min det det Allora è unimodulare se e solo se det 1, 1, 0 per ogni sottomatrice quadrata di di qualsiasi dimensione.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "min det det Allora è unimodulare se e solo se det 1, 1, 0 per ogni sottomatrice quadrata di di qualsiasi dimensione."

Transcript

1 Se è unimodulare e è intero allora il poliedro 0 ha vertici interi. Sia un vertice di Per definizione esiste allora una base di tale che, 0 Poiché è non singolare ( invertibile det 0) si ha che det 1 è intera è intero è intero. Quindi se è unimodulare possiamo ottenere una soluzione intera del problema in forma standard risolvendo il rilassamento lineare. Se invece il problema è in forma canonica: min 0 min 0 dove è un vettori di variabili slack e è la matrice identità La matrice dei vincoli in questo caso non è più, bensì, La base, se prima era una sottomatrice di, ora deve essere una sottomatrice di ed avrà dunque alcune colonne di ed alcune colonne di ; in particolare ha: colonne di, con 0, ed colonne di. A meno di permutazioni di righe e colonne ha l aspetto det det Allora è unimodulare se e solo se det 1, 1, 0 per ogni sottomatrice quadrata di di qualsiasi dimensione.

2 Se è una matrice TUM e è intero allora = 0 ha solo vertici interi. Sia un vertice di Mostriamo che, con = è un vertice del poliedro =, 0 = Supponiamo per assurdo che non sia così, ovvero che esistano due punti distinti, e, di tali che, =, + 1, con 0 < < 1 Si noti che,, infatti Inoltre E quindi = 0 = 0,, = + 1 con 0 < < 1 Si è giunti così ad un assurdo perché non può essere un vertice di (un vertice di, per definizione, non può essere espresso come combinazione strettamente convessa di altri due punti del poliedro). Pertanto, è un vertice di. Quindi se è TUM allora =, è unimodulare e, per il teorema precedente, se, è intero allora è intero.

3 Sia una matrice con = 1, +1, 0, A è TUM se valgono le seguenti condizioni (sufficienti ma non necessarie!) 1. Ogni colonna di ha al più 2 elementi non nulli 2. Esiste una partizione, delle righe di tale che ogni colonna con 2 elementi non nulli abbia questi due elementi su righe appartenenti ad insiemi e diversi se e solo se i due elementi sono concordi in segno Bisogna mostrare che per ogni sottomatrice quadrata di qualsiasi ordine si ha che det = 1, +1, 0 Si dimostra per induzione su, dove è l ordine di ( = 1,, ) = 1 = det = 1, +1, 0 = 1 Supponiamo che per ogni di ordine 1 si abbia det 0, ±1 e dimostriamo allora che ciò vale per ogni di ordine = + 1: Dalla condizione 1 si possono verificare solo 3 casi: 1. ha una colonna di zeri det = 0 2. ha una colonna con un solo elemento diverso da zero A meno di permutazioni di righe e colonne posso scrivere in questo modo: ±1 0 0 dove è la matrice del passo 1 che per ipotesi ha det 0, ±1 det = ± det 0, ±1 3. Ogni colonna di ha 2 elementi non nulli Se esiste la partizione specificata dalla seconda condizione, consideriamo le righe di come vettori ed effettuiamo la differenza tra la somma di quelle appartenenti ad = e la somma di quelle appartenenti ad = NOTA: = 0,, 0 Le righe di sono quindi linearmente indipendenti det = 0 Essendo il teorema una condizione solamente sufficiente ma non necessaria, per mostrare che una matrice non è TUM bisogna mostrare una sottomatrice di per cui det 0, ±1. Se non è TUM significa che non è possibile identificare la partizione imposta dal secondo vincolo e dunque vi è una colonna con due elementi non nulli le cui corrispondenti righe non possono essere assegnate correttamente agli opportuni insiemi. La sottomatrice si identifica andando alla ricerca dei primi elementi che hanno indotto la partizione che genera il conflitto di assegnazione.

4 PROPOSIZIONE Se N è un cover, allora la disuguaglianza cover 1 è verificata per. Considerato un insieme di oggetti, supponiamo che esista una soluzione che non soddisfa la disuguaglianza cover, ossia tale che > 1 Si ha allora che =, cioè. = >

5 Sia connesso. Le seguenti affermazioni sono equivalenti: 1. è euleriano 2. Ogni nodo di ha grado pari 3. è ottenibile come unione di cicli disgiunti sugli archi Le 2. e 3. sono condizioni necessarie e sufficienti affinché un grafo sia euleriano. 1 2: Se è euleriano allora esiste un ciclo euleriano,,,,,,,,,,,,,, dove - = -, : nodo all interno dell -esimo ciclo euleriano in -, : arco uscente dal nodo all interno dell -esimo ciclo euleriano in Sia, il grado in del nodo,. Questo grado è ottenuto dagli archi, ed, che danno contributo 2 (sono rispettivamente l arco che precede e l arco che segue il nodo, ). Poiché, =, per qualche h, con h allora si avranno altri contributi comunque pari al grado del nodo. 2 3: Sappiamo che 2 e pari, dunque non ha nodi di grado 1. Un grafo connesso senza nodi di grado 1 non è un albero, quindi deve avere almeno un ciclo. Sia = il grafo ottenuto rimuovendo da gli archi di, allora ovvero, o : = 0 = 0 che è pari oppure = che è pari per ipotesi 3 1: Se = 0 allora è un nodo isolato. Se è costituito solo da nodi isolati allora segue la tesi, altrimenti: si considera una delle componenti connesse di in cui ogni nodo ha grado pari e maggiore o uguale a 2; esiste quindi un ciclo e sia = : se è costituito da soli nodi isolati segue la tesi altrimenti si itera il ragionamento. Siano,,, i cicli disgiunti tali che =. Consideriamo : per l ipotesi di connessione esiste almeno un con almeno un nodo in comune con (con 1). Senza perdita di generalità, supponiamo che questo ciclo sia e sia, il ciclo che si ottiene concatenando con. Dal momento che è connesso allora esiste un, con 1,2, con almeno un nodo in comune con, e sia esso : iterando si otterrà un ciclo,,, contenente tutti e soli gli archi di, che è quindi un grafo euleriano.

6 Un grafo connesso con 2 nodi di grado dispari ammette un cammino euleriano. TEOREMA Dato un grafo connesso con 2 nodi di grado dispari, l insieme degli archi può essere partizionato in sottoinsiemi,,, ognuno dei quali induce un cammino. Indichiamo con ed con = 1,, i 2 nodi del grafo di grado dispari e costruiamo =, come segue: - è l insieme dei nodi di più nodi fittizi per = 1,, - è composto dagli archi di più 2 nuovi archi che connettono i nodi ai nodi ed è euleriano, infatti esso è connesso e tutti i nodi hanno grado pari. Sia un ciclo euleriano di. attraversa tutti i nodi di ed, in particolare, ciascun è preceduto da e seguito da. Se si eliminano da i nodi ed i 2 archi incidenti su ciascuno di essi restano esattamente cammini disgiunti sugli archi che connettono nodi di grado dispari. Inoltre questi cammini contengono tutti e soli gli archi di e da qui segue la tesi. TEOREMA Se è un grafo hamiltoniano allora è 2-connesso, ovvero per ogni coppia di nodi esistono 2 cammini distinti (sui nodi) che li connettono (condizione necessaria ma non sufficiente). TEOREMA Se è completo allora è hamiltoniano.

7 Sia =, orientato. è bipartito Non esistono cicli dispari (cicli con un numero dispari di archi). Sia =,, un grafo bipartito e sia un qualsiasi ciclo in. Percorrendo a partire da un qualsiasi si passa sempre da un nodo di ad un nodo di. Tutti i nodi di che si trovano in vengono visitati dopo aver attraversato un numero dispari di archi mentre quelli di in vengono visitati dopo un numero pari di archi. Ci si può quindi ritrovare in (chiusura del ciclo) solo dopo un numero pari di archi e dunque è un ciclo pari. Supponiamo di avere un grafo senza cicli dispari e supponiamo che sia connesso (se non lo è si ripete il ragionamento che segue per ogni componente connessa di ). Consideriamo un nodo qualsiasi e calcoliamo la distanza tra ed ogni altro nodo con : sia, tale distanza (numero di archi). Viene indotta su la seguente partizione: =, =, Ora bisogna dimostrare che non esistono archi da a e da a (poiché questi andrebbero a costituire un ciclo dispari in ). Mostriamo allora che = : Supponiamo per assurdo che esista un arco tra due nodi,. Siano e i due cammini minimi che collegano rispettivamente ad e a. Sia l ultimo nodo in comune ai due cammini ( può coincidere con nel caso in cui e non abbiano nodi in comune). Consideriamo il ciclo che si forma percorrendo tra ed, l arco, e tra ed. Calcoliamo la lunghezza di : =, + 1 +, dove, indica il tratto di tra e, ma =, +, =, +, ed osservando che =,, deve necessariamente essere /,,, oppure /,,, Comunque assunti, ed,, entrambi pari o entrambi dispari, risulta in una quantità dispari. Esiste un ciclo dispari e ciò contraddice l ipotesi ( senza cicli dispari); non esistono quindi archi che connettono con. Allo stesso modo si dimostra che = e dunque è bipartito.

8 di Konig Dato un grafo bipartito =,, max = min Ovvero, la cardinalità massima di un matching è uguale alla cardinalità minima di un vertex-cover. A partire da =,, costruiamo un nuovo grafo ottenuto orientando tutti gli archi di da a, aggiungendo due nodi, e collegandoli rispettivamente con tutti i nodi di e di. Le capacità degli archi di sono pari ad - per gli archi da a - 1 per gli archi da a e da a La dimostrazione si basa su: A. Su esiste un matching di cardinalità Su esiste un flusso ammissibile da a di valore B. Su esiste un vertex cover di cardinalità Su esiste un taglio di capacità Dimostrazione A: Dato matching di cardinalità su Su un flusso ammissibile da a di valore Dato il matching di cardinalità, poniamo ad 1 il flusso di ogni arco di e sugli archi, ed, con,. Si verifica facilmente che è un flusso ammissibile (per ogni nodo accoppiato entra ed esce una unità di flusso e le capacità sono rispettate). Dato un flusso ammissibile da a di valore su Su un matching di cardinalità Sia il valore intero del flusso. In si consideri il taglio definito da. Gli archi,, con e, attraversati dal flusso costituiscono un matching: non esistono 2 archi di questo insieme che abbiano nodi in comune (altrimenti, per come sono definite le capacità, si avrebbe una violazione della conservazione del flusso). Gli archi originali attraversati da flusso 1 costituiscono un matching di cardinalità (devono essere, infatti altrimenti non si potrebbe portare tutto da a ). Dimostrazione B: Dato un vertex cover un taglio di capacità Si consideri un vertex cover ed un insieme così definito:,, ovvero tale da contenere solo gli archi di che da conducono in. Questo insieme di archi costituisce un taglio, infatti: ogni cammino da a deve attraversare uno degli archi originali e quindi, poiché è un vertex cover, deve attraversare uno degli archi di. La capacità di è pari alla sua cardinalità, cioè. Dato un taglio di capacità un vertex cover di cardinalità = Supponiamo di avere un taglio,, di capacità. Gli archi di sono solo di capacità pari ad 1 e sono del tipo,, con, e,, con. Da si costruisce : - se, - se, Ogni arco, definisce un cammino. Poiché è un taglio si possono verificare solo 2 casi:, e, e per essi si ha comunque che oppure, rispettivamente, quindi è un vertex cover.

9 Siano un matching su un grafo e un cammino aumentante: la differenza simmetrica è un matching di cardinalità + 1. Sia = - Gli archi di che non appartengono a sono in - Gli archi di che non appartengono ad sono in - Gli archi di che appartengono ad vengono esclusi da è un matching: - I nodi non toccati da non sono influenzati dalla nuova situazione - Sui nodi intermedi prima incideva un arco di, ora incide un arco di - I nodi estremi di prima erano esposti, ora sono accoppiati Sia di lunghezza 2 + 1: - archi di (archi accoppiati) archi che non appartengono ad (archi liberi) Con la differenza simmetrica gli archi liberi di entrano a far parte di, quelli accoppiati escono: = + 1.

10 Dato =,, un matching su è massimo Non esistono cammini aumentati. Se esiste un cammino aumentate allora si potrebbe aumentare la cardinalità del matching effettuando la differenza simmetrica. Supponiamo che non esistano cammini aumentati per ; dobbiamo allora dimostrare che è massimo. Supponiamo per assurdo che non sia massimo, allora h > Consideriamo = = h + h. Sia =,. ha solo nodi di grado minore o uguale a 2: - I nodi accoppiati sia in che in hanno grado 2 oppure 0 - I nodi in ma non in, e viceversa, hanno grado 1 - I nodi esposti in entrambi i matching hanno grado 0 Le componenti connesse di sono di 3 tipi: - Nodi isolati - Cicli pari - Cammini costituiti alternatamente da archi di e di Poiché > in ci sono più archi appartenenti ad che ad un cammino costituito da un numero di archi di superiore al numero di archi di inizia e termina con un arco di, ma questo tipo di cammino è aumentante per Ipotesi contraddetta è massimo.

11 Sia =, un grafo orientato e pesato sugli archi (con peso,, ) e sia =,, il grafo bipartito costruito su in modo tale che - = - =,,,, 0 Valgono per le due seguenti proprietà: 1. In c è sempre un matching perfetto di peso 0 (quello formato dagli archi, ) 2. Il matching perfetto di peso minimo in ha un valore negativo In esistono cicli negativi (idea) Supponiamo di avere in un ciclo negativo,,,,,,,, a questo ciclo si può associare in il matching =,,,,,,,,,,, A partire da un matching quindi posso costruire un ciclo.

12 di Hall Un grafo bipartito =,, ammette un matching X-perfetto (condizione di Hall), con =, h insieme dei vertici adiacenti ad i vertici in. Sia =, ovvero tutti i nodi di nel matching. Sia il compagno di nel matching. Sappiamo che: - assegna un unico nodo ad ogni - è iniettiva (!.. = ) Quindi si ha che = ed inoltre ed abbiamo così ottenuto di nuovo la condizione di Hall. Supponiamo che valga la condizione di Hall, cioè che Sia un vertex cover minimo di e sia =. Dalla definizione di vertex cover ogni arco di ha almeno un estremo in, possiamo quindi scrivere che quindi = = = + + = Dal momento che, per il teorema di Konig, = si ha = = : ammette un matching X-perfetto. NOTA Si utilizza la condizione di Hall soprattutto per mostrare che non esiste un matching perfetto su un grafo bipartito (condizione di Hall violata). TEOREMA Dato un grafo bipartito,,, su esiste sempre un matching stabile.

Matrici unimodulari e totalmente unimodulari

Matrici unimodulari e totalmente unimodulari Matrici unimodulari e totalmente unimodulari Sia una matrice intera di dimensione con, si dice unimodulare se presa una qualsiasi sottomatrice di ordine massimo (di dimensione ) vale det = 1, +1, 0. Una

Dettagli

3.3 Problemi di PLI facili

3.3 Problemi di PLI facili 3.3 Problemi di PLI facili Consideriamo un generico problema di PLI espresso in forma standard min{c t x : Ax = b, x Z n +} (1) dove A Z m n con n m, e b Z m. Supponiamo che A sia di rango pieno. Sia P

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Problema dell assegnamento e matrici totalmente unimodulari

Metodi e Modelli per l Ottimizzazione Combinatoria Problema dell assegnamento e matrici totalmente unimodulari Metodi e Modelli per l Ottimizzazione Combinatoria Problema dell assegnamento e matrici totalmente unimodulari L. De Giovanni G. Zambelli 1 Problema dell assegnamento Sia dato un grafo non orientato bipartito

Dettagli

Introduzione ai grafi

Introduzione ai grafi TFA A048 Anno Accademico 2012-13 Outline Cenni storici sui grafi Nozioni introduttive: cammini, connessione, alberi, cicli Cammini di costo minimo Origini storiche La nascita della teoria dei grafi risale

Dettagli

Formulazioni. Consideriamo il seguente problema di Knapsack 0-1. max (5x x 2. ) st 3x x 2. < 6 x {0,1} 2

Formulazioni. Consideriamo il seguente problema di Knapsack 0-1. max (5x x 2. ) st 3x x 2. < 6 x {0,1} 2 Formulazioni Consideriamo il seguente problema di Knapsack 0-1 max (5x 1 + 2x 2 ) st 3x 1 + 4x 2 < 6 x {0,1} 2 Insiemi ammissibili F = {(0, 0), (0, 1), (1, 0)} Rappresentiamo sul piano gli insiemi ammissibili.

Dettagli

Possibile applicazione

Possibile applicazione p. 1/4 Assegnamento Siano dati due insiemi A e B entrambi di cardinalità n. Ad ogni coppia (a i,b j ) A B è associato un valore d ij 0 che misura la "incompatibilità" tra a i e b j, anche interpretabile

Dettagli

Definizione 1.3 (Arco accoppiato) Un arco è accoppiato se è appartenente al matching M.

Definizione 1.3 (Arco accoppiato) Un arco è accoppiato se è appartenente al matching M. Matching. Definizioni Definizione. (Matching di un grafo G = (N, A)) Il matching di un grafo è un sottoinsieme M di archi tali per cui nessuna coppia di essi condivida lo stesso nodo. Definizione.2 (Matching

Dettagli

Matrici delle differenze finite

Matrici delle differenze finite Capitolo 8 Matrici delle differenze finite Si riportano in questo capitolo alcuni risultati e proprietà delle matrici delle differenze finite ovvero delle matrici che intervengono nel metodo delle differenze

Dettagli

Figura 1: 1) Si scriva la formulazione del problema come problema di PLI (con un numero minimo di vincoli) e la matrice dei vincoli.

Figura 1: 1) Si scriva la formulazione del problema come problema di PLI (con un numero minimo di vincoli) e la matrice dei vincoli. ESERCIZIO 1 Sia dato il grafo orientato in Figura 1. Si consideri il problema di flusso a 1 2 4 Figura 1: costo minimo su tale grafo con b 1 = 4 b 2 = 2 b = b 4 = e c 12 = 2 c 1 = 4 c 14 = 1 c 2 = 1 c

Dettagli

MATEMATICA DISCRETA CLAUDIA MALVENUTO PRIMA PROVA IN ITINERE 24 APRILE 2014

MATEMATICA DISCRETA CLAUDIA MALVENUTO PRIMA PROVA IN ITINERE 24 APRILE 2014 MATEMATICA DISCRETA CLAUDIA MALVENUTO PRIMA PROVA IN ITINERE 4 APRILE 014 1. Trovare il numero di stringhe di lunghezza n che si possono formare usando le lettere A, B, C, D, E in modo che ogni stringa

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Collegio Didattico in Ingegneria Informatica corso di Ricerca operativa 2. Esercizi sul problema dell assegnamento

UNIVERSITÀ DEGLI STUDI ROMA TRE Collegio Didattico in Ingegneria Informatica corso di Ricerca operativa 2. Esercizi sul problema dell assegnamento UNIVERSITÀ DEGLI STUDI ROMA TRE Collegio Didattico in Ingegneria Informatica corso di Ricerca operativa Esercizi sul problema dell assegnamento Richiami di Teoria Ricordiamo che, dato un grafo G=(N,A),

Dettagli

Parte IV: Matrici totalmente unimodulari

Parte IV: Matrici totalmente unimodulari Parte IV: Matrici totalmente unimodulari Formulazioni Consideriamo il seguente problema di Knapsack 0-1 max (5x 1 + 2x 2 ) st 3x 1 + 4x 2 < 6 x {0,1} 2 Insiemi ammissibili F = {(0, 0), (0, 1), (1, 0)}

Dettagli

Algoritmi Avanzati Soluzioni dello scritto del 2 febbraio 2004 (appello straordinario)

Algoritmi Avanzati Soluzioni dello scritto del 2 febbraio 2004 (appello straordinario) Algoritmi Avanzati Soluzioni dello scritto del febbraio 004 (appello straordinario) 1. Tengo nascosto nel taschino della giacca un grafo misterioso di 7 nodi. Vi dico solo che listando le valenze (= numero

Dettagli

Massimo flusso e matching

Massimo flusso e matching Capitolo Massimo flusso e matching. Problema del massimo matching. Nel problema del massimo matching è dato un grafo non orientato G(V, A); un matching in G è un insieme di archi M A tale che nessuna coppia

Dettagli

Introduzione ai grafi. Introduzione ai grafi p. 1/2

Introduzione ai grafi. Introduzione ai grafi p. 1/2 Introduzione ai grafi Introduzione ai grafi p. 1/2 Grafi Un grafo G è costituito da una coppia di insiemi (V,A) dove V è detto insieme dei nodi e A è detto insieme di archi ed è un sottinsieme di tutte

Dettagli

Grafi e reti di flusso

Grafi e reti di flusso Grafi e reti di flusso Molti problemi di ottimizzazione sono caratterizzati da una struttura di grafo: in molti casi questa struttura emerge in modo naturale, in altri nasce dal particolare modo in cui

Dettagli

Teoria della Programmazione Lineare Intera

Teoria della Programmazione Lineare Intera Teoria della Programmazione Lineare Intera Laura Galli Dipartimento di Informatica Largo B. Pontecorvo, 567 Pisa laura.galli@unipi.it http://www.di.unipi.it/~galli 7 Ottobre 0 Ricerca Operativa Laurea

Dettagli

Teoria dei Grafi Elementi di base della Teoria dei Grafi

Teoria dei Grafi Elementi di base della Teoria dei Grafi L. Pallottino, Sistemi Robotici Distribuiti - Versione del 4 Marzo 2015 42 Teoria dei Grafi Elementi di base della Teoria dei Grafi Definizione 1. Un grafo G = (V, E) è composto da un insieme finito di

Dettagli

Esercitazione 5 Network Flow

Esercitazione 5 Network Flow Esercitazione 5 Network Flow Diamo innanzitutto una definizione informale del concetto di riduzione polinomiale tra problemi: Si dice che un problema A è riducibile polinomialmente ad un problema B, se

Dettagli

Prima prova Intermedia di Ricerca Operativa 2 COMPITO A Esercizio 1 (7 punti): LIFO

Prima prova Intermedia di Ricerca Operativa 2 COMPITO A Esercizio 1 (7 punti): LIFO Prima prova Intermedia di Ricerca Operativa 2 COMPITO A 13 novembre 2015 Nome e Cognome Matricola: Esercizio 1 (7 punti): Si consideri il seguente problema di programmazione lineare intera. max 32x 1 +

Dettagli

Introduzione ai grafi. Introduzione ai grafi p. 1/2

Introduzione ai grafi. Introduzione ai grafi p. 1/2 Introduzione ai grafi Introduzione ai grafi p. 1/2 Grafi Un grafo G é costituito da una coppia di insiemi (V,A) dove V é detto insieme dei nodi e A é detto insieme di archi ed é un sottinsieme di tutte

Dettagli

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Gestione della produzione e della supply chain Logistica distributiva Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Un algoritmo per il flusso a costo minimo: il simplesso

Dettagli

RICERCA OPERATIVA (a.a. 2017/18) Nome: Cognome: Matricola:

RICERCA OPERATIVA (a.a. 2017/18) Nome: Cognome: Matricola: Sesto appello 7/7/8 RICERCA OPERATIVA (a.a. 7/8) Nome: Cognome: Matricola: ) Si risolva il seguente problema di PL applicando l algoritmo del Simplesso Duale, per via algebrica, a partire dalla base B

Dettagli

Appunti sui problemi di matching

Appunti sui problemi di matching Appunti sui problemi di matching A. Agnetis 1 Formulazione I problemi di matching (talvolta chiamati problemi di accoppiamento, o abbinamento) sono tra i più importanti e più studiati problemi di ottimizzazione

Dettagli

Ricerca Operativa. G. Liuzzi. Lunedí 20 Aprile 2015

Ricerca Operativa. G. Liuzzi. Lunedí 20 Aprile 2015 1 Lunedí 20 Aprile 2015 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR Rilassamento di un problema Rilassare un problema di Programmazione Matematica vuol dire trascurare alcuni (tutti i)

Dettagli

Esercitazione 6 Ancora sul Network Flow

Esercitazione 6 Ancora sul Network Flow Esercitazione 6 Ancora sul Network Flow Problema 14 (appello 28/09/2015) Un importante azienda di sviluppo software ha n progetti da portare a termine entro la fine dell anno. Il manager dell azienda stima

Dettagli

ESERCIZIO 1: Punto 1

ESERCIZIO 1: Punto 1 ESERCIZIO : Punto La seguente matrice è una matrice delle distanze di un istanza del problema del Commesso Viaggiatore. - - - - - - - Calcolare.Il valore del rilassamento che si ottiene determinando l

Dettagli

Gestione della produzione e della supply chain Logistica distributiva

Gestione della produzione e della supply chain Logistica distributiva Gestione della produzione e della supply chain Logistica distributiva Paolo Detti Dipartimento di Ingegneria dell Informazione e Scienze Matematiche Università di Siena Convergenza dell algoritmo Se non

Dettagli

ESERCIZIO 1. Ricordiamo il teorema di Gallai: Per ogni grafo G con n nodi si ha: μ(g)+ ρ(g) = n (2) Se inoltre G non ha nodi isolati

ESERCIZIO 1. Ricordiamo il teorema di Gallai: Per ogni grafo G con n nodi si ha: μ(g)+ ρ(g) = n (2) Se inoltre G non ha nodi isolati ESERCIZIO 1 Disegnare un grafo G = (V, E) che abbia le seguenti caratteristiche: a) G è connesso, b) G soddisfa il teorema di König, e c) α(g) + τ(g) =. ESERCIZIO 1 Ricordiamo il teorema di Gallai: er

Dettagli

APPUNTI DI TEORIA DEGLI INSIEMI. L assioma della scelta e il lemma di Zorn Sia {A i } i I

APPUNTI DI TEORIA DEGLI INSIEMI. L assioma della scelta e il lemma di Zorn Sia {A i } i I APPUNTI DI TEORIA DEGLI INSIEMI MAURIZIO CORNALBA L assioma della scelta e il lemma di Zorn Sia {A i } i I un insieme di insiemi. Il prodotto i I A i è l insieme di tutte le applicazioni α : I i I A i

Dettagli

Esempi. In R 2, le coppia (2, 5) è combinazione lineare dei vettori (0, 1) e (1, 1). Infatti:

Esempi. In R 2, le coppia (2, 5) è combinazione lineare dei vettori (0, 1) e (1, 1). Infatti: Combinazioni lineari [Abate, 4.2] Sia V uno spazio vettoriale e v 1, v 2,..., v n dei vettori di V. Diremo che un vettore w V è combinazione lineare dei vettori v 1,..., v n se esistono a 1, a 2,..., a

Dettagli

ALBERI ORIENTATI. Definizione: Albero orientato = rooted tree = grafo orientato con le seguenti proprietà: - ha un nodo fissato, detto radice (r);

ALBERI ORIENTATI. Definizione: Albero orientato = rooted tree = grafo orientato con le seguenti proprietà: - ha un nodo fissato, detto radice (r); ALBERI ORIENTATI Pagina 1 ALBERI ORIENTATI 15:05 Definizione: Albero orientato = rooted tree = grafo orientato con le seguenti proprietà: - ha un nodo fissato, detto radice (r); - per ogni nodo v, esiste

Dettagli

Se il grafo è bipartito, un accoppiamento viene anche detto assegnamento.

Se il grafo è bipartito, un accoppiamento viene anche detto assegnamento. 1. Accoppiamento Definizione. Dato un grafo (non orientato) G =(N,E), un sottoinsieme M di archi, tale che ogni nodo del grafo è incidente in al più unarcodim, viene detto accoppiamento, (matching). I

Dettagli

Lista di esercizi 11 maggio 2016

Lista di esercizi 11 maggio 2016 Lista di esercizi 11 maggio 2016 1. Determinare il numero di sequenze binarie di lunghezza n che contengano almeno una coppia di 0 consecutivi. Soluzione. Potrebbe essere utile un programma di calcolo

Dettagli

a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn mentre le variabili decisionali sono rappresentate dal vettore colonna n-dimensionale x,

a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn mentre le variabili decisionali sono rappresentate dal vettore colonna n-dimensionale x, Università degli Studi di Roma Tor Vergata Facoltà di Ingegneria Appunti dal corso di Metodi e Modelli di Ottimizzazione Discreta 1 A.A. 2018-2019 Prof. Sara Nicoloso A seconda del tipo di variabili che

Dettagli

DISPIEGAMENTO CENTRALIZZATO L ACCOPPIAMENTO PERFETTO DI PESO MINIMO IL PROBLEMA DEL SENSORI MOBILI IL PROBLEMA (1)

DISPIEGAMENTO CENTRALIZZATO L ACCOPPIAMENTO PERFETTO DI PESO MINIMO IL PROBLEMA DEL SENSORI MOBILI IL PROBLEMA (1) 1 IL PROBLEMA DEL DISPIEGAMENTO CENTRALIZZATO DI SENSORI MOBILI OVVERO L ACCOPPIAMENTO PERFETTO DI PESO MINIMO Prof. Tiziana Calamoneri Corso di Algoritmi per le reti A.A. 2010/11 2 IL PROBLEMA SENSORI

Dettagli

Esercitazione 2. Progettare un algoritmo che risolva tale problema in tempo O( E + V log V ).

Esercitazione 2. Progettare un algoritmo che risolva tale problema in tempo O( E + V log V ). Esercitazione 2 Problema 4: Dato un grafo G = (V, E) con pesi positivi sugli archi ed un insieme di k centri C = {c 1, c 2, c k } V, si richiede di partizionare l insieme V in k insiemi V 1, V 2, V k in

Dettagli

Parte IV: Rafforzamento di formulazioni e algoritmo dei piani di taglio

Parte IV: Rafforzamento di formulazioni e algoritmo dei piani di taglio Parte IV: Rafforzamento di formulazioni e algoritmo dei piani di taglio Nozioni di geometria Definizione: Un vettore y R n è combinazione conica dei vettori { 1,, k } se esistono k coefficienti reali λ

Dettagli

Il metodo del simplesso

Il metodo del simplesso Capitolo 5 Il metodo del simplesso 5. La forma standard Esercizio 5.. Porre il problema di Programmazione Lineare: in forma standard. min x +x + x + x x +x 5 x 4 x, x Si trasformano i vincoli di disuguaglianza

Dettagli

7.1 Progettare un algoritmo per costruire ciclo euleriano di un grafo non orientato.

7.1 Progettare un algoritmo per costruire ciclo euleriano di un grafo non orientato. Capitolo 7 Grafi 7.1 Progettare un algoritmo per costruire ciclo euleriano di un grafo non orientato. 7.3 Un grafo a torneo è un grafo orientato G in cui per ogni coppia di vertici x e y esiste un solo

Dettagli

Rango di una matrice e teorema di Rouché-Capelli

Rango di una matrice e teorema di Rouché-Capelli Rango di una matrice e teorema di Rouché-Capelli Sappiamo che a una matrice m n, A, è associata l applicazione lineare L A : R n R m, L A (X) = AX, X R n. Definizione 1. Lo spazio nullo di A, N (A), è

Dettagli

Algoritmo basato su cancellazione di cicli

Algoritmo basato su cancellazione di cicli Algoritmo basato su cancellazione di cicli Dato un flusso ammissibile iniziale, si costruisce una sequenza di flussi ammissibili di costo decrescente. Ciascun flusso è ottenuto dal precedente flusso ammissibile

Dettagli

1) Data la seguente istanza di TSP (grafo completo con 5 nodi): c 12 = 52; c 13 = 51; c 14 = 40; c 15 = 53; c 23 = 44;

1) Data la seguente istanza di TSP (grafo completo con 5 nodi): c 12 = 52; c 13 = 51; c 14 = 40; c 15 = 53; c 23 = 44; 1) Data la seguente istanza di TSP (grafo completo con 5 nodi): c 12 = 52; c 13 = 51; c 14 = 40; c 15 = 53; c 23 = 44; c 24 = 15; c 25 = 12; c 34 = 32; c 35 = 55; c 45 = 24 Si calcoli l ottimo duale (formulazione

Dettagli

Teoria della Programmazione Lineare Intera

Teoria della Programmazione Lineare Intera 0 Teoria della Programmazione Lineare Intera 0. INTRODUZIONE Come visto precedentemente, molti problemi particolarmente importanti dal punto di vista applicativo sono riconducibili alla soluzione di un

Dettagli

INFORMATICA AA Università degli Studi di Ferrara Facoltà di Scienze MM FF NN Corso di Laurea in «Scienze e Tecnologie per i Beni Culturali»

INFORMATICA AA Università degli Studi di Ferrara Facoltà di Scienze MM FF NN Corso di Laurea in «Scienze e Tecnologie per i Beni Culturali» Università degli Studi di Ferrara Facoltà di Scienze MM FF NN Corso di Laurea in «Scienze e Tecnologie per i Beni Culturali» AA 2010-2011 INFORMATICA Prof. Giorgio Poletti giorgio.poletti@unife.it Grafi

Dettagli

Dai ponti di Königsberg al postino cinese

Dai ponti di Königsberg al postino cinese Dai ponti di Königsberg al postino cinese Mauro Passacantando Dipartimento di Informatica Largo B. Pontecorvo, Pisa mpassacantando@di.unipi.it M. Passacantando TFA 2012/1 - Corso di Ricerca Operativa Università

Dettagli

Ottimizzazione Combinatoria Proprietà dei Grafi. Ottimizzazione Combinatoria

Ottimizzazione Combinatoria Proprietà dei Grafi. Ottimizzazione Combinatoria Ottimizzazione Combinatoria Ottimizzazione Combinatoria Proprietà dei Grafi ANTONIO SASSANO Università di Roma La Sapienza Dipartimento di Informatica e Sistemistica Corso di Laurea in Ingegneria Gestionale

Dettagli

Preparazione orale analisi numerica:

Preparazione orale analisi numerica: Preparazione orale analisi numerica: CAPITOLO Errori (1): Ricavare il coefficiente di amplificazione: Sviluppare la serie di Taylor su di centro CAPITOLO Gerschgorin (4): Primo teorema di Gershgorin (Massimizzare

Dettagli

Esame di Ricerca Operativa - 18 aprile 2007 Facoltà di Ingegneria - Udine - CORREZIONE -

Esame di Ricerca Operativa - 18 aprile 2007 Facoltà di Ingegneria - Udine - CORREZIONE - Esame di Ricerca Operativa - 18 aprile 007 Facoltà di Ingegneria - Udine - CORREZIONE - Problema 1 (4 punti): Una raffineria miscela 4 tipi di petrolio greggio in diverse proporzioni per ottenere 3 diversi

Dettagli

Esercizi di Programmazione Lineare

Esercizi di Programmazione Lineare Esercizi di Programmazione Lineare 1 di Base: Forma Matriciale Si consideri il poliedro P = {x R 3 : Ax b} in cui: 1 0 1 2 A = 1 1 0 0 1 1, b = 1 4 1 1 1 3, x 1 = 1 2 + 3 2 + 5 2 x 2 = I vettori x 1 e

Dettagli

Soluzione. 2.1 Pianificazione multiperiodo della produzione energetica

Soluzione. 2.1 Pianificazione multiperiodo della produzione energetica Soluzione. Pianificazione multiperiodo della produzione energetica a) Diamo una prima formulazione nonlineare del problema. Insiemi T :insiemedeiperiodiditempo S = {,, 3}: insieme degli indici dei range

Dettagli

GE460 - Teoria dei grafi. Soluzioni esame del 28 Gennaio 2013

GE460 - Teoria dei grafi. Soluzioni esame del 28 Gennaio 2013 GE460 - Teoria dei grafi Soluzioni esame del 28 Gennaio 2013 Problema 1. (1.a) Sia G un grafo connesso p-regolare e G G un suo sottografo. Vero o falso: Se G è p-regolare allora G = G. Soluzione Vero.

Dettagli

Parte V: Rilassamento Lagrangiano

Parte V: Rilassamento Lagrangiano Parte V: Rilassamento Lagrangiano Tecnica Lagrangiana Consideriamo il seguente problema di Programmazione Lineare Intera: P 1 min c T x L I Ax > b Cx > d x > 0, intera in cui A = matrice m x n C = matrice

Dettagli

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria. Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo

Dettagli

Ottimizzazione su grafi: massimo flusso (parte 1) Ottimizzazione su grafi:massimo flusso (parte 1) p. 1/33

Ottimizzazione su grafi: massimo flusso (parte 1) Ottimizzazione su grafi:massimo flusso (parte 1) p. 1/33 Ottimizzazione su grafi: massimo flusso (parte 1) Ottimizzazione su grafi:massimo flusso (parte 1) p. 1/33 Ottimizzazione su grafi:massimo flusso (parte 1) p. 2/33 Reti di flusso Una rete di flusso è una

Dettagli

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria. Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo

Dettagli

I Appello Ricerca Operativa 2 bis Compito A

I Appello Ricerca Operativa 2 bis Compito A I Appello Ricerca Operativa 2 bis Compito A Cognome e nome:. Esercizio 1. Si consideri il problema del matching di cardinalità massima in un grafo G ed il suo problema di decisione associato: esiste un

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA II Parziale - Compito B 3/05/005 A. A. 004 005 ) Risolvere il seguente sistema

Dettagli

04 - Logica delle dimostrazioni

04 - Logica delle dimostrazioni Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 04 - Logica delle dimostrazioni Anno Accademico 013/014 D. Provenzano,

Dettagli

G è 2-colorabile se ogni nodo può essere colorato di bianco o di nero in modo che nodi connessi da archi siano colorati con colori distinti.

G è 2-colorabile se ogni nodo può essere colorato di bianco o di nero in modo che nodi connessi da archi siano colorati con colori distinti. Grafi Grafi bipartiti Un grafo non orientato G è bipartito se l insieme dei nodi può essere partizionato in due sottoinsiemi disgiunti tali che nessun arco del grafo connette due nodi appartenenti allo

Dettagli

Matroidi, algoritmi greedy e teorema di Rado

Matroidi, algoritmi greedy e teorema di Rado Matroidi, algoritmi greedy e teorema di Rado per il corso di Laboratorio di Algoritmi e Ricerca Operativa Dott. Alberto Leporati / Prof.ssa Enza Messina Dipartimento di Informatica, Sistemistica e Comunicazione

Dettagli

3.6 Metodi basati sui piani di taglio

3.6 Metodi basati sui piani di taglio 3.6 Metodi basati sui piani di taglio Problema generale di Programmazione Lineare Intera (PLI) con A matrice m n e b vettore n 1 razionali min{ c t x : x X = {x Z n + : Ax b} } Sappiamo che esiste una

Dettagli

02 - Logica delle dimostrazioni

02 - Logica delle dimostrazioni Università degli Studi di Palermo Facoltà di Economia Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 0 - Logica delle dimostrazioni Anno Accademico 015/016

Dettagli

Corso di Laurea in Matematica per l Informatica e la Comunicazione Scientifica

Corso di Laurea in Matematica per l Informatica e la Comunicazione Scientifica Corso di Laurea in Matematica per l Informatica e la Comunicazione Scientifica Soluzione del compito di Matematica Discreta 1 del 7 novembre 003 1. Sia S un sottoinsieme di V = Z 9 e si consideri la famiglia

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA II Parziale - Compito C 3/5/25 A. A. 24 25 ) Risolvere il seguente sistema

Dettagli

Teorema 1. Il problema AP è N P-complete.

Teorema 1. Il problema AP è N P-complete. (Dalla prova scritta d esame del 18/12/2006.) Si consideri il seguente problema AssegnazioneProgetto (AP). Input: un insieme, P, di n persone, ed un insieme V di m vincoli. Ogni vincolo ha la forma k#(l

Dettagli

Soluzione. V : insieme dei nodi del grafo A: insieme degli archi del grafo K: insieme degli indici delle coppie di origine-destinazione (s k,t k )

Soluzione. V : insieme dei nodi del grafo A: insieme degli archi del grafo K: insieme degli indici delle coppie di origine-destinazione (s k,t k ) Soluzione.1 Progetto di rete con capacità a) Diamo la seguente formulazione del problema: Insiemi V : insieme dei nodi del grafo A: insieme degli archi del grafo K: insieme degli indici delle coppie di

Dettagli

Proprietà e strutture dei grafi

Proprietà e strutture dei grafi Capitolo 3 Proprietà e strutture dei grafi 3.1 Strutture dati per la rappresentazione di grafi La performance di un algoritmo su grafo dipende non solo dall algoritmo stesso, così come è stato descritto

Dettagli

Introduzione alla Teoria dei Grafi

Introduzione alla Teoria dei Grafi Sapienza Uniersità di Roma - Dipartimento di Ingegneria Informatica, Automatica e Gestionale Introduzione alla Teoria dei Grafi Docente: Renato Bruni bruni@dis.uniroma1.it Corso di: Ottimizzazione Combinatoria

Dettagli

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n NOTE DI ALGEBRA LINEARE 2- MM 9 NOVEMBRE 2 Combinazioni lineari e generatori Sia K un campo e V uno spazio vettoriale su K Siano v,, v n vettori in V Definizione Un vettore v V si dice combinazione lineare

Dettagli

Fattorizzazione QR e matrici di Householder

Fattorizzazione QR e matrici di Householder Fattorizzazione QR e matrici di Householder ottobre 009 In questa nota considereremo un tipo di fattorizzazione che esiste sempre nel caso di matrici quadrate non singolari ad entrate reali. Definizione

Dettagli

Flusso di costo minimo

Flusso di costo minimo Flusso di costo minimo Un grafo G = (N,A) è una coppia di insiemi: N, di cardinalità finita, i nodi, ed A, sottoinsieme del prodotto cartesiano N N, gli archi. N = {,,,} e A = {(,),(,),(,),(,),(,)} è rappresentato

Dettagli

Programmazione Lineare Intera: Piani di Taglio

Programmazione Lineare Intera: Piani di Taglio Programmazione Lineare Intera: Piani di Taglio Andrea Scozzari a.a. 2014-2015 April 22, 2015 Andrea Scozzari (a.a. 2014-2015) Programmazione Lineare Intera: Piani di Taglio April 22, 2015 1 / 23 Programmazione

Dettagli

Corso di GEOMETRIA Dipartimento di Ingegneria ed Architettura Università degli Studi di Trieste Prof. Fabio Perroni. 5. Rango

Corso di GEOMETRIA Dipartimento di Ingegneria ed Architettura Università degli Studi di Trieste Prof. Fabio Perroni. 5. Rango Corso di GEOMETRIA Dipartimento di Ingegneria ed Architettura Università degli Studi di Trieste Prof Fabio Perroni 5 Rango Definizione 1 Sia A M m,n (K) una matrice m n a coefficienti nel campo K Il rango

Dettagli

Prof. Giorgio Poletti

Prof. Giorgio Poletti Prof. Giorgio Poletti giorgio.poletti@unife.it «I computer danno esattamente quello che gli è stato immesso; se futilità immettiamo, futilità otterremo, ma gli uomini non sono molto diversi.» Richard Bandlerer

Dettagli

A titolo di esempio proponiamo la risoluzione del sistema sia con il metodo della matrice inversa sia con il metodo di Cramer.

A titolo di esempio proponiamo la risoluzione del sistema sia con il metodo della matrice inversa sia con il metodo di Cramer. ) Trovare le soluzioni del seguente sistema lineare: x+ y+ z = 3x y + z = 0 x + 5y 4z = 5 Osserviamo in primo luogo che il sistema dato è un sistema quadrato di tre equazioni in tre incognite, precisamente

Dettagli

Lezione 3 - Teoria dei Numeri

Lezione 3 - Teoria dei Numeri Lezione 3 - Teoria dei Numeri Problema 1 Determinare il più piccolo numero primo p che divide Q(n) = n 2 + n + 23 per qualche n intero. Soluzione: Osserviamo che Q(1) = 25, quindi p può essere 2, 3 oppure

Dettagli

RICERCA OPERATIVA (a.a. 2018/19)

RICERCA OPERATIVA (a.a. 2018/19) Secondo appello //9 RICERCA OPERATIVA (a.a. 8/9) Nome: Cognome: Matricola: ) Si consideri il seguente problema di PL: min y + y y y y y = y + y y = y, y, y, y Si verifichi se la soluzione ȳ =,,, sia ottima

Dettagli

Programmazione Matematica / A.A Soluzioni di alcuni esercizi

Programmazione Matematica / A.A Soluzioni di alcuni esercizi Programmazione Matematica / A.A. 7-8 Soluzioni di alcuni esercizi Esercizi - I. Aggiungiamo al problema una variabile v, e richiediamo che v soddisfi v n a ij x j b i. j= Fissato x, il minimo v che soddisfa

Dettagli

Geometria della Programmazione Lineare

Geometria della Programmazione Lineare Capitolo 2 Geometria della Programmazione Lineare In questo capitolo verranno introdotte alcune nozioni della teoria dei poliedri che permetteranno di cogliere gli aspetti geometrici della Programmazione

Dettagli

Grafi Stessa distanza

Grafi Stessa distanza Grafi Stessa distanza In un grafo orientato G, dati due nodi s e v, si dice che: v è raggiungibile da s se esiste un cammino da s a v; la distanza di v da s è la lunghezza del più breve cammino da s a

Dettagli

1 Addendum su Diagonalizzazione

1 Addendum su Diagonalizzazione Addendum su Diagonalizzazione Vedere le dispense per le definizioni di autovettorre, autovalore e di trasformazione lineare (o matrice) diagonalizzabile. In particolare, si ricorda che una condizione necessaria

Dettagli

Sviluppando ancora per colonna sulla prima colonna della prima matrice e sulla seconda della seconda matrice si ottiene:

Sviluppando ancora per colonna sulla prima colonna della prima matrice e sulla seconda della seconda matrice si ottiene: M. CARAMIA, S. GIORDANI, F. GUERRIERO, R. MUSMANNO, D. PACCIARELLI RICERCA OPERATIVA Isedi Esercizi proposti nel Cap. 5 - Soluzioni Esercizio 5. - La norma Euclidea di è 9 6 5 - Il versore corrispondente

Dettagli

Il teorema di dualità forte

Il teorema di dualità forte Complementi di Algoritmi e Strutture Dati Il teorema di dualità forte Docente: Nicolò Cesa-Bianchi versione 13 maggio 2018 Ricordiamo la formulazione del problema di programmazione lineare nella sua forma

Dettagli

Certificati dei problemi in NP

Certificati dei problemi in NP Certificati dei problemi in NP La stringa y viene in genere denominata un certificato Un Certificato è una informazione ausiliaria che può essere utilizzata per verificare in tempo polinomiale nella dimensione

Dettagli

r 2 r 2 2r 1 r 4 r 4 r 1

r 2 r 2 2r 1 r 4 r 4 r 1 SPAZI R n 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x, y, z)

Dettagli

Dimostrazione. Indichiamo con α e β (finiti o infiniti) gli estremi dell intervallo I. Poniamo

Dimostrazione. Indichiamo con α e β (finiti o infiniti) gli estremi dell intervallo I. Poniamo C.6 Funzioni continue Pag. 114 Dimostrazione del Corollario 4.25 Corollario 4.25 Sia f continua in un intervallo I. Supponiamo che f ammetta, per x tendente a ciascuno degli estremi dell intervallo, iti

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 4: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 4: soluzioni Corso di Geometria - BIAR, BSIR Esercizi : soluzioni Esercizio. Sono dati i seguenti sistemi lineari omogenei nelle incognite x, y, z: { x + y z = x + y z = x + y z = S : x y + z =, S :, S 3 : x 3y =,

Dettagli

A T x b x 0. che chiameremo problema primale, possiamo associare ad esso un altro problema di PL, detto problema duale, definito come segue.

A T x b x 0. che chiameremo problema primale, possiamo associare ad esso un altro problema di PL, detto problema duale, definito come segue. 1 Dualitá Dato un problema di PL in forma canonica max c T x A T x b x 0 che chiameremo problema primale, possiamo associare ad esso un altro problema di PL, detto problema duale, definito come segue min

Dettagli

Quinto appello 27/6/ = 4. B b B = 2 b N = 4

Quinto appello 27/6/ = 4. B b B = 2 b N = 4 Quinto appello // RICERCA OPERATIVA (a.a. /) Nome: Cognome: Matricola: ) Si risolva il problema di PL dato applicando l algoritmo del Simplesso Duale, per via algebrica, a partire dalla base B {, }. Per

Dettagli

Algebra Proff. A. D Andrea e P. Papi Primo scritto

Algebra Proff. A. D Andrea e P. Papi Primo scritto Algebra Proff. A. D Andrea e P. Papi Primo scritto 6 febbraio 8 Nome e Cognome: Numero di Matricola: Esercizio Punti totali Punteggio 6 6 3 6 4 6 5 6 otale 3 Occorre motivare le risposte. Una soluzione

Dettagli

5.2 IL TEOREMA FONDAMENTALE DELLA PROGRAMMAZIONE LINEARE

5.2 IL TEOREMA FONDAMENTALE DELLA PROGRAMMAZIONE LINEARE 94 TEORIA DELLA PROGRAMMAZIONE LINEARE 5.2 IL TEOREMA FONDAMENTALE DELLA PROGRAMMAZIONE LINEARE Quanto fino ad ora esaminato permette di enunciare e dimostrare un risultato di fondamentale importanza che

Dettagli

min 2x 1 +4x 2 2x 3 +2x 4 x 1 +4x 2 +2x 3 + x 4 =6 2x 1 + x 2 +2x 3 + x 5 =3 x 0.

min 2x 1 +4x 2 2x 3 +2x 4 x 1 +4x 2 +2x 3 + x 4 =6 2x 1 + x 2 +2x 3 + x 5 =3 x 0. 5 IL METODO DEL SIMPLESSO 6.4 IL METODO DEL SIMPLESSO In questo paragrafo sono riportati alcuni esercizi risolti sul metodo del simplesso. Alcuni sono risolti utilizzando la procedura di pivot per determinare,

Dettagli

Esercizi di Programmazione Lineare

Esercizi di Programmazione Lineare Esercizi di Programmazione Lineare 1 grafica Si consideri il seguente problema di programmazione lineare: max 3x 1 + 2x 2 s.t. + 2x 1 + x 2 4 2x 1 + x 2 2 + x 1 x 2 1 x 1, x 2 0 a) Risolvere il problema

Dettagli

Richiami di Teoria dei Grafi. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Richiami di Teoria dei Grafi. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Richiami di Teoria dei Grafi Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Teoria dei grafi La Teoria dei Grafi costituisce, al pari della Programmazione Matematica, un corpo

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I)

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I) Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I) Luigi De Giovanni Giacomo Zambelli 1 Problemi di programmazione lineare Un problema

Dettagli

Esempio. L immagine di f è l insieme dei vettori w = (w 1, w 2 ) R 2 che hanno w 1 = w 2. Quindi:

Esempio. L immagine di f è l insieme dei vettori w = (w 1, w 2 ) R 2 che hanno w 1 = w 2. Quindi: Nucleo, immagine e loro proprietà [Abate, 5.2] Data una applicazione lineare f : V W, chiamiamo nucleo di f l insieme N(f) := { v V : f(v) = 0 W } Se S V è un sottoinsieme del dominio, indichiamo con f(s)

Dettagli

( ) le colonne della matrice dei coefficienti, con. , risulta A 3 = A 1 + 4A 2 + 4A 5, A 4 = A 1 + A 2,

( ) le colonne della matrice dei coefficienti, con. , risulta A 3 = A 1 + 4A 2 + 4A 5, A 4 = A 1 + A 2, 1 Elementi di Analisi Matematica e Ricerca Operativa prova del 6 luglio 2016 1) Discutere il seguente problema di Programmazione Lineare: Trovare il massimo di p x 1, x 2, x 3, x 4 # x 2 + 4 x 3 + x 4

Dettagli

ALGEBRA I: ASSIOMI DI PEANO E PROPRIETÀ DEI NUMERI NATURALI

ALGEBRA I: ASSIOMI DI PEANO E PROPRIETÀ DEI NUMERI NATURALI ALGEBRA I: ASSIOMI DI PEANO E PROPRIETÀ DEI NUMERI NATURALI 1. GLI ASSIOMI DI PEANO Come puro esercizio di stile voglio offrire una derivazione delle proprietà elementari dei numeri naturali e delle operazioni

Dettagli

ESERCIZI SULLA TECNICA BACKTRACKING e BRANCH & BOUND

ESERCIZI SULLA TECNICA BACKTRACKING e BRANCH & BOUND ESERCIZI SULLA TECNICA BACKTRACKING e BRANCH & BOUND 1. [ STRINGHE] Scrivere in pseudo-codice una procedura che, preso in input un intero n, stampi tutte le stringhe di lunghezza minore o uguale ad n sull

Dettagli