 1 Modelli di ottimizzazione 3 1.1 Modelli matematici per le decisioni.................... 4 1.1.1 Fasi di sviluppo di un modello................... 7 1.2 Esempi di problemi di ottimizzazione...................

Dettagli

Ricerca Operativa Note su Programmazione Lineare e Metodo del Simplesso (parte I)

Ricerca Operativa Note su Programmazione Lineare e Metodo del Simplesso (parte I) Ricerca Operativa Note su Programmazione Lineare e Metodo del Simplesso (parte I) Luigi De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo

Dettagli

Soluzione grafica di problemi PM in 2 variabili

Soluzione grafica di problemi PM in 2 variabili Capitolo 4 Soluzione grafica di problemi PM in 2 variabili In questo paragrafo si vuole fornire una interpretazione geometrica di un problema di Programmazione matematica. In particolare, quando un problema

Dettagli

Esercizi di Programmazione Lineare

Esercizi di Programmazione Lineare Esercizi di Programmazione Lineare 1 grafica Si consideri il seguente problema di programmazione lineare: max 3x 1 + 2x 2 s.t. + 2x 1 + x 2 4 2x 1 + x 2 2 + x 1 x 2 1 x 1, x 2 0 a) Risolvere il problema

Dettagli

La Programmazione Lineare

La Programmazione Lineare 4 La Programmazione Lineare In questo capitolo esaminiamo in modo più dettagliato la Programmazione Lineare illustrando una tecnica risolutiva per il caso di due sole variabili che aiuta a comprendere

Dettagli

Soluzione dei problemi di Programmazione Lineare Intera

Soluzione dei problemi di Programmazione Lineare Intera Fondamenti di Ricerca Operativa T-A a.a. 2015-2016 Soluzione dei problemi di Programmazione Lineare Intera Andrea Lodi, Enrico Malaguti, Paolo Tubertini, Daniele Vigo rev. 2. ottobre 2016 Fondamenti di

Dettagli

Il modello duale. Capitolo settimo. Introduzione

Il modello duale. Capitolo settimo. Introduzione Capitolo settimo Il modello duale Introduzione Il modello duale e la teoria della dualità assumono una grande importanza nella teoria della programmazione matematica. In questo testo i modelli primale

Dettagli

Corso di Matematica Applicata A.A

Corso di Matematica Applicata A.A Corso di Matematica Applicata A.A. 2012-2013 Programmazione lineare (II parte) Prof.ssa Bice Cavallo Soluzione di un problema PL Soluzione ottima Variabili slack e surplus A R mxn Ax b s R m, s i 0 : Ax

Dettagli

5.1 Metodo Branch and Bound

5.1 Metodo Branch and Bound 5. Metodo Branch and Bound Si consideri il problema min{ c(x) : x X } Idea: Ricondurre la risoluzione di un problema difficile a quella di sottoproblemi più semplici effettuando una partizione (ricorsiva)

Dettagli

La Programmazione Lineare

La Programmazione Lineare 5 La Programmazione Lineare In questo capitolo esaminiamo in modo più dettagliato la Programmazione Lineare illustrando una tecnica risolutiva per il caso di due sole variabili che aiuta a comprendere

Dettagli

Teoria della Dualità: I Introduzione

Teoria della Dualità: I Introduzione Teoria della Dualità: I Introduzione Daniele Vigo D.E.I.S. Università di Bologna dvigo@deis.unibo.it rev. 1.2 Maggio 2004 Dualità Per ogni problema PL, detto primale, ne esiste un altro, detto duale, costruito

Dettagli

Ingegneria Informatica ed Automatica (forma teledidattica) Appunti dalle esercitazioni di Daniele Vigo Parte I Programmazione Lineare e Lineare Intera

Ingegneria Informatica ed Automatica (forma teledidattica) Appunti dalle esercitazioni di Daniele Vigo Parte I Programmazione Lineare e Lineare Intera Ingegneria Informatica ed utomatica (forma teledidattica) ppunti dalle esercitazioni di Parte I Programmazione Lineare e Lineare Intera Problemi di Ottimizzazione x = (x 1 ;:::;x n )2R n : vettore di variabili

Dettagli

Introduzione alla Programmazione Lineare

Introduzione alla Programmazione Lineare 5 Introduzione alla Programmazione Lineare In questo capitolo esaminiamo in modo dettagliato la struttura di un problema di Programmazione Lineare fornendo, in particolare, la rappresentazione geometrica

Dettagli

Introduzione alla Programmazione Lineare

Introduzione alla Programmazione Lineare 4 Introduzione alla Programmazione Lineare In questo capitolo esaminiamo in modo dettagliato la struttura di un problema di Programmazione Lineare fornendo, in particolare, la rappresentazione geometrica

Dettagli

Prerequisiti didattici

Prerequisiti didattici Università degli Studi di Ferrara 2014-2015 Corso TFA - A048 Matematica applicata Didattica della matematica applicata all economia e alla finanza 1 aprile 2015 Appunti di didattica della matematica applicata

Dettagli

Esercizi sulla Programmazione Lineare Intera

Esercizi sulla Programmazione Lineare Intera Soluzioni 4.7-4.0 Fondamenti di Ricerca Operativa Prof. E. Amaldi Esercizi sulla Programmazione Lineare Intera 4.7 Algoritmo del Simplesso Duale. Risolvere con l algoritmo del simplesso duale il seguente

Dettagli

Capitolo 3: Ottimizzazione Discreta. E. Amaldi DEI, Politecnico di Milano

Capitolo 3: Ottimizzazione Discreta. E. Amaldi DEI, Politecnico di Milano Capitolo 3: Ottimizzazione Discreta E. Amaldi DEI, Politecnico di Milano 3.1 Modelli di PLI e PLMI Moltissimi problemi decisionali complessi possono essere formulati come problemi di Programmazione Lineare

Dettagli

OTTIMIZZAZIONE in unione con COMPLEMENTI DI RICERCA OPERATIVA OTTIMIZZAZIONE DISCRETA

OTTIMIZZAZIONE in unione con COMPLEMENTI DI RICERCA OPERATIVA OTTIMIZZAZIONE DISCRETA Corsi di Laurea in Ingegneria Matematica, Informatica, dell Automazione e Telecomunicazioni OTTIMIZZAZIONE in unione con COMPLEMENTI DI RICERCA OPERATIVA OTTIMIZZAZIONE DISCRETA Edoardo Amaldi DEI - Politecnico

Dettagli

Programmazione Matematica Lineare

Programmazione Matematica Lineare Programmazione Matematica Lineare Problema di Programmazione Matematica (PM) (problema di ottimizzazione) max f(x) s.t. x R n vettore delle variabili decisionali insieme delle soluzioni ammissibili funzione

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla teoria della dualità in programmazione lineare

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla teoria della dualità in programmazione lineare Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla teoria della dualità in programmazione lineare L. De Giovanni G. Zambelli 1 Definizione del problema duale La teoria della dualità in programmazione

Dettagli

Algoritmi per la programmazione lineare: il metodo del simplesso

Algoritmi per la programmazione lineare: il metodo del simplesso Algoritmi per la programmazione lineare: il metodo del simplesso Dipartimento di Informatica, Universita' di Pisa A.A. 2018/2019 Contenuti della lezione Problemi di programmazione lineare, forma standard

Dettagli

Teoria della Programmazione Lineare

Teoria della Programmazione Lineare 5 Teoria della Programmazione Lineare In questo capitolo iniziamo lo studio formale dei problemi di Programmazione Lineare e, in particolare, dimostriamo il Teorema fondamentale della Programmazione Lineare.

Dettagli

OTTIMIZZAZIONE in unione con COMPLEMENTI DI RICERCA OPERATIVA

OTTIMIZZAZIONE in unione con COMPLEMENTI DI RICERCA OPERATIVA Corsi di Laurea in Ingegneria Matematica, Informatica, dell Automazione e Telecomunicazioni OTTIMIZZAZIONE in unione con COMPLEMENTI DI RICERCA OPERATIVA Edoardo Amaldi DEI - Politecnico di Milano amaldi@elet.polimi.it

Dettagli

COMPLEMENTI DI RICERCA OPERATIVA

COMPLEMENTI DI RICERCA OPERATIVA Corsi di Laurea in Ingegneria dell Automazione, Informatica, Matematica e Telecomunicazioni COMPLEMENTI DI RICERCA OPERATIVA Edoardo Amaldi DEI - Politecnico di Milano amaldi@elet.polimi.it Sito web: http://home.dei.polimi.it/amaldi/cro-09.shtml

Dettagli

A.A Fondamenti di Ricerca Operativa Esercizi ottobre min 2x 1 + x 2 + 4x 3 3x 4 x 1 + x 3 = 5 x 2 + x 4 = 2

A.A Fondamenti di Ricerca Operativa Esercizi ottobre min 2x 1 + x 2 + 4x 3 3x 4 x 1 + x 3 = 5 x 2 + x 4 = 2 . Si consideri il problema A.A. 07-08 Fondamenti di Ricerca Operativa Esercizi ottobre 07 min x + x + 4x 3 3x 4 x + x 3 = 5 x + x 4 = x, x, x 3, x 4 0 Stabilire se il problema ha insieme ammissibile vuoto,

Dettagli

MODELLI DECISIONALI FORMULAZIONE GENERALE DEL PROBLEMA DECISIONALE (OTTIMIZZAZIONE)

MODELLI DECISIONALI FORMULAZIONE GENERALE DEL PROBLEMA DECISIONALE (OTTIMIZZAZIONE) MODELLI DECISIONALI FORMULAZIONE GENERALE DEL PROBLEMA DECISIONALE (OTTIMIZZAZIONE) z vettore di n elementi (variabili di decisione) o funzione J(z) obiettivo (vettoriale) da ottimizzare (max o min) Z

Dettagli

OTTIMIZZAZIONE in unione con OTTIMIZZAZIONE DISCRETA e COMPLEMENTI DI RICERCA OPERATIVA

OTTIMIZZAZIONE in unione con OTTIMIZZAZIONE DISCRETA e COMPLEMENTI DI RICERCA OPERATIVA Corsi di Laurea in Ingegneria Matematica, Informatica, dell Automazione e Telecomunicazioni OTTIMIZZAZIONE in unione con OTTIMIZZAZIONE DISCRETA e COMPLEMENTI DI RICERCA OPERATIVA Edoardo Amaldi DEIB -

Dettagli

LEZIONE N. 6 - PARTE 1 - Introduzione

LEZIONE N. 6 - PARTE 1 - Introduzione LEZIONE N. 6 PROGRAMMAZIONE LINEARE IN MARKAL, SOLUZIONE DEI PROBLEMI DI PROGRAMMAZIONE LINEARE CON: IL METODO GRAFICO ED IL METODO DEL SIMPLESSO. PROPRIETÀ DELLA DUALITÀ ED ESEMPI DI SOLUZIONE DEL PROBLEMA

Dettagli

Teoria della Programmazione Lineare

Teoria della Programmazione Lineare 6 Teoria della Programmazione Lineare In questo capitolo iniziamo lo studio formale dei problemi di Programmazione Lineare e, in particolare, dimostriamo il Teorema fondamentale della Programmazione Lineare.

Dettagli

Geometria della Programmazione Lineare

Geometria della Programmazione Lineare Capitolo 2 Geometria della Programmazione Lineare In questo capitolo verranno introdotte alcune nozioni della teoria dei poliedri che permetteranno di cogliere gli aspetti geometrici della Programmazione

Dettagli

PROGRAMMAZIONE LINEARE A NUMERI INTERI

PROGRAMMAZIONE LINEARE A NUMERI INTERI PROGRAMMAZIONE LINEARE A NUMERI INTERI N.B. Nei seguenti esercizi vengono utilizzate, salvo diversa indicazione, le seguenti notazioni: PLO programma lineare ordinario S a insieme delle soluzioni ammissibili

Dettagli

Università degli Studi di Roma La Sapienza

Università degli Studi di Roma La Sapienza Università degli Studi di Roma La Sapienza Dipartimento di Informatica e Sistemistica A. Ruberti Proff. Gianni Di Pillo and Laura Palagi Note per il corso di OTTIMIZZAZIONE (a.a. 2007-08) Dipartimento

Dettagli

3.6 Metodi basati sui piani di taglio

3.6 Metodi basati sui piani di taglio 3.6 Metodi basati sui piani di taglio Problema generale di Programmazione Lineare Intera (PLI) con A matrice m n e b vettore n 1 razionali min{ c t x : x X = {x Z n + : Ax b} } Sappiamo che esiste una

Dettagli

Si consideri il seguente tableau ottimo di un problema di programmazione lineare

Si consideri il seguente tableau ottimo di un problema di programmazione lineare ESERCIZIO 1 Si consideri il seguente tableau ottimo di un problema di programmazione lineare -25/3 0 4/3 19/6 9/2 0 0 0 7/6 1 0 1-1/2-3/2 1 0 0 3/2 11/3 1-2/3-1/3 0 0 0 0 2/3 2/3 0 1/3 1/6-1/2 0 1 0 7/6

Dettagli

Scuola di Dottorato in Ingegneria L. da Vinci. Problemi di estremo vincolato ed applicazioni. Introduzione ai problemi di estremo

Scuola di Dottorato in Ingegneria L. da Vinci. Problemi di estremo vincolato ed applicazioni. Introduzione ai problemi di estremo Scuola di Dottorato in Ingegneria L. da Vinci Problemi di estremo vincolato ed applicazioni Pisa, 28-29 Maggio, 2009 Introduzione ai problemi di estremo G. Mastroeni Ricercatore, Dipartimento di Matematica

Dettagli

PROGRAMMAZIONE LINEARE

PROGRAMMAZIONE LINEARE PROGRAMMAZIONE LINEARE La programmazione lineare ha un ruolo fondamentale tra i metodi risolutivi per i problemi di ottimizzazione. Storicamente questo settore della matematica, che è strettamente connesso

Dettagli

Algoritmo del Simplesso

Algoritmo del Simplesso Algoritmo del Simplesso Renato Bruni bruni@dis.uniroma.it Univertà di Roma Sapienza Corso di Ricerca Operativa, Corso di Laurea Ingegneria dell Informazione Vertici e Punti Estremi di un Poliedro Un poliedro

Dettagli

Domande d esame. Ricerca Operativa. G. Liuzzi. Giovedí 14 Maggio 2015. 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR

Domande d esame. Ricerca Operativa. G. Liuzzi. Giovedí 14 Maggio 2015. 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR 1 Giovedí 14 Maggio 2015 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR Geometria di R n 1 Dare la definizione di Poliedro e Vertice di un Poliedro 2 Dare la definizione di Poliedro e di Politopo

Dettagli

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a , lez.3)

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a , lez.3) Docente: Marco Gaviano (e-mail:gaviano@unica.it) Corso di Laurea in Infomatica Corso di Laurea in Matematica Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a. -4 lez.) Matematica Computazionale

Dettagli

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a , lez.3)

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a , lez.3) Docente: Marco Gaviano (e-mail:gaviano@unica.it) Corso di Laurea in Infomatica Corso di Laurea in Matematica Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a. 5-6 lez.) Matematica Computazionale

Dettagli

A.A Fondamenti di Ricerca Operativa. 2. Determinare β affinchè il poliedro descritto dal sistema di disequazioni

A.A Fondamenti di Ricerca Operativa. 2. Determinare β affinchè il poliedro descritto dal sistema di disequazioni A.A. 08-09 Fondamenti di Ricerca Operativa. Si consideri il problema min x + x + 4x 3 3x 4 x + x 3 = 5 x + x 4 = x, x, x 3, x 4 0 Stabilire se il problema ha insieme ammissibile vuoto, oppure è illimitato,

Dettagli

NLP KKT 1. Le condizioni necessarie di ottimo per il problema min f o (x) con vincoli g i (x) 0 i I h j (x) = 0 j J

NLP KKT 1. Le condizioni necessarie di ottimo per il problema min f o (x) con vincoli g i (x) 0 i I h j (x) = 0 j J NLP KKT 1 Le condizioni necessarie di ottimo per il problema min f o (x) g i (x) 0 i I h j (x) = 0 j J sono, riferite ad un punto ammissibile x*, μ 0 f o (x*) + i I μ i g i (x*) + j J λ j h j (x*) = 0

Dettagli

5.6 Metodo di penalità e metodo basato sulle funzioni lagrangiane aumentate

5.6 Metodo di penalità e metodo basato sulle funzioni lagrangiane aumentate 5.6 Metodo di penalità e metodo basato sulle funzioni lagrangiane aumentate Consideriamo il generico problema di PNL min f (x) s.v. c i (x) 0 i I c i (x) = 0 i E (1) x R n dove f e le c i sono di classe

Dettagli

7.9 Il caso vincolato: vincoli di disuguaglianza

7.9 Il caso vincolato: vincoli di disuguaglianza 7.9 Il caso vincolato: vincoli di disuguaglianza Il problema con vincoli di disuguaglianza: g i (x) 0, i = 1,..., p, (51) o, in forma vettoriale: g(x) 0, può essere trattato basandosi largamente su quanto

Dettagli

Sviluppando ancora per colonna sulla prima colonna della prima matrice e sulla seconda della seconda matrice si ottiene:

Sviluppando ancora per colonna sulla prima colonna della prima matrice e sulla seconda della seconda matrice si ottiene: M. CARAMIA, S. GIORDANI, F. GUERRIERO, R. MUSMANNO, D. PACCIARELLI RICERCA OPERATIVA Isedi Esercizi proposti nel Cap. 5 - Soluzioni Esercizio 5. - La norma Euclidea di è 9 6 5 - Il versore corrispondente

Dettagli

Esercizi proposti nel Cap. 6 - Soluzioni. Esercizio 6.1. Esercizio 6.2

Esercizi proposti nel Cap. 6 - Soluzioni. Esercizio 6.1. Esercizio 6.2 M. CARAMIA, S. GIORDANI, F. GUERRIERO, R. MUSMANNO, D. PACCIARELLI RICERCA OPERATIVA Isedi Esercizi proposti nel Cap. 6 - Soluzioni Esercizio 6.1 La soluzione ottima è il vertice 4 1, di valore 9, vedi

Dettagli

Programmazione Lineare

Programmazione Lineare Capitolo 5 Programmazione Lineare In questo capitolo vengono considerati i problemi di Programmazione Lineare. In particolare per questa classe particolare di problemi è possibile dimostrare un risultato

Dettagli

inoltre, deve essere: Funzioni obiettivo lineare a tratti

inoltre, deve essere: Funzioni obiettivo lineare a tratti Funzioni obiettivo lineare a tratti Si supponga che la funzione obiettivo J(z) sia non lineare rispetto ad una (o più) delle variabili di decisione. Ipotizziamo tuttavia che la non linearità sia di tipo

Dettagli

Esercizi di ottimizzazione vincolata

Esercizi di ottimizzazione vincolata Esercizi di ottimizzazione vincolata A. Agnetis, P. Detti Esercizi svolti 1 Dato il seguente problema di ottimizzazione vincolata max x 1 + x 2 x 1 4x 2 3 x 1 + x 2 2 0 x 1 0 studiare l esistenza di punti

Dettagli

La Programmazione Lineare e l Algoritmo del Simplesso

La Programmazione Lineare e l Algoritmo del Simplesso La Programmazione Lineare e l Algoritmo del Simplesso Albanesi Valentina, Radice David e Travaglino Ermanno Sommario Questo breve testo ha come obbiettivo la descrizione concisa dei principali risultati

Dettagli

Modelli di programmazione lineare. Il metodo grafico è basato su linearità della funzione obiettivo linearità dei vincoli

Modelli di programmazione lineare. Il metodo grafico è basato su linearità della funzione obiettivo linearità dei vincoli Ricerca Operativa 2. Modelli di Programmazione Lineare - TESTI Modelli di programmazione lineare Il metodo grafico è basato su linearità della funzione obiettivo linearità dei vincoli Sotto queste ipotesi

Dettagli