Soluzione. V : insieme dei nodi del grafo A: insieme degli archi del grafo K: insieme degli indici delle coppie di origine-destinazione (s k,t k )

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Soluzione. V : insieme dei nodi del grafo A: insieme degli archi del grafo K: insieme degli indici delle coppie di origine-destinazione (s k,t k )"

Transcript

1 Soluzione.1 Progetto di rete con capacità a) Diamo la seguente formulazione del problema: Insiemi V : insieme dei nodi del grafo A: insieme degli archi del grafo K: insieme degli indici delle coppie di origine-destinazione (s k,t k ) Parametri d k : domanda per la coppia k-esima c ij : costo per unità di capacità aggiunta per l arco u ij : quantità massima di capacità installabile sull arco s ij : costo per unità di dati instradata sull arco (i, j) Variabili x k ij 0: quantità di dati relativi alla coppia k-esima instradati sull arco y ij Z + : quantità di capacità installata sull arco Modello min s.t. (i,j) δ + (i) k K (i,j) A x k ij s ij x k ij + (j,i) δ (i) (i,j) A x k ji = x k ij y ij, k K y ij u ij, x k ij 0, y ij Z + c ij y ij d k se i = s k d k se i = t k 0 altrimenti per i V,k K, k K Developed by S. Coniglio, updated by G.Carello 4

2 Per garantire l esistenza di due cammini disgiunti per ogni coppia, introduciamo le variabili z ij {0, 1} per ogni arco (i, j) K e i vincoli y ij z ij, y ij u ij z ij, z ij 2, (i,j) δ(s) z ij {0, 1}, S V : s k S, t k / S, k K Il primo vincolo garantisce che la variabile y ij possa essere > 0 solo se z ij = 1, il secondo (sostituibile al vincolo y ij u ij della formulazione precedente) garantisce che la variabile z ij sia uguale a 1 solo se è installata capacità sull arco corrispondente. In tal modo, abbiamo z ij =1seesolosey ij > 0. È allora immediato introdurre il vincolo (i,j) δ(s) z ij 2, espresso per ogni S V : s k S, t k / S, k K, per garantire l esistenza di due cammini disgiunti da s k a t k. Per osservarne la correttezza, si provi a costruire due cammini non disgiunti (o persino un singolo cammino) da s k a t k e si osservi che esiste sempre almeno un insieme S per cui il vincolo è violato. Chiaramente, la formulazione ha un numero esponenziale di righe proprio a causa del vincolo in questione. b) Modellizziamo l approssimazione lineare a tratti della funzione di costo quadratica. Ne dividiamo il dominio [0,u ij ] in tre sottoinsiemi di uguale misura: [0, u ij ] [ u ij, 2 u ij] [ 2 u ij,u ij ]. L approssimazione lineare a tratti corrisponde alla funzione seguente: ˆf ij (x) = ˆf 1 ij (x ij) ˆf 2 ij (x ij) ( = s uij ) 2 ij u ij x ij = s ij( 2 u ij) 2 ( uij ) 2 s ij u ij ˆf ij (x ij) = s ij(u ij ) 2 s ij( 2 u ij) 2 u ij ( xij u ij ( xij 2 u ) ( ij + 2 sij u ij per 0 x ij u ij ) ( uij ) 2 + sij per u ij x ij 2 u ij ) 2 per 2 u ij x ij u ij Chiaramente, la funzione approssimante ˆf ij (x) è convessa. Si osservi che, in ogni punto x [0,u ij ], tale funzione è pari a max{fij 1 (x),f2 ij (x),f ij (x)}. Dato che ˆf ij (x) prende valori nonnegativi e stiamo affrontando un problema di minimizzazione, possiamo modellizzare max{fij 1 (x),f2 ij (x),f ij (x)} introducendo la variabile e in vincoli η ij : costo totale di instradamento sull arco η ij ˆf 1 ij(x ij )per η ij ˆf 2 ij(x ij )per η ij ˆf ij(x ij )per dove, in luogo di ˆf 1 ij (x ij ), ˆf 2 ij (x ij) e ˆf ij (x ij), riporteremo la corrispondente espressione lineare precedentemente derivata. Sostituiamo quindi al termine (i,j) A s ij ( k K xk ij) 2 in funzione Developed by S. Coniglio, updated by G.Carello 5

3 obiettivo la quantità η ij. (i,j) A La minimizzazione garantisce che ogni soluzione in ogni soluzione in cui η ij non sia pari a max{fij 1 (x),f2 ij (x),f ij (x)} non sia ottima, dato che una soluzione di costo strettamente inferiore sarebbe ottenibile riducendo η ij così da renderlo pari a max{fij 1 (x),f2 ij (x),f ij (x)}..2 Totale unimodularità a) Riportiamo la formulazione di programmazione lineare intera vista a lezione per un caso specifico. Assumiamo che le variabili x 0,...,x 6 Z + denotino il numero di infermieri il cui turno inizia, rispettivamente, Lunedì, Martedì,..., Domenica. Il modello è: min x 0 + x 1 + x 2 + x + x 4 + x 5 + x 6 x 0 + x + x 4 + x 5 + x 6 11 (Lun) x 0 + x 1 + x 4 + x 5 + x 6 9 (Mar) x 0 + x 1 + x 2 x 5 + x 6 7 (Mer) x 0 + x 1 + x 2 + x + x 6 12 (Gio) x 0 + x 1 + x 2 + x + x 4 1 (Ven) x 1 + x 2 + x + x 4 + x 5 8 (Sab) x 2 + x + x 4 + x 5 + x 6 5 (Dom) x 0,x 1,x 2,x,x 4,x 5,x 6 Z + La matrice dei vincoli del problema A = ha determinante pari a 5 ed è chiaramente non unimodulare. b) La nuova formulazione è la seguente, dove le variabili y 0,...,y 6 Z + denotano il numero di infermieri il cui turno inizia, rispettivamente, il primo, secondo,..., settimo giorno. Il modello è: Developed by S. Coniglio, updated by G.Carello 6

4 min y 0 + y 1 + y 2 + y + y 4 + y 5 + y 6 y 0 11 (1mo) y 0 y 1 9 (2ndo) y 0 y 1 y 2 7 (rzo) y 0 y 1 y 2 y 12 (4rto) y 0 y 1 y 2 y y 4 1 (5nto) y 1 y 2 y y 4 y 6 8 (6sto) y 2 y y 4 y 6 y 7 8 (7imo) y 0,y 1,y 2,y,y 4,y 5,y 6 Z + La matrice dei vincoli del problema in esame corrisponde a: A = La continuità dei turni sui periodi di tempo garantisce che la matrice A dei vincoli soddisfi la proprietà degli uni consecutivi, ossia che (eventualmente a valle di una permutazione) per ogni colonna di indice j di A, sihachesea ij = a i j per i >i, allora a i j =1per tutti gli i : i<i <i. In altre parole, se la colonna j contiene un 1 in posizione i e i, allora deve contenerne uno anche in tutte le posizioni intermedie i. Ogni matrice con questa proprietà è totalmente unimodulare (TUM). Per mostrarlo, usiamo la condizione necessaria e sufficiente per cui una matrice è TUM se e solo se è possibile partizionarne le righe così che, per ogni colonna, la differenza nel numero di 1 presenti in una e nell altra partizione sia di la più un elemento. Per un problema con m righe, una partizione che soddisfa la condizione è {i =1,...,m: i 2=0} {i =1,...,m: i 2=1}. Developed by S. Coniglio, updated by G.Carello 7

5 . Formulazioni ideali Consideriamo un esempio per M{1, 2, },N = {1, 2} e riportiamo il rilassamento continuo del sottoproblema in forma matriciale: x 11 y 1 0 x 12 y 2 0 x 21 y 1 0 x 22 y 2 0 x 1 y 1 0 x 2 y 2 0 x 11 1 x 12 1 x 21 1 x 22 1 x 1 1 x 2 1 x 11 0 x 12 0 x 21 0 x 22 0 x 1 0 x 2 0 y 1 1 y 2 1 y 1 0 y 2 0 Applichiamo la condizione necessaria e sufficiente. Per farlo, partizioniamo le colonne in due sottoinsiemi, col primo pari all insieme di tutte le colonne e il secondo pari all insieme vuoto. Evidentemente, la differenza per ogni riga tra la somma degli elementi nelle due colonne è 0 o -1, garantendo dunque la totale unimodularità della matrice, la quale, a sua volta, garantisce l integralità del sottoproblema. Purtroppo, questo non ci permette di dire nulla circa l interezza del problema complessivo. Difatti, ci aspettiamo che intersecando il poliedro corrispondente al sottoproblema con gli altri vincoli presenti nel problema originale compaiano nuovi vertici a coordinate frazionarie. Developed by S. Coniglio, updated by G.Carello 8

6 .4 Branch and Bound per TSP a) L albero di branch and bound è riportato in figura. P : 2-albero di costo minimo: {{1, 2}, {1, }, {2, }, {, 4}, {4, 5}}, di costo 105 = z R (P ). La soluzione calcolata con l algoritmo Nearest neighbor fornisce il ciclo , di costo 11 = z H (P ). P 1 : il 2-albero di costo minimo è il ciclo , di costo 11. P 1 viene chiuso. P 2 : il 2-albero di costo minimo è il ciclo , di costo 114. P 2 viene chiuso. P : il 2-albero di costo minimo è {{1, }, {1, 5}, {4, 5}, {1, 2}, {2, }} di costo 109. P 4 : il 2-albero di costo minimo è {{1, }, {1, 5}, {4, 5}, {2, 5}, {2, }} di costo 122. P 5 : il sottoproblema non contiene soluzioni ammissibili (x 1 =1ex 1 = 0). P 6 : il sottoproblema non contiene soluzioni ammissibili (x 2 = 1, x 1 = 1, x 12 = 1). La soluzione ottima è , di costo ,11 P 1 x 1 =0 105,11 P x 2 =0 x 1 =1 114,11 P 2 122,11 P 4 x 4 =0 x 2 =1 x 1 =1 x 12 =0 b) L albero di branch and bound è riportato in figura. 109,11 x 15 =0 P x 1 =1 x 12 =1 x 1 =0 x 12 =1 P 5 P 6 P : la soluzione dell assegnamento è {{1, 2}, {2, 1}, {, 4}, {4, }}, di costo 12. P 1 : la soluzione dell assegnamento è il ciclo , di costo 1. P 1 viene chiuso. P 2 : la soluzione dell assegnamento è il ciclo , di costo 18. P 2 viene chiuso. 12 x 12 =0 P x 21 =0 x 12 =1 1 P 1 P 2 18 Developed by S. Coniglio, updated by G.Carello 9

7 .5 Branch-and-bound L albero di enumerazione è riportato nella seguente figura, con rappresentazioni qualitative delle regioni ammissibili in ogni nodo. Developed by S. Coniglio, updated by G.Carello 10

8 Developed by S. Coniglio, updated by G.Carello 11

3.1 Progetto di rete con capacità

3.1 Progetto di rete con capacità .1 Progetto di rete con capacità Un azienda deve progettare la propria rete di telecomunicazioni per permettere l invio di una quantità di dati d k 0 per ogni coppia origine-destinazione di nodi (s k,t

Dettagli

3.3 Problemi di PLI facili

3.3 Problemi di PLI facili 3.3 Problemi di PLI facili Consideriamo un generico problema di PLI espresso in forma standard min{c t x : Ax = b, x Z n +} (1) dove A Z m n con n m, e b Z m. Supponiamo che A sia di rango pieno. Sia P

Dettagli

Soluzione. 2.1 Pianificazione multiperiodo della produzione energetica

Soluzione. 2.1 Pianificazione multiperiodo della produzione energetica Soluzione. Pianificazione multiperiodo della produzione energetica a) Diamo una prima formulazione nonlineare del problema. Insiemi T :insiemedeiperiodiditempo S = {,, 3}: insieme degli indici dei range

Dettagli

Modelli di Programmazione Lineare. PRTLC - Modelli

Modelli di Programmazione Lineare. PRTLC - Modelli Modelli di Programmazione Lineare PRTLC - Modelli Schema delle esercitazioni Come ricavare la soluzione ottima Modelli Solver Come ricavare una stima dell ottimo Rilassamento continuo - generazione di

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Problema dell assegnamento e matrici totalmente unimodulari

Metodi e Modelli per l Ottimizzazione Combinatoria Problema dell assegnamento e matrici totalmente unimodulari Metodi e Modelli per l Ottimizzazione Combinatoria Problema dell assegnamento e matrici totalmente unimodulari L. De Giovanni G. Zambelli 1 Problema dell assegnamento Sia dato un grafo non orientato bipartito

Dettagli

Ricerca Operativa. G. Liuzzi. Lunedí 20 Aprile 2015

Ricerca Operativa. G. Liuzzi. Lunedí 20 Aprile 2015 1 Lunedí 20 Aprile 2015 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR Rilassamento di un problema Rilassare un problema di Programmazione Matematica vuol dire trascurare alcuni (tutti i)

Dettagli

Formulazioni. Consideriamo il seguente problema di Knapsack 0-1. max (5x x 2. ) st 3x x 2. < 6 x {0,1} 2

Formulazioni. Consideriamo il seguente problema di Knapsack 0-1. max (5x x 2. ) st 3x x 2. < 6 x {0,1} 2 Formulazioni Consideriamo il seguente problema di Knapsack 0-1 max (5x 1 + 2x 2 ) st 3x 1 + 4x 2 < 6 x {0,1} 2 Insiemi ammissibili F = {(0, 0), (0, 1), (1, 0)} Rappresentiamo sul piano gli insiemi ammissibili.

Dettagli

Parte IV: Matrici totalmente unimodulari

Parte IV: Matrici totalmente unimodulari Parte IV: Matrici totalmente unimodulari Formulazioni Consideriamo il seguente problema di Knapsack 0-1 max (5x 1 + 2x 2 ) st 3x 1 + 4x 2 < 6 x {0,1} 2 Insiemi ammissibili F = {(0, 0), (0, 1), (1, 0)}

Dettagli

Matrici unimodulari e totalmente unimodulari

Matrici unimodulari e totalmente unimodulari Matrici unimodulari e totalmente unimodulari Sia una matrice intera di dimensione con, si dice unimodulare se presa una qualsiasi sottomatrice di ordine massimo (di dimensione ) vale det = 1, +1, 0. Una

Dettagli

Esame di Ricerca Operativa del 06/02/17

Esame di Ricerca Operativa del 06/02/17 Esame di Ricerca Operativa del 0/0/7 (Cognome) (Nome) (Numero d Matricola) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max 7 x x x x x x x + x x x 0 x

Dettagli

2.1 Pianificazione multiperiodo della produzione energetica. 2.2 Confronto tra formulazioni per il problema dell albero di supporto di costo minimo

2.1 Pianificazione multiperiodo della produzione energetica. 2.2 Confronto tra formulazioni per il problema dell albero di supporto di costo minimo . Pianificazione multiperiodo della produzione energetica Consideriamo il problema di approvvigionamento energetico dell Italia su un orizzonte di T = 0 anni. Sia d t il consumo di potenza elettrica stimato

Dettagli

Esercizi di Programmazione Lineare

Esercizi di Programmazione Lineare Esercizi di Programmazione Lineare 1 di Base: Forma Matriciale Si consideri il poliedro P = {x R 3 : Ax b} in cui: 1 0 1 2 A = 1 1 0 0 1 1, b = 1 4 1 1 1 3, x 1 = 1 2 + 3 2 + 5 2 x 2 = I vettori x 1 e

Dettagli

min det det Allora è unimodulare se e solo se det 1, 1, 0 per ogni sottomatrice quadrata di di qualsiasi dimensione.

min det det Allora è unimodulare se e solo se det 1, 1, 0 per ogni sottomatrice quadrata di di qualsiasi dimensione. Se è unimodulare e è intero allora il poliedro 0 ha vertici interi. Sia un vertice di Per definizione esiste allora una base di tale che, 0 Poiché è non singolare ( invertibile det 0) si ha che det 1 è

Dettagli

RICERCA OPERATIVA (a.a. 2018/19)

RICERCA OPERATIVA (a.a. 2018/19) Secondo appello //9 RICERCA OPERATIVA (a.a. 8/9) Nome: Cognome: Matricola: ) Si consideri il seguente problema di PL: min y + y y y y y = y + y y = y, y, y, y Si verifichi se la soluzione ȳ =,,, sia ottima

Dettagli

Richiami di Teoria dei Grafi. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Richiami di Teoria dei Grafi. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Richiami di Teoria dei Grafi Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Teoria dei grafi La Teoria dei Grafi costituisce, al pari della Programmazione Matematica, un corpo

Dettagli

Esame di Ricerca Operativa del 06/02/17

Esame di Ricerca Operativa del 06/02/17 Esame di Ricerca Operativa del 0/0/ (Cognome) (Nome) (Numero d Matricola) Esercizio. Uno studente vuole definire un piano di studio settimanale per preparare gli esami A, B e C, massimizzando le ore (h)

Dettagli

I Appello Ricerca Operativa 2 bis Compito A

I Appello Ricerca Operativa 2 bis Compito A I Appello Ricerca Operativa 2 bis Compito A Cognome e nome:. Esercizio 1. Si consideri il problema del matching di cardinalità massima in un grafo G ed il suo problema di decisione associato: esiste un

Dettagli

Management Sanitario. Modulo di Ricerca Operativa

Management Sanitario. Modulo di Ricerca Operativa Management Sanitario per il corso di Laurea Magistrale SCIENZE RIABILITATIVE DELLE PROFESSIONI SANITARIE Modulo di Ricerca Operativa Prof. Laura Palagi http://www.dis.uniroma1.it/ palagi Dipartimento di

Dettagli

Ricerca Operativa A.A. 2007/ Esercitazione di laboratorio: Branch and Bound.

Ricerca Operativa A.A. 2007/ Esercitazione di laboratorio: Branch and Bound. Ricerca Operativa A.A. 2007/2008 17. Esercitazione di laboratorio: Branch and Bound. Luigi De Giovanni - Ricerca Operativa - 17. Esercitazione di laboratorio: Branch and Bound 17.1. Luigi De Giovanni -

Dettagli

Ricerca Operativa A.A. 2007/ Esercitazione di laboratorio: Branch and Bound.

Ricerca Operativa A.A. 2007/ Esercitazione di laboratorio: Branch and Bound. Ricerca Operativa A.A. 2007/2008 17. Esercitazione di laboratorio: Branch and Bound. Luigi De Giovanni - Ricerca Operativa - 17. Esercitazione di laboratorio: Branch and Bound 17.1 . Luigi De Giovanni

Dettagli

COMPITO DI RICERCA OPERATIVA APPELLO DEL 07/04/04

COMPITO DI RICERCA OPERATIVA APPELLO DEL 07/04/04 COMPITO DI RICERCA OPERATIVA APPELLO DEL 07/04/04 Esercizio 1 1)Dato il seguente problema di PL: max 2x 1 x 2 x 1 + x 2 2 x 1 + 2x 2 7 x 1 + x 2 1 x 1, x 2 0 trasformarlo in forma standard (2 punti) 2)

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Collegio Didattico in Ingegneria Informatica corso di Ricerca operativa 2. Esercizi sul problema dell assegnamento

UNIVERSITÀ DEGLI STUDI ROMA TRE Collegio Didattico in Ingegneria Informatica corso di Ricerca operativa 2. Esercizi sul problema dell assegnamento UNIVERSITÀ DEGLI STUDI ROMA TRE Collegio Didattico in Ingegneria Informatica corso di Ricerca operativa Esercizi sul problema dell assegnamento Richiami di Teoria Ricordiamo che, dato un grafo G=(N,A),

Dettagli

Parte V: Rilassamento Lagrangiano

Parte V: Rilassamento Lagrangiano Parte V: Rilassamento Lagrangiano Tecnica Lagrangiana Consideriamo il seguente problema di Programmazione Lineare Intera: P 1 min c T x L I Ax > b Cx > d x > 0, intera in cui A = matrice m x n C = matrice

Dettagli

Ricerca Operativa A.A. 2017/2018

Ricerca Operativa A.A. 2017/2018 Ricerca Operativa A.A. 2017/2018 Esercizi su modelli di programmazione lineare intera - Soluzioni Nota Vengono fornite delle possibili soluzioni. Potrebbero esserci soluzioni alternative altrettanto valide.

Dettagli

Teoria della Programmazione Lineare Intera

Teoria della Programmazione Lineare Intera 0 Teoria della Programmazione Lineare Intera 0. INTRODUZIONE Come visto precedentemente, molti problemi particolarmente importanti dal punto di vista applicativo sono riconducibili alla soluzione di un

Dettagli

COMPITO DI RICERCA OPERATIVA. max 8 5x 1 3x 2 x 3 = 1 + 4x 1 + x 2 x 4 = 1 x 1 + x 2 x 5 = 5 x 1 x 2

COMPITO DI RICERCA OPERATIVA. max 8 5x 1 3x 2 x 3 = 1 + 4x 1 + x 2 x 4 = 1 x 1 + x 2 x 5 = 5 x 1 x 2 COMPITO DI RICERCA OPERATIVA ESERCIZIO. (5 punti) Dato un problema di PL, la sua riformulazione rispetto alla base B = {x 3, x, x 5 } é la seguente: max 8 5x 3x x 3 = + x + x x = x + x x 5 = 5 x x Solo

Dettagli

Tecniche euristiche greedy

Tecniche euristiche greedy Tecniche euristiche greedy PRTLC - Schema delle esercitazioni Come ricavare la soluzione ottima Modelli Solver commerciali Schema delle esercitazioni Come ricavare la soluzione ottima Modelli Solver commerciali

Dettagli

Esame di Ricerca Operativa del 12/06/18. Base x Degenere? y Indice Rapporti Indice uscente entrante

Esame di Ricerca Operativa del 12/06/18. Base x Degenere? y Indice Rapporti Indice uscente entrante Esame di Ricerca Operativa del /0/ (Cognome) (Nome) (Numero di Matricola) Esercizio. Effettuare due iterazioni dell algoritmo del simplesso duale: min y + y + y + y + y + y y y y + y +y = y y + y +y y

Dettagli

METODI DELLA RICERCA OPERATIVA

METODI DELLA RICERCA OPERATIVA Università degli Studi di Cagliari FACOLTA' DI INGEGNERIA CORSO DI METODI DELLA RICERCA OPERATIVA Dott.ing. Massimo Di Francesco (mdifrance@unica.it) i i Dott.ing. Maria Ilaria Lunesu (ilaria.lunesu@unica.it)

Dettagli

4.1 Localizzazione e pianificazione delle base station per le reti UMTS

4.1 Localizzazione e pianificazione delle base station per le reti UMTS esercitazione Ottimizzazione Prof E Amaldi Localizzazione e pianificazione delle base station per le reti UMTS Consideriamo il problema di localizzare un insieme di stazioni radio base, base station (BS),

Dettagli

5 PROGRAMMAZIONE LINEARE INTERA (PLI) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

5 PROGRAMMAZIONE LINEARE INTERA (PLI) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 5 PROGRAMMAZIONE LINEARE INTERA (PLI) E. Amaldi Fondamenti di R.O. Politecnico di Milano Programma lineare intero: (PLI) min c T x Ax b x 0 intero Ipotesi: A, b interi La condizione di interezza non è

Dettagli

Laboratorio: Ottimizzazione su reti

Laboratorio: Ottimizzazione su reti Laboratorio: Ottimizzazione su reti Luigi De Giovanni Dipartimento di Matematica, Università di Padova Luigi De Giovanni Laboratorio: Ottimizzazione su reti 1 / 9 Cammino minimo: modello { 1, l arco (i,

Dettagli

ESERCIZIO 1: Punto 1

ESERCIZIO 1: Punto 1 ESERCIZIO : Punto La seguente matrice è una matrice delle distanze di un istanza del problema del Commesso Viaggiatore. - - - - - - - Calcolare.Il valore del rilassamento che si ottiene determinando l

Dettagli

RICERCA OPERATIVA (9 cfu)

RICERCA OPERATIVA (9 cfu) a PROVA scritta di RICERCA OPERATIVA (9 cfu) gennaio Cognome Nome Ai fini della pubblicazione (cartacea e elettronica) del risultato ottenuto nella prova di esame, autorizzo al trattamento dei miei dati

Dettagli

Esame di Ricerca Operativa del 11/02/2015

Esame di Ricerca Operativa del 11/02/2015 Esame di Ricerca Operativa del /0/0 (Cognome) (Nome) (Matricola) Esercizio. Un azienda produce tipi di TV (, 0, 0 e pollici) ed è divisa in stabilimenti (A e B). L azienda dispone di 0 operai in A e 0

Dettagli

3.2 Rilassamenti lineari/combinatori e bounds

3.2 Rilassamenti lineari/combinatori e bounds 3.2 Rilassamenti lineari/combinatori e bounds Consideriamo un problema di Ottimizzazione Discreta min{f(x) : x X} e sia z il valore di una soluzione ottima x X. Metodi di risoluzione spesso generano una

Dettagli

Massimo flusso e matching

Massimo flusso e matching Capitolo Massimo flusso e matching. Problema del massimo matching. Nel problema del massimo matching è dato un grafo non orientato G(V, A); un matching in G è un insieme di archi M A tale che nessuna coppia

Dettagli

Esame di Ricerca Operativa del 22/01/18

Esame di Ricerca Operativa del 22/01/18 Esame di Ricerca Operativa del /0/8 (Cognome) (Nome) (Numero di Matricola) Esercizio. Un azienda informatica produce tre tipi di processori P, P, P nelle sedi S, S, S. La capacitá di produzione settimanale

Dettagli

Esame di Ricerca Operativa del 22/01/18

Esame di Ricerca Operativa del 22/01/18 Esame di Ricerca Operativa del /0/8 (Cognome) (Nome) (Numero di Matricola) Esercizio. Un azienda informatica produce tre tipi di processori P, P, P nelle sedi S, S, S. La capacitá di produzione settimanale

Dettagli

Esame di Ricerca Operativa del 18/06/18

Esame di Ricerca Operativa del 18/06/18 Esame di Ricerca Operativa del 8/0/8 (Cognome) (Nome) (Numero di Matricola) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x +x x x x +x x x x + x

Dettagli

Esame di Ricerca Operativa del 09/06/15. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 09/06/15. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 0/0/ Cognome) Nome) Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: min y + y + y +0 y +y + y y y + y y y y

Dettagli

Prima prova Intermedia di Ricerca Operativa 2 COMPITO A Esercizio 1 (7 punti): LIFO

Prima prova Intermedia di Ricerca Operativa 2 COMPITO A Esercizio 1 (7 punti): LIFO Prima prova Intermedia di Ricerca Operativa 2 COMPITO A 13 novembre 2015 Nome e Cognome Matricola: Esercizio 1 (7 punti): Si consideri il seguente problema di programmazione lineare intera. max 32x 1 +

Dettagli

5.5 Metodi generali per la soluzione di problemi

5.5 Metodi generali per la soluzione di problemi 5.5 Metodi generali per la soluzione di problemi di PLI I problemi di PLI hanno caratteristiche molto diverse dai problemi di PL. In alcuni casi, la soluzione del problema lineare rilassato, ottenuto cioè

Dettagli

Ricerca Operativa A.A. 2007/ Modelli di Programmazione Lineare (II)

Ricerca Operativa A.A. 2007/ Modelli di Programmazione Lineare (II) Ricerca Operativa A.A. 07/08 3. Modelli di Programmazione Lineare (II) Formulazione generale di un modello di programmazione lineare min (max) z = c 1 + c 2 + +c j + + c n x n (+cost.) subject to (s.t.,

Dettagli

città

città Esercitazione 11-4-18 Esercizio 1. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella: città 2 3 4 5 1

Dettagli

RICERCA OPERATIVA (a.a. 2016/17) Nome: Cognome: Matricola:

RICERCA OPERATIVA (a.a. 2016/17) Nome: Cognome: Matricola: Secondo appello //0 RICERCA OPERATIVA (a.a. 0/) Nome: Cognome: Matricola: ) Si risolva il seguente problema di PL max x x x x x + x x x per via algebrica, mediante l algoritmo del Simplesso Primale a partire

Dettagli

5.3 Metodo dei piani di taglio

5.3 Metodo dei piani di taglio 5.3 Metodo dei piani di taglio (PLI) min s.v. c T x Ax b x interi X Ipotesi: a ij, c j e b i interi Osservazione: La regione ammissibile di un PLI può essere descritta mediante dei vincoli più o meno stringenti

Dettagli

Registro dell'insegnamento

Registro dell'insegnamento Registro dell'insegnamento Anno accademico 2016/2017 Prof. MARCO SCIANDRONE Settore inquadramento MAT/09 - RICERCA OPERATIVA REGISTRO Scuola Ingegneria NON CHIUSO Dipartimento Ingegneria dell'informazione

Dettagli

Esame di Ricerca Operativa del 13/06/17. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 13/06/17. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del /0/ (Cognome) (Nome) (Numero di Matricola) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: min y y + y + y + y y + y y +y +y

Dettagli

RICERCA OPERATIVA. Tema d esame del 04/12/2008 (Simulazione 2)

RICERCA OPERATIVA. Tema d esame del 04/12/2008 (Simulazione 2) RICERCA OPERATIVA Tema d esame del 04/12/2008 (Simulazione 2) COGNOME: NOME: MATRICOLA: 1. Un azienda di telefonia mobile deve installare delle antenne per la copertura di sei zone sul territorio. Sono

Dettagli

Flusso a Costo Minimo

Flusso a Costo Minimo Sapienza Università di Roma - Dipartimento di Ingegneria Informatica, Automatica e Gestionale Flusso a Costo Minimo Docente: Renato Bruni bruni@dis.uniroma.it Corso di: Ottimizzazione Combinatoria Dal

Dettagli

Certificati dei problemi in NP

Certificati dei problemi in NP Certificati dei problemi in NP La stringa y viene in genere denominata un certificato Un Certificato è una informazione ausiliaria che può essere utilizzata per verificare in tempo polinomiale nella dimensione

Dettagli

Tecniche di Decomposizione per Programmazione Lineare Intera (Mista)

Tecniche di Decomposizione per Programmazione Lineare Intera (Mista) Tecniche di Decomposizione per Programmazione Lineare Intera (Mista) Domenico Salvagnin 2011-06-12 1 Introduzione Dato un problema di programmazione lineare intera (mista), non è sempre possibile (o conveniente)

Dettagli

Esame di Ricerca Operativa del 04/02/16. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 04/02/16. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 0/0/ (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: min y + y + y + y + y + y y y +y y +

Dettagli

Introduzione al Column Generation Caso di Studio: il Bin Packing Problem

Introduzione al Column Generation Caso di Studio: il Bin Packing Problem Introduzione al Column Generation Caso di Studio: il Bin Packing Problem November 15, 2014 1 / 26 Introduzione Il column generation è una metodologia che può essere usata per risolvere problemi di ottimizzazione

Dettagli

3.6 Metodi basati sui piani di taglio

3.6 Metodi basati sui piani di taglio 3.6 Metodi basati sui piani di taglio Problema generale di Programmazione Lineare Intera (PLI) con A matrice m n e b vettore n 1 razionali min{ c t x : x X = {x Z n + : Ax b} } Sappiamo che esiste una

Dettagli

Capitolo 3: Ottimizzazione Discreta. E. Amaldi DEI, Politecnico di Milano

Capitolo 3: Ottimizzazione Discreta. E. Amaldi DEI, Politecnico di Milano Capitolo 3: Ottimizzazione Discreta E. Amaldi DEI, Politecnico di Milano 3.1 Modelli di PLI e PLMI Moltissimi problemi decisionali complessi possono essere formulati come problemi di Programmazione Lineare

Dettagli

Esame di Ricerca Operativa del 12/07/17

Esame di Ricerca Operativa del 12/07/17 Esame di Ricerca Operativa del /0/ (Cognome) (Nome) (Numero di Matricola) Esercizio. Un azienda produttrice di mobili possiede due sedi S e S, che richiedono mensilmente 0 e 0 quintali di legname per il

Dettagli

RICERCA OPERATIVA. Tema d esame del 04/12/2008 (Simulazione 1)

RICERCA OPERATIVA. Tema d esame del 04/12/2008 (Simulazione 1) RICERCA OPERATIVA Tema d esame del 04/12/2008 (Simulazione 1) COGNOME: NOME: MATRICOLA: 1. Un azienda meccanica deve pianificare il lavoro delle sue tre macchine per un dato giorno. I lotti che è possibile

Dettagli

Ricerca Operativa A.A. 2007/ Modelli di Programmazione Lineare

Ricerca Operativa A.A. 2007/ Modelli di Programmazione Lineare Ricerca Operativa A.A. 07/08 2. Modelli di Programmazione Lineare Modelli di programmazione lineare Il metodo grafico è basato su linearità della funzione obiettivo linearità dei vincoli Sotto queste ipotesi

Dettagli

Figura 1: 1) Si scriva la formulazione del problema come problema di PLI (con un numero minimo di vincoli) e la matrice dei vincoli.

Figura 1: 1) Si scriva la formulazione del problema come problema di PLI (con un numero minimo di vincoli) e la matrice dei vincoli. ESERCIZIO 1 Sia dato il grafo orientato in Figura 1. Si consideri il problema di flusso a 1 2 4 Figura 1: costo minimo su tale grafo con b 1 = 4 b 2 = 2 b = b 4 = e c 12 = 2 c 1 = 4 c 14 = 1 c 2 = 1 c

Dettagli

Se il grafo è bipartito, un accoppiamento viene anche detto assegnamento.

Se il grafo è bipartito, un accoppiamento viene anche detto assegnamento. 1. Accoppiamento Definizione. Dato un grafo (non orientato) G =(N,E), un sottoinsieme M di archi, tale che ogni nodo del grafo è incidente in al più unarcodim, viene detto accoppiamento, (matching). I

Dettagli

Domini di funzioni di due variabili. Determinare i domini delle seguenti funzioni di due variabili (le soluzioni sono alla fine del fascicolo):

Domini di funzioni di due variabili. Determinare i domini delle seguenti funzioni di due variabili (le soluzioni sono alla fine del fascicolo): UNIVERSITA DEGLI STUDI DI SALERNO C.d.L. in INGEGNERIA GESTIONALE Esercizi di Ricerca Operativa Prof. Saverio Salerno Corso tenuto nell anno solare 2009 I seguenti esercizi sono da ritenersi di preparazione

Dettagli

FACOLTA DI ECONOMIA ESAME SCRITTO DI RICERCA OPERATIVA. Verona, 6 Giugno 1996

FACOLTA DI ECONOMIA ESAME SCRITTO DI RICERCA OPERATIVA. Verona, 6 Giugno 1996 Verona, Giugno ) E dato il seguente problema di Programmazione Lineare: min( x + ) x x x Rappresentare il problema geometricamente e successivamente scriverlo in forma standard. a) Determinare una soluzione

Dettagli

RICERCA OPERATIVA (a.a. 2017/18) Nome: Cognome: Matricola:

RICERCA OPERATIVA (a.a. 2017/18) Nome: Cognome: Matricola: Sesto appello 7/7/8 RICERCA OPERATIVA (a.a. 7/8) Nome: Cognome: Matricola: ) Si risolva il seguente problema di PL applicando l algoritmo del Simplesso Duale, per via algebrica, a partire dalla base B

Dettagli

Esame di Ricerca Operativa del 17/07/17. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 17/07/17. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 7/07/7 (Cognome) (Nome) (Numero di Matricola) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x +x x + x x x x x x x +x

Dettagli

Esame di Ricerca Operativa del 09/01/15. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 09/01/15. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 0/0/ (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: min 7 y +y + y + y +y +7 y y +y y y

Dettagli

Esame di Ricerca Operativa del 25/06/12

Esame di Ricerca Operativa del 25/06/12 Esame di Ricerca Operativa del /0/ Cognome) Nome) Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x x x + x x x 8 x x x + x x x Base

Dettagli

Metodi e modelli per il supporto alle decisioni (MMSD)

Metodi e modelli per il supporto alle decisioni (MMSD) Metodi e modelli per il supporto alle decisioni (MMSD) 2. Modelli di Programmazione Lineare Modelli di programmazione lineare Il metodo grafico è basato su linearità della funzione obiettivo linearità

Dettagli

Esame di Ricerca Operativa del 6/2/18. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 6/2/18. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del //8 (Cognome) (Nome) (Numero di Matricola) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: min y +9 y + y +9 y + y + y y + y

Dettagli

I appello Ricerca operativa

I appello Ricerca operativa I appello Ricerca operativa 0.0.014 1. Formulare in termini di programmazione lineare (intera) il seguente problema. Una Società gestisce una squadra di calcio adottando una politica di massimizzare il

Dettagli

Esame di Ricerca Operativa del 09/06/14. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 09/06/14. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 09/0/ (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x x +x x x x +x x + x x Base

Dettagli

Esame di Ricerca Operativa del 18/02/13

Esame di Ricerca Operativa del 18/02/13 Esame di Ricerca Operativa del 8/0/ Cognome) Nome) Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x +8 x x + x x +x x x + x x +x 8 x

Dettagli

Un esempio di applicazione della programmazione lineare intera al progetto di una rete stradale con vincoli di network survivability

Un esempio di applicazione della programmazione lineare intera al progetto di una rete stradale con vincoli di network survivability Un esempio di applicazione della programmazione lineare intera al progetto di una rete stradale con vincoli di network survivability Corso di Ricerca Operativa per il Corso di Laurea Magistrale in Ingegneria

Dettagli

Possibile applicazione

Possibile applicazione p. 1/4 Assegnamento Siano dati due insiemi A e B entrambi di cardinalità n. Ad ogni coppia (a i,b j ) A B è associato un valore d ij 0 che misura la "incompatibilità" tra a i e b j, anche interpretabile

Dettagli

Esame di Ricerca Operativa del 15/01/16. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 15/01/16. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del /0/ Cognome) Nome) Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x x x x x + x x + x x x x +x Base

Dettagli

Algoritmi esatti. La teoria ci dice che per problemi difficili (come il

Algoritmi esatti. La teoria ci dice che per problemi difficili (come il p. 1/4 Algoritmi esatti La teoria ci dice che per problemi difficili (come il KNAPSACK o, ancora di più, il TSP ) i tempi di risoluzione delle istanze, calcolati tramite analisi worst-case, tendono a crescere

Dettagli

Problemi di localizzazione di servizi (Facility Location Problems)

Problemi di localizzazione di servizi (Facility Location Problems) 9. Problemi di Localizzazione di Servizi 1 Problemi di localizzazione di servizi (Facility Location Problems) Dato un insieme di clienti richiedenti una data domanda di merce e dato un insieme di possibili

Dettagli

Esame di Ricerca Operativa del 21/07/15. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 21/07/15. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del /0/ (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: min y +y + y + y + y + y y y + y y +

Dettagli

Il Branch & Bound. Definizione 1. Sia S R n. La famiglia S = {S 1, S 2,..., S k S} tale che S 1 S 2 S k = S viene detta suddivisione di S.

Il Branch & Bound. Definizione 1. Sia S R n. La famiglia S = {S 1, S 2,..., S k S} tale che S 1 S 2 S k = S viene detta suddivisione di S. Il Branch & Bound Il metodo Branch & Bound è una tecnica che permette di risolvere all ottimo un generico problema di Programmazione Lineare Intera. Tale metodo si basa su due concetti cardine: quello

Dettagli

Definizione 1.3 (Arco accoppiato) Un arco è accoppiato se è appartenente al matching M.

Definizione 1.3 (Arco accoppiato) Un arco è accoppiato se è appartenente al matching M. Matching. Definizioni Definizione. (Matching di un grafo G = (N, A)) Il matching di un grafo è un sottoinsieme M di archi tali per cui nessuna coppia di essi condivida lo stesso nodo. Definizione.2 (Matching

Dettagli

Esame di Ricerca Operativa del 28/05/14. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 28/05/14. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del /0/ Cognome) Nome) Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x x +x x x x +x x x Base Soluzione

Dettagli

FACOLTA DI ECONOMIA ESAME SCRITTO DI RICERCA OPERATIVA. Verona, 5 Febbraio , : ; ;,, trovare il punto di

FACOLTA DI ECONOMIA ESAME SCRITTO DI RICERCA OPERATIVA. Verona, 5 Febbraio , : ; ;,, trovare il punto di Verona, Febbraio 99 ) Dato il problema min( cx + cx ) x+ x x = x + x x = ax + x x = x i 0 i =,... a) dire, giustificando, per quali valori di c, c ed a in una soluzione ammissibile si ha x =x =/; la soluzione

Dettagli

Esame di Ricerca Operativa del 19/01/2016

Esame di Ricerca Operativa del 19/01/2016 Esame di Ricerca Operativa del 9/0/06 (Cognome) (Nome) (Matricola) Esercizio. Una banca offre ai suoi clienti diversi tipi di prestito: mutuo casa, credito auto, credito famiglia, che rendono un interesse

Dettagli

Algoritmo di Branch & Bound

Algoritmo di Branch & Bound Sapienza Università di Roma - Dipartimento di Ingegneria Informatica, Automatica e Gestionale Algoritmo di Branch & Bound Docente: Renato Bruni bruni@dis.uniroma.it Corso di: Ottimizzazione Combinatoria

Dettagli

Prova Scritta di RICERCA OPERATIVA. 13 Gen. 2003

Prova Scritta di RICERCA OPERATIVA. 13 Gen. 2003 Prova Scritta di RICERCA OPERATIVA 13 Gen. 003 Nome e Cognome: Esercizio 1. ( 6 punti ) Una azienda agricola coltiva mais e alleva vitelli, usando tre diversi procedimenti. Con il primo procedimento vengono

Dettagli

AMPL Problemi su Reti

AMPL Problemi su Reti Dipartimento di Matematica Università di Padova Corso di Laurea Informatica Outline Problemi su Reti Cammino Minimo Molti problemi di ottimizzazione combinatoria possono essere modellati ricorrendo ai

Dettagli

Esame di Ricerca Operativa del 08/09/17

Esame di Ricerca Operativa del 08/09/17 Esame di Ricerca Operativa del 08/09/ (Cognome) (Nome) (Numero di Matricola) Esercizio. Una dieta giornaliera consiste di tre cibi C, C e C, che vengono assunti nella quantità complessiva di 00 grammi.

Dettagli

1) Data la seguente istanza di TSP (grafo completo con 5 nodi): c 12 = 52; c 13 = 51; c 14 = 40; c 15 = 53; c 23 = 44;

1) Data la seguente istanza di TSP (grafo completo con 5 nodi): c 12 = 52; c 13 = 51; c 14 = 40; c 15 = 53; c 23 = 44; 1) Data la seguente istanza di TSP (grafo completo con 5 nodi): c 12 = 52; c 13 = 51; c 14 = 40; c 15 = 53; c 23 = 44; c 24 = 15; c 25 = 12; c 34 = 32; c 35 = 55; c 45 = 24 Si calcoli l ottimo duale (formulazione

Dettagli

Ottimizzazione Combinatoria e Reti (a.a. 2007/08)

Ottimizzazione Combinatoria e Reti (a.a. 2007/08) o Appello 6/07/008 Ottimizzazione Combinatoria e Reti (a.a. 007/08) Nome Cognome: Matricola: ) Dopo avere finalmente superato l esame di Ricerca Operativa, Tommaso è pronto per partire in vacanza. Tommaso

Dettagli

RICERCA OPERATIVA (a.a. 2011/12) Nome: Cognome: Matricola:

RICERCA OPERATIVA (a.a. 2011/12) Nome: Cognome: Matricola: 5 o Appello 8/0/0 RICERCA OPERATIVA (a.a. 0/) Nome: Cognome: Matricola: ) Si individui un albero dei cammini minimi di radice sul grafo in figura, utilizzando l algoritmo più appropriato dal punto di vista

Dettagli

Soluzione di problemi di Programmazione Lineare Intera

Soluzione di problemi di Programmazione Lineare Intera 10 Soluzione di problemi di Programmazione Lineare Intera 10.1 ESERCIZI SULLA SOLUZIONE DI PROBLEMI DI PROGRAMMAZIONE LINEARE INTERA Esercizio 10.1.1 Risolvere con il metodo del Branch and Bound il seguente

Dettagli

Esame di Ricerca Operativa del 21/06/17

Esame di Ricerca Operativa del 21/06/17 Esame di Ricerca Operativa del /0/7 (Cognome) (Nome) (Numero di Matricola) Esercizio. Un azienda vinicola produce tre qualitá di vino Q, Q, Q che vende ad un prezzo di 0E, 0E, 0E ad ettolitro, rispettivamente

Dettagli

Esame di Ricerca Operativa. x 1 +2 x 2 6 x 1 +x 2 6 x 1 4 x 1 1

Esame di Ricerca Operativa. x 1 +2 x 2 6 x 1 +x 2 6 x 1 4 x 1 1 Esame di Ricerca Operativa (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x + x x +x x 0 x + x x +x x x Base Soluzione

Dettagli

Tecniche di ottimizzazione per l analisi della diffusione delle innovazioni nei social networks

Tecniche di ottimizzazione per l analisi della diffusione delle innovazioni nei social networks Tecniche di ottimizzazione per l analisi della diffusione delle innovazioni nei social networks Matteo Secci Università degli studi di Cagliari Dipartimento di ingegneria Elettrica ed Elettronica Tesi

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Cover inequalities

Metodi e Modelli per l Ottimizzazione Combinatoria Cover inequalities Metodi e Modelli per l Ottimizzazione Combinatoria Cover inequalities L. De Giovanni M. Di Summa In questa lezione introdurremo una classe di disuguaglianze, dette cover inequalities, che permettono di

Dettagli

Indice. Premessa alla prima edizione 15 Premessa alla seconda edizione 17 Premessa alla terza edizione 19. Introduzione 21

Indice. Premessa alla prima edizione 15 Premessa alla seconda edizione 17 Premessa alla terza edizione 19. Introduzione 21 Premessa alla prima edizione 15 Premessa alla seconda edizione 17 Premessa alla terza edizione 19 Introduzione 21 Parte I Ottimizzazione continua non lineare 29 Capitolo primo Ottimizzazione monodimensionale

Dettagli