Soluzione. 2.1 Pianificazione multiperiodo della produzione energetica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Soluzione. 2.1 Pianificazione multiperiodo della produzione energetica"

Transcript

1 Soluzione. Pianificazione multiperiodo della produzione energetica a) Diamo una prima formulazione nonlineare del problema. Insiemi T :insiemedeiperiodiditempo S = {,, 3}: insieme degli indici dei range di erogazione, dove [0,l ]prendeindice, [l,l ]indicee[l 3, ) indice 3. Parametri c 4 : costo per MW di potenza acquistata dall estero c s : costo per MW di potenza prodotta in casa, per range s S d t : domanda di potenza per il periodo,doved = 36.4 ed i =.08d i per i T : i> Variabili x t 0: potenza prodotta in casa nel periodo y t 0: potenza acquistata dall estero nel periodo z st {0, }: senelperiodo la potenza prodotta in casa è nel range s S, 0 altrimenti Modello min c 4 y t + t T t T s.t.x t + y t d t, c s z st x t (x + y )0.33 y t, x t l + M( z t ), x t l z t, x t l + M( z t ), x t l z 3t, z st =, x t,y t 0, z st {0, }, s S,, Developed by S. Coniglio 3

2 dove M è un valore sufficientemente grande. Il gruppo centrale di vincoli modellizza le implicazioni z t = x t l z t = l x t l z 3t = x t l Il modello è nonlineare a causa della presenza dei prodotti di x e z. b) Linearizziamo la formulazione introducendo la variabile k st, vincolandola ad assumere valore c s x t quando x t cade nel range s-esimo, ossia quando z st =. Dobbiamo quindi modellizzare la seguente implicazione logica, per ogni s S, : Introduciamo quindi i vincoli z st = k st = c s x t. k st c s x t + M( z st ),s S, k st c s x t M( z st ),s S,. La nuova formulazione di programmazione lineare misto-intera è la seguente: Modello min c 4 y t + t T t T s.t.x t + y t d t, k st (x + y )0.33 y t, x t l + M( z t ), x t l z t, x t l + M( z t ), x t l z 3t, k st c s x t + M( z st ),, k st c s x t M( z st ),, z st =, x t,y t 0, z st {0, }, s S,,.3 Confronto tra formulazioni per il problema dell albero di supporto di costo minimo a) Scriviamo una formulazione coi vincoli (CUT) imponendo che esattamente n lati del grafo figurino nell albero di supporto e che vi sia, per ogni insieme S V, almeno un lato e = {i, j} in δ(s), tale da connettere S a V \ S. Developed by S. Coniglio 4

3 (P CUT ) min s.t. e E x e = n (NUM) x e S V (CUT) x e {0, } e E. b) Sostituendo i vincoli (SEC) ai (CUT), otteniamo: (P SEC ) min s.t. e E x e = n (NUM) e E(S) x e S S V (SEC) x e {0, } e E, La formulazione è corretta dato che, imponendo che ogni sottoinsieme (proprio) S V contenga al più S lati, garantiamo che il sottografo individuato sia aciclico. Ogni sottografo aciclico contenente esattamente n lati è un alberto di supporto del grafo. c) Mostriamo che PSEC 0 P CUT 0 mostrando che una soluzione che soddisfa (NUM) e (SEC) soddisfa anche (CUT). Scegliamo un sottoinsieme S V e scomponiamo l insieme E in E(S) E(V \ S) δ(s). Riscriviamo quindi il vincolo (NUM) come e E(S) x e + e E(V \S) x e + x e = n. Dalle (SEC) abbiamo e E(S) x e S e e E(V \S) x e V \ S. Dato che S V, abbiamo V \ S = V S, con V = n. Otteniamodunque S +n S + x e x e + x e + x e = n e E(S) e E(V \S) da cui abbiamo x e. d) Per mostrare che PSEC 0 P CUT 0 è sufficiente esibire una soluzione che soddisfi (NUM) e (CUT) ma non (SEC). Si consideri l istanza seguente, dove x e = per i lati in nero e x e = per quelli in grigio. Developed by S. Coniglio

4 Si osservi che tutti i tagli del grafo hanno valore maggiore o uguale a (si sfruttino le simmetrie del grafo per evitare di enumerarli tutti). L insieme di nodi S = {,, } ha valore totale x + x + x =. S =3 =. La soluzione è quindi ammissibile per P 0 CUT, ma non per P 0 SEC..4 Confronto tra formulazioni direzionate e non direzionate per il problema dell albero Steiner di costo minimo a) Analogamente al caso dell albero di supporto, scriviamo una formulazione coi vincoli (CUT) imponendo che vi sia, per ogni insieme S V tale che un terminale sia contenuto sia in S che in V \ S, almeno un lato e = {i, j} in δ(s), tale da connettere S a V \ S. min x e S V : S T > 0, (V \ S) T > 0 (CUT) x e {0, } e E Si noti la differenza, rispetto al caso dell albero di supporto, della condizione di esistenza dell insieme S. b) Sia r T un nodo terminale arbitrario, usato come radice dell arborescenza Steiner. Abbiamo la formulazione min (i,j) A c ijy ij (i,j) δ + (S) y ij S V : S T > 0, (V \ S) T > 0,r S (CUT) y ij {0, } (i, j) A È intuibile che, per ogni (i, j) A, in ogni soluzione ottima valga la relazione y ij + y ji. Volendo dubitare della correttezza dell intuizione, potremmo costruire un argomento più formale come segue. Si ricordi che un arborescenza di radice r è una collezione di cammini radicati in r. Per assurdo, supponiamo che (i, j) A : y ij + y ji > e supponiamo che esista un cammino da r a i che non contiene j. Questo implica che il cammino da r a j contenga (i, j) come ultimo arco. Mostriamo che tale soluzione non è ottima, mostrando che, imponendo y ji = 0, otteniamo una soluzione ammissibile di valore non maggiore. Dato che j è raggiungibile da i, tutti i cammini che contengono l arco (j, i) contengono anche l arco (i, j) e, in particolare, il sottocammino ((i, j), (j, i)). Supponendo che c ji 0, ognuno di questi cammini può essere ridotto rimuovendo il lato (j, i) senza farne crescere il costo, rimuovendo cioè il ciclo ((i, j), (j, i)). Possiamo allora imporre x e = y ij + y ji, deducendo una soluzione corrispondente per il problema non direzionato. Per convincersi che ad ogni soluzione non direzionata ne corrisponde una direzionata di costo equivalente e viceversa, si provi a costruire un piccolo esempio. Developed by S. Coniglio 6

5 c) Le due formulazioni sono definite su spazi diversi (variabili di lato nel primo caso, di arco nel secondo). Modifichiamo la seconda formulazione (quella direzionata), reintroducendo le variabili di lato e i vincoli x e = y ij + y ji, (i, j) =e E. Mostriamo ora che a una soluzione nelle variabili y ij che soddisfi i vincoli (CUT) nella versione direzionata è associata una soluzione nelle variabili x e che soddisfi gli stessi vincoli nella versione non direzionata. Prendiamo dunque un vincolo (CUT) (i,j) δ + (S) y ij, per un qualche S V : S T > 0, (V \S) T > 0,r S. Addizionandogli i vincoli y ji 0 per ogni (j, i) δ (S), abbiamo (i,j) δ + (S) y ij+ (j,i) δ (S) y ji = (i,j) δ + (S) (y ij+y ji ). Sfruttando x e = y ij + y ji, otteniamo x e. d) Cerchiamo una soluzione direzionata inammissibile a cui corrisponda una soluzione ammissibile non direzionata. Si consideri il grafo nelle figure seguenti, dove i nodi in grigio rappresentano i terminali. Poniamo r =. Gli archi (lati) in grigio corrispondono a x ij = (x e = ), quelli in nero a x ij =(x e = ). Nella figura a sinistra è riportata una soluzione inammissibile per la formulazione direzionata, in cui il taglio indotto dall insieme S = {,, 4, } (entrante nel nodo 3) ha valore <. Ad esso corrisponde quindi una disuguaglianza (CUT) violata (si osservi che è l unico caso). La soluzione non direzionata corrispondente, a destra, è però ammissibile, dato che in essa il taglio relativo allo stesso insieme ha peso. Developed by S. Coniglio 7

2.1 Pianificazione multiperiodo della produzione energetica. 2.2 Confronto tra formulazioni per il problema dell albero di supporto di costo minimo

2.1 Pianificazione multiperiodo della produzione energetica. 2.2 Confronto tra formulazioni per il problema dell albero di supporto di costo minimo . Pianificazione multiperiodo della produzione energetica Consideriamo il problema di approvvigionamento energetico dell Italia su un orizzonte di T = 0 anni. Sia d t il consumo di potenza elettrica stimato

Dettagli

Modelli di Programmazione Lineare. PRTLC - Modelli

Modelli di Programmazione Lineare. PRTLC - Modelli Modelli di Programmazione Lineare PRTLC - Modelli Schema delle esercitazioni Come ricavare la soluzione ottima Modelli Solver Come ricavare una stima dell ottimo Rilassamento continuo - generazione di

Dettagli

Soluzione. V : insieme dei nodi del grafo A: insieme degli archi del grafo K: insieme degli indici delle coppie di origine-destinazione (s k,t k )

Soluzione. V : insieme dei nodi del grafo A: insieme degli archi del grafo K: insieme degli indici delle coppie di origine-destinazione (s k,t k ) Soluzione.1 Progetto di rete con capacità a) Diamo la seguente formulazione del problema: Insiemi V : insieme dei nodi del grafo A: insieme degli archi del grafo K: insieme degli indici delle coppie di

Dettagli

min det det Allora è unimodulare se e solo se det 1, 1, 0 per ogni sottomatrice quadrata di di qualsiasi dimensione.

min det det Allora è unimodulare se e solo se det 1, 1, 0 per ogni sottomatrice quadrata di di qualsiasi dimensione. Se è unimodulare e è intero allora il poliedro 0 ha vertici interi. Sia un vertice di Per definizione esiste allora una base di tale che, 0 Poiché è non singolare ( invertibile det 0) si ha che det 1 è

Dettagli

Introduzione ai grafi

Introduzione ai grafi TFA A048 Anno Accademico 2012-13 Outline Cenni storici sui grafi Nozioni introduttive: cammini, connessione, alberi, cicli Cammini di costo minimo Origini storiche La nascita della teoria dei grafi risale

Dettagli

Figura 1: 1) Si scriva la formulazione del problema come problema di PLI (con un numero minimo di vincoli) e la matrice dei vincoli.

Figura 1: 1) Si scriva la formulazione del problema come problema di PLI (con un numero minimo di vincoli) e la matrice dei vincoli. ESERCIZIO 1 Sia dato il grafo orientato in Figura 1. Si consideri il problema di flusso a 1 2 4 Figura 1: costo minimo su tale grafo con b 1 = 4 b 2 = 2 b = b 4 = e c 12 = 2 c 1 = 4 c 14 = 1 c 2 = 1 c

Dettagli

Esercizi di Programmazione Lineare

Esercizi di Programmazione Lineare Esercizi di Programmazione Lineare 1 di Base: Forma Matriciale Si consideri il poliedro P = {x R 3 : Ax b} in cui: 1 0 1 2 A = 1 1 0 0 1 1, b = 1 4 1 1 1 3, x 1 = 1 2 + 3 2 + 5 2 x 2 = I vettori x 1 e

Dettagli

Parte V: Rilassamento Lagrangiano

Parte V: Rilassamento Lagrangiano Parte V: Rilassamento Lagrangiano Tecnica Lagrangiana Consideriamo il seguente problema di Programmazione Lineare Intera: P 1 min c T x L I Ax > b Cx > d x > 0, intera in cui A = matrice m x n C = matrice

Dettagli

Esame di Ricerca Operativa del 11/1/19

Esame di Ricerca Operativa del 11/1/19 Esame di Ricerca Operativa del // (Cognome) (Nome) (Numero di Matricola) Esercizio. (a) Risolvere il seguente problema di programmazione lineare, determinandone il problema duale ed applicando l algoritmo

Dettagli

ESERCIZIO 1: Punto 1

ESERCIZIO 1: Punto 1 ESERCIZIO : Punto La seguente matrice è una matrice delle distanze di un istanza del problema del Commesso Viaggiatore. - - - - - - - Calcolare.Il valore del rilassamento che si ottiene determinando l

Dettagli

1) Data la seguente istanza di TSP (grafo completo con 5 nodi): c 12 = 52; c 13 = 51; c 14 = 40; c 15 = 53; c 23 = 44;

1) Data la seguente istanza di TSP (grafo completo con 5 nodi): c 12 = 52; c 13 = 51; c 14 = 40; c 15 = 53; c 23 = 44; 1) Data la seguente istanza di TSP (grafo completo con 5 nodi): c 12 = 52; c 13 = 51; c 14 = 40; c 15 = 53; c 23 = 44; c 24 = 15; c 25 = 12; c 34 = 32; c 35 = 55; c 45 = 24 Si calcoli l ottimo duale (formulazione

Dettagli

Il teorema di dualità forte

Il teorema di dualità forte Complementi di Algoritmi e Strutture Dati Il teorema di dualità forte Docente: Nicolò Cesa-Bianchi versione 13 maggio 2018 Ricordiamo la formulazione del problema di programmazione lineare nella sua forma

Dettagli

Gestione della produzione e della supply chain Logistica distributiva

Gestione della produzione e della supply chain Logistica distributiva Gestione della produzione e della supply chain Logistica distributiva Paolo Detti Dipartimento di Ingegneria dell Informazione e Scienze Matematiche Università di Siena Convergenza dell algoritmo Se non

Dettagli

Ottimizzazione su grafi: massimo flusso (parte 1) Ottimizzazione su grafi:massimo flusso (parte 1) p. 1/33

Ottimizzazione su grafi: massimo flusso (parte 1) Ottimizzazione su grafi:massimo flusso (parte 1) p. 1/33 Ottimizzazione su grafi: massimo flusso (parte 1) Ottimizzazione su grafi:massimo flusso (parte 1) p. 1/33 Ottimizzazione su grafi:massimo flusso (parte 1) p. 2/33 Reti di flusso Una rete di flusso è una

Dettagli

Ottimizzazione Discreta Esercizi V: Soluzioni

Ottimizzazione Discreta Esercizi V: Soluzioni Ottimizzazione Discreta Esercizi V: Soluzioni Grafi e cammini minimi A.A. 214/215 Esercizio 1 (a) Nella terminologia della teoria dei grafi, si chiede di dimostrare che ogni grafo non orientato G = (V,E),

Dettagli

RICERCA OPERATIVA (a.a. 2011/12) Nome: Cognome: Matricola:

RICERCA OPERATIVA (a.a. 2011/12) Nome: Cognome: Matricola: 5 o Appello 8/0/0 RICERCA OPERATIVA (a.a. 0/) Nome: Cognome: Matricola: ) Si individui un albero dei cammini minimi di radice sul grafo in figura, utilizzando l algoritmo più appropriato dal punto di vista

Dettagli

Esercitazione 5 Network Flow

Esercitazione 5 Network Flow Esercitazione 5 Network Flow Diamo innanzitutto una definizione informale del concetto di riduzione polinomiale tra problemi: Si dice che un problema A è riducibile polinomialmente ad un problema B, se

Dettagli

Esame di Ricerca Operativa del 19/02/2019. Esercizio 1. Risolvere il seguente problema di programmazione lineare applicando l algoritmo del simplesso:

Esame di Ricerca Operativa del 19/02/2019. Esercizio 1. Risolvere il seguente problema di programmazione lineare applicando l algoritmo del simplesso: Esame di Ricerca Operativa del 9/0/09 (Cognome) (Nome) (Numero di Matricola) Esercizio. Risolvere il seguente problema di programmazione lineare applicando l algoritmo del simplesso: max x x x 0 x + x

Dettagli

a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn mentre le variabili decisionali sono rappresentate dal vettore colonna n-dimensionale x,

a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn mentre le variabili decisionali sono rappresentate dal vettore colonna n-dimensionale x, Università degli Studi di Roma Tor Vergata Facoltà di Ingegneria Appunti dal corso di Metodi e Modelli di Ottimizzazione Discreta 1 A.A. 2018-2019 Prof. Sara Nicoloso A seconda del tipo di variabili che

Dettagli

4.1 Localizzazione e pianificazione delle base station per le reti UMTS

4.1 Localizzazione e pianificazione delle base station per le reti UMTS esercitazione Ottimizzazione Prof E Amaldi Localizzazione e pianificazione delle base station per le reti UMTS Consideriamo il problema di localizzare un insieme di stazioni radio base, base station (BS),

Dettagli

Esercitazione n o 3 per il corso di Ricerca Operativa

Esercitazione n o 3 per il corso di Ricerca Operativa Esercitazione n o 3 per il corso di Ricerca Operativa Ultimo aggiornamento November 1, 2011 Fornitura acqua Una città deve essere rifornita, ogni giorno, con 500 000 litri di acqua. Si richiede che l acqua

Dettagli

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Gestione della produzione e della supply chain Logistica distributiva Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Un algoritmo per il flusso a costo minimo: il simplesso

Dettagli

Massimo flusso e matching

Massimo flusso e matching Capitolo Massimo flusso e matching. Problema del massimo matching. Nel problema del massimo matching è dato un grafo non orientato G(V, A); un matching in G è un insieme di archi M A tale che nessuna coppia

Dettagli

Il valore di flusso che si ottiene è

Il valore di flusso che si ottiene è 1) Si consideri un insieme di piste da sci e di impianti di risalita. Lo si modelli con un grafo orientato che abbia archi di due tipi: tipo D (discesa e orientato nel senso della discesa) e tipo R (risalita

Dettagli

3.1 Progetto di rete con capacità

3.1 Progetto di rete con capacità .1 Progetto di rete con capacità Un azienda deve progettare la propria rete di telecomunicazioni per permettere l invio di una quantità di dati d k 0 per ogni coppia origine-destinazione di nodi (s k,t

Dettagli

Ricerca Operativa. G. Liuzzi. Lunedí 20 Aprile 2015

Ricerca Operativa. G. Liuzzi. Lunedí 20 Aprile 2015 1 Lunedí 20 Aprile 2015 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR Rilassamento di un problema Rilassare un problema di Programmazione Matematica vuol dire trascurare alcuni (tutti i)

Dettagli

Algoritmi e Strutture Dati II: Parte B Anno Accademico Lezione 1

Algoritmi e Strutture Dati II: Parte B Anno Accademico Lezione 1 Algoritmi e Strutture Dati II: Parte B Anno Accademico 004-005 Docente: Ugo Vaccaro Lezione 1 Dalla Teoria della NP-Completezza abbiamo appreso che esiste una classe di problemi (NPhard) per cui non è

Dettagli

Problema di flusso massimo

Problema di flusso massimo p. 1/5 Problema di flusso massimo Si consideri una rete, ovvero un grafo orientato G = (V,A). Attraverso tale rete si fa viaggiare quello che chiameremo genericamente un flusso di "prodotto". A seconda

Dettagli

RICERCA OPERATIVA (a.a. 2018/19)

RICERCA OPERATIVA (a.a. 2018/19) Secondo appello //9 RICERCA OPERATIVA (a.a. 8/9) Nome: Cognome: Matricola: ) Si consideri il seguente problema di PL: min y + y y y y y = y + y y = y, y, y, y Si verifichi se la soluzione ȳ =,,, sia ottima

Dettagli

Processi di cost management - Programmazione multiperiodale

Processi di cost management - Programmazione multiperiodale Processi di cost management - Programmazione multiperiodale Queste slide (scrte da Carlo Mannino) riguardano il problema di gestione delle attivà di un progetto allorché i costi di esecuzione sono legati

Dettagli

AMPL Problemi su Reti

AMPL Problemi su Reti Dipartimento di Matematica Università di Padova Corso di Laurea Informatica Outline Problemi su Reti Cammino Minimo Molti problemi di ottimizzazione combinatoria possono essere modellati ricorrendo ai

Dettagli

Esercitazione 3. Osserviamo che, dato un grafo con pesi distinti, questo ammette un unico MST.

Esercitazione 3. Osserviamo che, dato un grafo con pesi distinti, questo ammette un unico MST. Esercitazione 3 Problema 6: Sia G = (V, E) un grafo con pesi distinti sugli archi ed e E un arco di G. Progettare un algoritmo lineare in grado di determinare se esiste un MST di G che contiene l arco

Dettagli

3.3 Problemi di PLI facili

3.3 Problemi di PLI facili 3.3 Problemi di PLI facili Consideriamo un generico problema di PLI espresso in forma standard min{c t x : Ax = b, x Z n +} (1) dove A Z m n con n m, e b Z m. Supponiamo che A sia di rango pieno. Sia P

Dettagli

2 OTTIMIZZAZIONE SU GRAFI. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

2 OTTIMIZZAZIONE SU GRAFI. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 2 OTTIMIZZAZIONE SU GRAFI E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Molti problemi decisionali possono essere formulati utilizzando il linguaggio della teoria dei grafi. Esempi: - problemi di

Dettagli

2 OTTIMIZZAZIONE SU GRAFI. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

2 OTTIMIZZAZIONE SU GRAFI. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 2 OTTIMIZZAZIONE SU GRAFI E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Molti problemi decisionali possono essere formulati utilizzando il linguaggio della teoria dei grafi. Esempi: - problemi di

Dettagli

Trasformazione di Problemi Non Lineari

Trasformazione di Problemi Non Lineari Capitolo 2 Trasformazione di Problemi Non Lineari 2.1 Trasformazione in problema di PL In questa sezione, verranno presentati tre classi di problemi di programmazione non lineare che, attraverso l uso

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e Strutture Dati Capitolo 13 Cammini minimi: Ordinamento topologico Grafo pesato: è un grafo G=(V,E,w) in cui ad ogni arco viene associato un valore definito dalla funzione peso w (definita su

Dettagli

RICERCA OPERATIVA (a.a. 2015/16) Nome: Cognome: Matricola:

RICERCA OPERATIVA (a.a. 2015/16) Nome: Cognome: Matricola: o Appello // RICERCA OPERATIVA (a.a. /) Nome: Cognome: Matricola: ) Si consideri il seguente problema di PL: max x + x x x x x x + x x Si applichi l algoritmo del Simplesso Duale, per via algebrica, a

Dettagli

Esame di Ricerca Operativa - 17 luglio 2008 Facoltà di Ingegneria - Udine - CORREZIONE -

Esame di Ricerca Operativa - 17 luglio 2008 Facoltà di Ingegneria - Udine - CORREZIONE - Esame di Ricerca Operativa - luglio 8 Facoltà di Ingegneria - Udine - CORREZIONE - Problema ( punti): Si consideri la soluzione x = x =, x =, x =, x =, x = del seguente problema. max x + x + x + x + x

Dettagli

Grafi e reti di flusso

Grafi e reti di flusso Grafi e reti di flusso Molti problemi di ottimizzazione sono caratterizzati da una struttura di grafo: in molti casi questa struttura emerge in modo naturale, in altri nasce dal particolare modo in cui

Dettagli

Algoritmi e Strutture Dati II: Parte B Anno Accademico Lezione 8

Algoritmi e Strutture Dati II: Parte B Anno Accademico Lezione 8 Algoritmi e Strutture Dati II: Parte B Anno Accademico 2004-2005 Docente: Ugo Vaccaro Lezione 8 Ricordiamo ancora una volta il nostro meta-algoritmo per il progetto di algoritmi di approssimazione: 1.

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Cover inequalities

Metodi e Modelli per l Ottimizzazione Combinatoria Cover inequalities Metodi e Modelli per l Ottimizzazione Combinatoria Cover inequalities L. De Giovanni M. Di Summa In questa lezione introdurremo una classe di disuguaglianze, dette cover inequalities, che permettono di

Dettagli

RICERCA OPERATIVA (a.a. 2016/17) Nome: Cognome: Matricola:

RICERCA OPERATIVA (a.a. 2016/17) Nome: Cognome: Matricola: Sesto appello // RICERCA OPERATIVA (a.a. /) Nome: Cognome: Matricola: ) Si risolva il seguente problema di PL max x x x x x x + x x per via algebrica, mediante l algoritmo del Simplesso Primale a partire

Dettagli

Esame di Ricerca Operativa del 07/06/2019

Esame di Ricerca Operativa del 07/06/2019 Esame di Ricerca Operativa del 0/0/09 (Cognome) (Nome) (Numero di Matricola) Esercizio. (a) Risolvere il seguente problema di programmazione lineare applicando l algoritmo del simplesso duale: min y y

Dettagli

Esercitazione 6 Ancora sul Network Flow

Esercitazione 6 Ancora sul Network Flow Esercitazione 6 Ancora sul Network Flow Problema 14 (appello 28/09/2015) Un importante azienda di sviluppo software ha n progetti da portare a termine entro la fine dell anno. Il manager dell azienda stima

Dettagli

Richiami di matematica discreta: grafi e alberi. Paolo Camurati Dip. Automatica e Informatica Politecnico di Torino

Richiami di matematica discreta: grafi e alberi. Paolo Camurati Dip. Automatica e Informatica Politecnico di Torino Richiami di matematica discreta: grafi e alberi Paolo Camurati Dip. Automatica e Informatica Politecnico di Torino Grafi Definizione: G = (V,E) V: insieme finito di vertici E: insieme finito di archi,

Dettagli

(a) Si proponga una formulazione di programmazione nonlineare a variabili misto-intere per problema.

(a) Si proponga una formulazione di programmazione nonlineare a variabili misto-intere per problema. 6. Clustering In molti campi applicativi si presenta il problema del data mining, che consiste nel suddividere un insieme di dati in gruppi e di assegnare un centro a ciascun gruppo. Ad esempio, in ambito

Dettagli

Branch-and-bound per TSP

Branch-and-bound per TSP p. 1/6 Branch-and-bound per TSP Anche qui, rispetto allo schema generale visto in precedenza dobbiamo specificare: p. 1/6 Branch-and-bound per TSP Anche qui, rispetto allo schema generale visto in precedenza

Dettagli

5.3 Tagli di Chvàtal-Gomory per il problema della massima clique

5.3 Tagli di Chvàtal-Gomory per il problema della massima clique 5.1 Posizionamento di aeroporti hub Nel trasporto aereo non ci sono connessioni dirette tra ogni coppia di aeroporti. Ad esempio, i passeggeri dei viaggi intercontinentali in partenza da aeroporti minori

Dettagli

Esame di Ricerca Operativa del 18/06/18

Esame di Ricerca Operativa del 18/06/18 Esame di Ricerca Operativa del 8/0/8 (Cognome) (Nome) (Numero di Matricola) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x +x x x x +x x x x + x

Dettagli

Richiami di Teoria dei Grafi. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Richiami di Teoria dei Grafi. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Richiami di Teoria dei Grafi Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Teoria dei grafi La Teoria dei Grafi costituisce, al pari della Programmazione Matematica, un corpo

Dettagli

Quinto appello 27/6/ = 4. B b B = 2 b N = 4

Quinto appello 27/6/ = 4. B b B = 2 b N = 4 Quinto appello // RICERCA OPERATIVA (a.a. /) Nome: Cognome: Matricola: ) Si risolva il problema di PL dato applicando l algoritmo del Simplesso Duale, per via algebrica, a partire dalla base B {, }. Per

Dettagli

RICERCA OPERATIVA (a.a. 2017/18) Nome: Cognome: Matricola:

RICERCA OPERATIVA (a.a. 2017/18) Nome: Cognome: Matricola: Sesto appello 7/7/8 RICERCA OPERATIVA (a.a. 7/8) Nome: Cognome: Matricola: ) Si risolva il seguente problema di PL applicando l algoritmo del Simplesso Duale, per via algebrica, a partire dalla base B

Dettagli

Geometria della programmazione lineare

Geometria della programmazione lineare Geometria della programmazione lineare poliedri punti estremi, vertici, soluzioni di base esistenza di punti estremi rif. Fi 3.1; BT 2.1, 2.2, 2.5 Iperpiani, semispazi, poliedri Sia a un vettore non nullo

Dettagli

Esercitazione 2. Progettare un algoritmo che risolva tale problema in tempo O( E + V log V ).

Esercitazione 2. Progettare un algoritmo che risolva tale problema in tempo O( E + V log V ). Esercitazione 2 Problema 4: Dato un grafo G = (V, E) con pesi positivi sugli archi ed un insieme di k centri C = {c 1, c 2, c k } V, si richiede di partizionare l insieme V in k insiemi V 1, V 2, V k in

Dettagli

Ricerca Operativa A.A. 2017/2018

Ricerca Operativa A.A. 2017/2018 Ricerca Operativa A.A. 2017/2018 Esercizi su modelli di programmazione lineare intera - Soluzioni Nota Vengono fornite delle possibili soluzioni. Potrebbero esserci soluzioni alternative altrettanto valide.

Dettagli

Esame di Ricerca Operativa del 11/02/2015

Esame di Ricerca Operativa del 11/02/2015 Esame di Ricerca Operativa del /0/0 (Cognome) (Nome) (Matricola) Esercizio. Un azienda produce tipi di TV (, 0, 0 e pollici) ed è divisa in stabilimenti (A e B). L azienda dispone di 0 operai in A e 0

Dettagli

Esercitazione n o 3 per il corso di Ricerca Operativa

Esercitazione n o 3 per il corso di Ricerca Operativa Esercitazione n o 3 per il corso di Ricerca Operativa Ultimo aggiornamento October 17, 2011 Fornitura acqua Una città deve essere rifornita, ogni giorno, con 500 000 litri di acqua. Si richiede che l acqua

Dettagli

2.2 Alberi di supporto di costo ottimo

2.2 Alberi di supporto di costo ottimo . Alberi di supporto di costo ottimo Problemi relativi ad alberi hanno numerose applicazioni: progettazione di reti (comunicazione, teleriscaldamento,...) protocolli reti IP memorizzazione compatta di

Dettagli

1.5 Assioma di completezza

1.5 Assioma di completezza 1.5 Assioma di completezza Le proprietà 1-8 sin qui viste non sono prerogativa esclusiva di R, dato che sono ugualmente vere nell insieme dei numeri razionali Q. Ciò che davvero caratterizza R è la proprietà

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Collegio Didattico in Ingegneria Informatica corso di Ricerca operativa 2. Esercizi sul problema dell assegnamento

UNIVERSITÀ DEGLI STUDI ROMA TRE Collegio Didattico in Ingegneria Informatica corso di Ricerca operativa 2. Esercizi sul problema dell assegnamento UNIVERSITÀ DEGLI STUDI ROMA TRE Collegio Didattico in Ingegneria Informatica corso di Ricerca operativa Esercizi sul problema dell assegnamento Richiami di Teoria Ricordiamo che, dato un grafo G=(N,A),

Dettagli

RICERCA OPERATIVA (a.a. 2012/13) Nome: Cognome: Matricola:

RICERCA OPERATIVA (a.a. 2012/13) Nome: Cognome: Matricola: o Appello 7// RICERCA OPERATIVA (a.a. /) Nome: Cognome: Matricola: ) Si individui un albero dei cammini minimi di radice sul grafo in figura utilizzando l algoritmo più appropriato dal punto di vista della

Dettagli

Esame di Ricerca Operativa del 14/09/18

Esame di Ricerca Operativa del 14/09/18 Esame di Ricerca Operativa del /9/ (Cognome) (Nome) (Numero di Matricola) Esercizio. (a) Risolvere mediante l algoritmo del simplesso duale il seguente problema di programmazione lineare: Iterazione {,}

Dettagli

Esame di Ricerca Operativa del 28/06/2019. max 9 x 1 +8 x 2 6 x x x 1 +2 x x 1 +2 x x 1 3 x x 1 4 x 2 3

Esame di Ricerca Operativa del 28/06/2019. max 9 x 1 +8 x 2 6 x x x 1 +2 x x 1 +2 x x 1 3 x x 1 4 x 2 3 Esame di Ricerca Operativa del 8/0/09 (Cognome) (Nome) (Numero di Matricola) Esercizio. a) Risolvere il seguente problema di programmazione lineare mediante l algoritmo del simplesso: max 9 x +8 x x +0

Dettagli

Appunti del corso di Informatica 1 (IN110 Fondamenti) 7 Grafi e alberi: introduzione

Appunti del corso di Informatica 1 (IN110 Fondamenti) 7 Grafi e alberi: introduzione Università di Roma Tre Dipartimento di Matematica e Fisica Corso di Laurea in Matematica Appunti del corso di Informatica (IN0 Fondamenti) Grafi e alberi: introduzione Marco Liverani (liverani@mat.uniroma.it)

Dettagli

3.6 Metodi basati sui piani di taglio

3.6 Metodi basati sui piani di taglio 3.6 Metodi basati sui piani di taglio Problema generale di Programmazione Lineare Intera (PLI) con A matrice m n e b vettore n 1 razionali min{ c t x : x X = {x Z n + : Ax b} } Sappiamo che esiste una

Dettagli

2.2 Alberi di supporto di costo ottimo

2.2 Alberi di supporto di costo ottimo . Alberi di supporto di costo ottimo Problemi relativi ad alberi hanno numerose applicazioni: progettazione di reti (comunicazione, teleriscaldamento,...) memorizzazione compatta di sequenze (DNA) diffusione

Dettagli

Esame di Ricerca Operativa del 19/07/19. Esercizio 1. (a) Risolvere mediante il metodo del simplesso il seguente problema di programmazione lineare:

Esame di Ricerca Operativa del 19/07/19. Esercizio 1. (a) Risolvere mediante il metodo del simplesso il seguente problema di programmazione lineare: Esame di Ricerca Operativa del /0/ (Cognome) (Nome) (Numero di Matricola) Esercizio. (a) Risolvere mediante il metodo del simplesso il seguente problema di programmazione lineare: max x +x x + x x x x

Dettagli

Algoritmi Avanzati Soluzioni dello scritto del 2 febbraio 2004 (appello straordinario)

Algoritmi Avanzati Soluzioni dello scritto del 2 febbraio 2004 (appello straordinario) Algoritmi Avanzati Soluzioni dello scritto del febbraio 004 (appello straordinario) 1. Tengo nascosto nel taschino della giacca un grafo misterioso di 7 nodi. Vi dico solo che listando le valenze (= numero

Dettagli

Algoritmi esatti. La teoria ci dice che per problemi difficili (come il

Algoritmi esatti. La teoria ci dice che per problemi difficili (come il p. 1/4 Algoritmi esatti La teoria ci dice che per problemi difficili (come il KNAPSACK o, ancora di più, il TSP ) i tempi di risoluzione delle istanze, calcolati tramite analisi worst-case, tendono a crescere

Dettagli

2.2 Alberi di supporto di costo ottimo

2.2 Alberi di supporto di costo ottimo . Alberi di supporto di costo ottimo Problemi relativi ad alberi hanno numerose applicazioni: progettazione di reti (comunicazione, teleriscaldamento,...) memorizzazione compatta di sequenze (DNA) diffusione

Dettagli

Problemi, istanze, soluzioni

Problemi, istanze, soluzioni lgoritmi e Strutture di Dati II 2 Problemi, istanze, soluzioni Un problema specifica una relazione matematica tra dati di ingresso e dati di uscita. Una istanza di un problema è formata dai dati di un

Dettagli

Esame di Ricerca Operativa - 21 gennaio 2009 Facoltà di Architettura - Udine - CORREZIONE -

Esame di Ricerca Operativa - 21 gennaio 2009 Facoltà di Architettura - Udine - CORREZIONE - Esame di Ricerca Operativa - 2 gennaio 29 Facoltà di Architettura - Udine - CORREZIONE - Problema ( punti): Un azienda chimica produce quattro tipi di colla, A, B, C, D, utilizzando materie prime P, P

Dettagli

Ottimizzazione Combinatoria Proprietà dei Grafi. Ottimizzazione Combinatoria

Ottimizzazione Combinatoria Proprietà dei Grafi. Ottimizzazione Combinatoria Ottimizzazione Combinatoria Ottimizzazione Combinatoria Proprietà dei Grafi ANTONIO SASSANO Università di Roma La Sapienza Dipartimento di Informatica e Sistemistica Corso di Laurea in Ingegneria Gestionale

Dettagli

RICERCA OPERATIVA GRUPPO A prova scritta del 21 luglio 2010

RICERCA OPERATIVA GRUPPO A prova scritta del 21 luglio 2010 RICERCA OPERATIVA GRUPPO A prova scritta del luglio 00. Dato il problema di programmazione lineare P) min z = x + x + x max y + y x + x + x = y + y < x + x x y + y < x, x, x 0 y y < y > 0 a) costruirne

Dettagli

RICERCA OPERATIVA (a.a. 2016/17) Nome: Cognome: Matricola:

RICERCA OPERATIVA (a.a. 2016/17) Nome: Cognome: Matricola: Secondo appello //0 RICERCA OPERATIVA (a.a. 0/) Nome: Cognome: Matricola: ) Si risolva il seguente problema di PL max x x x x x + x x x per via algebrica, mediante l algoritmo del Simplesso Primale a partire

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Problema dell assegnamento e matrici totalmente unimodulari

Metodi e Modelli per l Ottimizzazione Combinatoria Problema dell assegnamento e matrici totalmente unimodulari Metodi e Modelli per l Ottimizzazione Combinatoria Problema dell assegnamento e matrici totalmente unimodulari L. De Giovanni G. Zambelli 1 Problema dell assegnamento Sia dato un grafo non orientato bipartito

Dettagli

METODI DELLA RICERCA OPERATIVA

METODI DELLA RICERCA OPERATIVA Università degli Studi di Cagliari FACOLTA' DI INGEGNERIA CORSO DI METODI DELLA RICERCA OPERATIVA Dott.ing. Massimo Di Francesco (mdifrance@unica.it) i i Dott.ing. Maria Ilaria Lunesu (ilaria.lunesu@unica.it)

Dettagli

Teoria dei Grafi Elementi di base della Teoria dei Grafi

Teoria dei Grafi Elementi di base della Teoria dei Grafi L. Pallottino, Sistemi Robotici Distribuiti - Versione del 4 Marzo 2015 42 Teoria dei Grafi Elementi di base della Teoria dei Grafi Definizione 1. Un grafo G = (V, E) è composto da un insieme finito di

Dettagli

Introduzione al Metodo del Simplesso. 1 Soluzioni di base e problemi in forma standard

Introduzione al Metodo del Simplesso. 1 Soluzioni di base e problemi in forma standard Introduzione al Metodo del Simplesso Giacomo Zambelli 1 Soluzioni di base e problemi in forma standard Consideriamo il seguente problema di programmazione lineare (PL), relativo all esempio di produzione

Dettagli

Introduzione al Column Generation Caso di Studio: il Bin Packing Problem

Introduzione al Column Generation Caso di Studio: il Bin Packing Problem Introduzione al Column Generation Caso di Studio: il Bin Packing Problem November 15, 2014 1 / 26 Introduzione Il column generation è una metodologia che può essere usata per risolvere problemi di ottimizzazione

Dettagli

Il rilassamento Lagrangiano nella soluzione di problemi di programmazione lineare intera

Il rilassamento Lagrangiano nella soluzione di problemi di programmazione lineare intera Il rilassamento Lagrangiano nella soluzione di problemi di programmazione lineare intera Alessandro Agnetis, Paolo Detti January 24, 212 1 La tecnica Lagrangiana L applicazione di algoritmi di enumerazione

Dettagli

A-2 a PI. Esercizio 2. Domanda 3

A-2 a PI. Esercizio 2. Domanda 3 A-2 a PI Ricerca Operativa 1 Seconda prova intermedia È dato il problema di PL in figura. 1. Facendo uso delle condizioni di ortogonalità, dimostrare o confutare l ottimalità della soluzione x = 1; x =

Dettagli

Matrici unimodulari e totalmente unimodulari

Matrici unimodulari e totalmente unimodulari Matrici unimodulari e totalmente unimodulari Sia una matrice intera di dimensione con, si dice unimodulare se presa una qualsiasi sottomatrice di ordine massimo (di dimensione ) vale det = 1, +1, 0. Una

Dettagli

Appunti lezione Capitolo 14 Greedy

Appunti lezione Capitolo 14 Greedy Appunti lezione Capitolo 14 Greedy Alberto Montresor 21 Novembre, 2016 1 Domanda: dimostrare che S[i, j] = con i j Nel problema della selezione delle attività, il sottoinsieme S[i, j] è definito nel modo

Dettagli

Università Roma Tre - PAS Classe A048 "Matematica Applicata" - Corso di Informatica a.a. 2013/2014

Università Roma Tre - PAS Classe A048 Matematica Applicata - Corso di Informatica a.a. 2013/2014 Università Roma Tre Dipartimento di Matematica e Fisica Percorso Abilitante Speciale Classe A08 Matematica Applicata Corso di Informatica Algoritmi su Grafi Marco Liverani (liverani@mat.uniroma.it) Sommario

Dettagli

Sommario della lezione

Sommario della lezione Sommario della lezione Analisi dell Algoritmo di Ford e Fulkerson per il calcolo del massimo flusso Applicazioni del massimo flusso: Matching in Grafi Bipartiti Cammini disgiunti tra vertici Università

Dettagli

Parte IV: Matrici totalmente unimodulari

Parte IV: Matrici totalmente unimodulari Parte IV: Matrici totalmente unimodulari Formulazioni Consideriamo il seguente problema di Knapsack 0-1 max (5x 1 + 2x 2 ) st 3x 1 + 4x 2 < 6 x {0,1} 2 Insiemi ammissibili F = {(0, 0), (0, 1), (1, 0)}

Dettagli

Progetto e Ottimizzazione di Reti 2. Nozioni base di Teoria dei Grafi

Progetto e Ottimizzazione di Reti 2. Nozioni base di Teoria dei Grafi Progetto e Ottimizzazione di Reti 2. Nozioni base di Teoria dei Grafi ANTONIO SASSANO (A-L) CARLO MANNINO(M-Z) Uniersità di Roma La Sapienza Dipartimento di Informatica e Sistemistica Corso di Larea in

Dettagli

Programmazione Matematica / A.A Soluzioni di alcuni esercizi

Programmazione Matematica / A.A Soluzioni di alcuni esercizi Programmazione Matematica / A.A. 7-8 Soluzioni di alcuni esercizi Esercizi - I. Aggiungiamo al problema una variabile v, e richiediamo che v soddisfi v n a ij x j b i. j= Fissato x, il minimo v che soddisfa

Dettagli

Possibile applicazione

Possibile applicazione p. 1/4 Assegnamento Siano dati due insiemi A e B entrambi di cardinalità n. Ad ogni coppia (a i,b j ) A B è associato un valore d ij 0 che misura la "incompatibilità" tra a i e b j, anche interpretabile

Dettagli

Esercizi di Matematica per la prova di ammissione alla Scuola Galileiana /16

Esercizi di Matematica per la prova di ammissione alla Scuola Galileiana /16 Esercizi di Matematica per la prova di ammissione alla Scuola Galileiana - 015/16 Esercizio 1 Per quali valori n Z \ {0} l espressione è un numero intero positivo? (n + 5)(n + 6) 6n Soluzione. Il problema

Dettagli

RICERCA OPERATIVA (a.a. 2014/15) Nome: Cognome: Matricola:

RICERCA OPERATIVA (a.a. 2014/15) Nome: Cognome: Matricola: o Appello // RICERCA OPERATIVA (a.a. /) Nome: Cognome: Matricola: ) Si risolva il seguente problema di PL max x x x + x x x x x x applicando l algoritmo del Simplesso Primale per via algebrica a partire

Dettagli

Introduzione ai grafi. Introduzione ai grafi p. 1/2

Introduzione ai grafi. Introduzione ai grafi p. 1/2 Introduzione ai grafi Introduzione ai grafi p. 1/2 Grafi Un grafo G è costituito da una coppia di insiemi (V,A) dove V è detto insieme dei nodi e A è detto insieme di archi ed è un sottinsieme di tutte

Dettagli

Risoluzione del rilassamento continuo del problema del commesso viaggiatore

Risoluzione del rilassamento continuo del problema del commesso viaggiatore Risoluzione del rilassamento continuo del problema del commesso viaggiatore Sia G = (V,E) un grafo orientato completo, con un costo c ij R associato a ciascun arco (i, j) E. Si consideri la seguente formulazione

Dettagli