Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena"

Transcript

1 Gestione della produzione e della supply chain Logistica distributiva Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

2 Un algoritmo per il flusso a costo minimo: il simplesso Convergenza dell algoritmo Se non si impongono particolari condizioni su come scegliere gli archi entranti ed uscenti, il simplesso può non terminare in un numero finito di iterazioni Il problema si ha in caso di degenerazione: l operazione di passare da un albero ricoprente ad un altro è detta operazione di pivot. Un operazione di pivot si dice degenere se l incremento di flusso nel ciclo di pivot è. Si noti che ciò può accadere solo se l albero ricoprente è degenere (non tutti gli archi nell albero sono liberi). In questi casi, l algoritmo potrebbe entrare in un ciclo infinito di operazioni di pivot degeneri.

3 Un algoritmo per il flusso a costo minimo: il simplesso Convergenza dell algoritmo Ad ogni ciclo di pivot non degenere il valore della funzione obiettivo diminuisce di c kl δ, dove (k,l) è l arco entrante, c kl il suo costo ridotto e δ> l incremento (o decremento) di flusso lungo il ciclo. Per cui, se il problema ha soluzione ottima finita, il numero di cicli di pivot non degeneri è finito e l algoritmo termina. Il numero di cicli di pivot degeneri può essere però infinito.

4 Un algoritmo per il flusso a costo minimo: il simplesso Convergenza dell algoritmo Questo fenomeno di ciclaggio può essere evitato se durante l algoritmo si utilizzano particolari alberi ricoprenti chiamati alberi ricoprenti fortemente connessi (strongly feasible spanning trees) Definizioni (equivalenti) di albero ricoprente fortemente connesso:. Un albero ricoprente è fortemente connesso se ogni arco con flusso uguale al lower bound punta verso il nodo radice (nodo ) e se ogni arco con flusso uguale all upper bound punta in verso opposto. Un albero ricoprente è fortemente connesso se a partire da ogni nodo è possibile inviare un flusso positivo verso il nodo radice utilizzando solo gli archi dell albero e senza violare i bound sugli archi.

5 Un algoritmo per il flusso a costo minimo: il simplesso Definizioni (equivalenti) di albero ricoprente fortemente connesso. Un albero ricoprente è fortemente connesso se ogni arco con flusso uguale al lower bound punta verso il nodo radice (nodo ) e se ogni arco con flusso uguale all upper bound punta in verso opposto. Un albero ricoprente è fortemente connesso se a partire da ogni nodo è possibile inviare un flusso positivo verso il nodo radice utilizzando solo gli archi dell albero e senza violare i bound sugli archi. (,3) (,) (3,3) 3 4 (3,6) (,3) 6 (3,4) (,) i (x i, u i ), l i = albero non fortemente connesso (,) (,) (3,) 3 4 (6,6) (,3) (,4) 7 8 (4,6) (,) 9 6 7

6 Un algoritmo per il flusso a costo minimo: il simplesso Supponendo che fra ogni coppia di nodi esista un cammino diretto in cui ogni arco ha capacità infinita e scegliendo una struttura ad albero iniziale T nel modo seguente: aggiungi in T l arco (, ) a capacità infinita, se il nodo è un nodo fornitore (a()>) o di transito a()=b()= con un flusso pari a a() aggiungi in T l arco (, ) a capacità infinita, se il nodo è un nodo domanda (b()>) con un flusso pari a b() inserisci tutti gli altri archi nell insieme L (a flusso nullo) l insieme U è vuoto si ottiene un albero ricoprente fortemente connesso Si noti che un albero ricoprente non degenere è fortemente connesso

7 Un algoritmo per il flusso a costo minimo: il simplesso Durante un operazione di pivot, la seguente regola di selezione dell arco uscente dall albero permette di passare da un albero ricoprente fortemente connesso ad un altro Selezione arco uscente L arco uscente da selezionare è l ultimo arco blocking incontrato visitando il ciclo di pivot secondo l orientamento del ciclo a partire dal nodo apice (,3) (,) (3,3) 3 4 (3,6) (,3) 6 (3,4) (,) i (x i, u i ), l i = (,3) (,) (3,3) 3 4 (3,6) (,3) 6 (3,4) (,) Nodo apice Ciclo di pivot (degenere) 7 8 (4,6) (,) (4,6) (,) 9 (,)

8 Un algoritmo per il flusso a costo minimo: il simplesso Selezione arco uscente L arco uscente da selezionare è l ultimo arco blocking incontrato visitando il ciclo di pivot secondo l orientamento del ciclo a partire dal nodo apice (nodo del ciclo più vicino al nodo radice) i (x i, u i ) (,3) (,) (4,6) (3,3) 3 4 (3,6) (,3) (,) (3,4) (,) (,) Nodo apice Ciclo di pivot (degenere) archi blocking: (,3) e (7,) arco selezionato: (7,) Il flusso lungo il ciclo non varia

9 Un algoritmo per il flusso a costo minimo: il simplesso Il nuovo albero ricoprente è fortemente connesso. Infatti: i (x i, u i ) (,3) (4,6) (3,3) 3 4 (3,6) W Nodo apice (,3) W k (,) l (3,4) 6 (,) (,) Archi di W : poiché (,7) è l ultimo arco blocking è possibile inviare flusso positivo sugli archi di W verso il nodo radice Per gli archi di W valgono le seguenti considerazioni: ) Se il ciclo di pivot non era degenere, allora è stato inviato un flusso positivo lungo gli archi di W. Tale flusso può ora essere rinviato indietro verso il nodo radice; ) Se il ciclo di pivot era degenere, allora nessun flusso è stato modificato nel ciclo (e nell albero). Quindi se prima dagli archi di W si poteva inviare flusso positivo verso la radice, lo si può fare anche ora. c.d.d.

10 Un algoritmo per il flusso a costo minimo: il simplesso Convergenza dell algoritmo Ad ogni ciclo di pivot non degenere il valore della funzione obiettivo diminuisce di c kl δ dove (k,l) è l arco entrante e δ> l incremento di flusso lungo il ciclo. Per cui se il problema ha soluzione ottima finita, il numero di cicli di pivot non degeneri è finito Con alberi ricoprenti fortemente connessi, è possibile mostrare che il numero di cicli di pivot degeneri, che si hanno tra due cicli di pivot non degeneri, è finito.

11 Un algoritmo per il flusso a costo minimo: il simplesso Convergenza dell algoritmo Supponiamo che l arco entrante (k,l) abbia c kl <, e che entri con un valore del flusso pari al lower bound generando un ciclo di pivot degenere. Poiché l albero di partenza è fortemente connesso, posso inviare flusso, attraverso gli archi dell albero, da ogni nodo verso la radice. i (x i, u i ) (,3) (,) (4,6) (3,3) 3 4 (3,6) (,3) (,) k l (3,4) (,) (,) Nodo apice Di conseguenza, se il ciclo è degenere, l arco (blocking) uscente deve trovarsi necessariamente tra il nodo apice ed il nodo k. Nell esempio, esce l arco (7,).

12 Un algoritmo per il flusso a costo minimo: il simplesso Convergenza dell algoritmo Si noti che, la rimozione dell arco (7,) partiziona i nodi dell albero di partenza in due sottoalberi: T ={,,3,4,,6,8,} che contiene la radice e T ={7,9}. i (x i, u i ) (,3) (,) (4,6) (3,3) 3 4 (3,6) (,3) (,) k l (3,4) (,) (,) Calcolo dei nuovi potenziali ai nodi: c ' i, i, π = c π( i) + ( ) = ( i, ) T La preservazione della condizione π( ) = Implica che i potenziali dei nodi in T non cambino, mentre i potenziali dei nodi in T subiscono una riduzione di c kl = c 9,. Dato che c 9, <: prima dell'aggiunta dell'arco (9,): π(9) = c 9, + π() c ' 9, dopo: c ' 9, = c 9, π(9) + π() = π(9) = c 9, + π() prima dell'aggiunta dell'arco (9,): π(7) = c 9,7 + π(9) = c 9,7 + c 9, + π() c ' 9, dopo: π(7) = c 9,7 + π(9) = c 9,7 + c 9, + π()

13 Un algoritmo per il flusso a costo minimo: il simplesso Convergenza dell algoritmo In ogni ciclo degenere con c kl <, quindi, i potenziali dei nodi possono solo diminuire. Dato che il potenziale di un nodo è un valore intero e non può scendere sotto nc, con C = max e n= V, abbiamo che il numero ( i, ) A { ci, } di cicli degeneri è finito. i (x i, u i ) (,3) (3,3) (3,6) (,3) 3 4 (3,4) 6 (,) (,) 7 8 (4,6) (,) 9 (,) k l Si può dimostrare infatti che se π( ) =, il potenziale del nodo k rappresenta il costo per inviare una unità di flusso dal nodo al nodo k lungo gli archi dell albero. Tale valore non può essere inferiore ad nc.

14 Un algoritmo per il flusso a costo minimo: il simplesso Convergenza dell algoritmo L argomento si può applicare anche se l arco entrante (k,l) ha c kl >, ed entra con un valore del flusso pari all upper bound, generando un ciclo di pivot degenere. In questo caso il ragionamento si può ripetere invertendo il senso di percorrenza del ciclo. i (x i, u i ) (,3) (3,3) (3,6) (,3) 3 4 (3,4) Anche in questo caso si dimostra che i potenziali dei nodi possono solo diminuire. 6 (,) (,) 7 8 (4,6) (,) 9 (,) k l

15 Un algoritmo per il flusso a costo minimo: il simplesso Complessità del simplesso Sebbene non esista una versione polinomiale del simplesso, esistono delle varianti dell algoritmo, come il simplesso duale (che impiega O(m 3 log n) operazioni, con m= A e n= V ), che sono polinomiali nella dimensione dell istanza. Esistono inoltre molti altri algoritmi che consentono di risolvere un problema di flusso a costo minimo in tempo polinomiale.

16 Un algoritmo per il flusso a costo minimo: il simplesso Connessioni con l algoritmo del simplesso per la Programmazione Lineare un problema di flusso a costo minimo può formularsi come il problema di PL, P: minc T x Ax x x L algoritmo del simplesso passa da una soluzione di base (vertice del poliedro) ad un altra fin quando non raggiunge una soluzione ottima (se esiste). Una soluzione di base per P è definita da tre insiemi (H, L, U) dove: - H è l insieme delle variabili in base; - L è l insieme delle variabili fuori base, il cui valore è pari al lower bound; - U è l insieme delle variabili fuori base, il cui valore è pari all upper bound. = u l b

17 Un algoritmo per il flusso a costo minimo: il simplesso Connessioni con l algoritmo del simplesso per la Programmazione Lineare E possibile mostrare la corrispondenza uno-ad-uno tra soluzioni di base e alberi ricoprenti della rete G Ogni colonna della matrice A è associata ad un arco di G ed è della forma A i = e i e dove =... Si noti che le righe di A sono linearmente dipendenti, la matrice A ha quindi al massimo rango V - (e faremo vedere che se G è connesso ha esattamente rango V -) e i

18 Un algoritmo per il flusso a costo minimo: il simplesso Corrispondenza tra alberi ricoprenti di G e soluzioni di base della matrice A Sia T un albero ricoprente di G 3 4 B = (,) (3,) (3,) (,4) 3 4 Ordiniamo i nodi (cioè, le righe della matrice) secondo l ordine inverso dato dalla visita in profondità dell albero (a partire dal nodo radice). Si noti che in tale ordinamento ogni nodo appare prima dei suoi predecessori. Gli archi sono ordinati visitando i nodi secondo l ordinamento sopra riportato, e, per ogni nodo, selezionando l unico arco incidente ad esso sul cammino verso il nodo radice

19 Un algoritmo per il flusso a costo minimo: il simplesso 3 4 B = 3 4 (,) (3,) (3,) (,4) Nuovo ordinamento dei nodi: Nuovo ordinamento degli archi: (,4) - (,) - (3,) - (3,) Nota: la matrice B (B senza la riga ) è una matrice triangolare inferiore B ' = 4 3 (,4) (,) (3,) (3,)

20 Un algoritmo per il flusso a costo minimo: il simplesso Il procedimento vale in generale Le righe e le colonne di una matrice di incidenza nodi-archi relativa ad un albero ricoprente possono essere riordinate per ottenere una matrice triangolare inferiore. Infatti: Sia T un albero ricoprente, sia i un nodo e sia il predecessore di i nel cammino minimo dalla radice al nodo. Supponiamo che (i,) sia in T (supponiamo che (,i) sia in T ). L ordinamento dei nodi assicura che è visitato dopo i. Quindi, la colonna A i, avrà (avrà -) in riga r, corrispondente al nodo i, ed un - (un ) in una riga dopo r, corrispondente al nodo. c.d.d. Il determinante di una matrice triangolare inferiore è pari al prodotto degli elementi della diagonale principale (che nel nostro caso sono o ) Quindi: det( B' ) = ± cioè, B è una base di A

21 Un algoritmo per il flusso a costo minimo: il simplesso Corrispondenza tra soluzioni di base della matrice A e alberi ricoprenti di G Data una soluzione di base, sia B la base di A corrispondente. Ogni base B di A ha V - colonne che corrispondono ad V - archi di G Sia G il sottografo di G formato da questi V - archi. Per assurdo, supponiamo che G contenga un ciclo W. Dato un senso di percorrenza del ciclo, sia W l insieme degli archi concordi e sia W l insieme degli archi discordi con tale senso di percorrenza. Si ha A i, A i, (i, ) W (i, ) W = (e i e ) (e i e ) = (i, ) W (i, ) W Che è assurdo perché le colonne di B sono linearmente Indipendenti. Quindi, una base di A corrisponde ad un albero ricoprente. Esempio: (,) + (,4) (3,4) (,3) = 3 4

Gestione della produzione e della supply chain Logistica distributiva

Gestione della produzione e della supply chain Logistica distributiva Gestione della produzione e della supply chain Logistica distributiva Paolo Detti Dipartimento di Ingegneria dell Informazione e Scienze Matematiche Università di Siena Convergenza dell algoritmo Se non

Dettagli

Convergenza del Simplesso e regole anti-ciclaggio

Convergenza del Simplesso e regole anti-ciclaggio Convergenza del Simplesso e regole anti-ciclaggio degenerazione e ciclaggio un esempio di ciclaggio regole anti-ciclaggio rif. Fi 3.2.6, BT 3.4 (Esempio 3.6), BT 3.7; Degenerazione e ciclaggio ( ) n n!

Dettagli

Convergenza del Simplesso e regole anti-ciclaggio

Convergenza del Simplesso e regole anti-ciclaggio Convergenza del Simplesso e regole anti-ciclaggio degenerazione e ciclaggio un esempio di ciclaggio regole anti-ciclaggio rif. Fi 3.2.6, BT 3.4 (Esempio 3.6), BT 3.7; Sulla convergenza del metodo del simplesso

Dettagli

Richiami di Teoria dei Grafi. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Richiami di Teoria dei Grafi. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Richiami di Teoria dei Grafi Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Teoria dei grafi La Teoria dei Grafi costituisce, al pari della Programmazione Matematica, un corpo

Dettagli

Esame di Ricerca Operativa del 11/02/2015

Esame di Ricerca Operativa del 11/02/2015 Esame di Ricerca Operativa del /0/0 (Cognome) (Nome) (Matricola) Esercizio. Un azienda produce tipi di TV (, 0, 0 e pollici) ed è divisa in stabilimenti (A e B). L azienda dispone di 0 operai in A e 0

Dettagli

Gestione della produzione e della supply chain Logistica distributiva

Gestione della produzione e della supply chain Logistica distributiva Gestione della produzione e della supply chain Logistica distributiva Paolo Detti Dipartimento di Ingegneria dell Informazione e Scienze Matematiche Università di Siena Struttura delle reti logistiche

Dettagli

Esame di Ricerca Operativa del 20/02/18

Esame di Ricerca Operativa del 20/02/18 Esame di Ricerca Operativa del //8 (Cognome) (Nome) (Numero di Matricola) Esercizio. (a) Risolvere mediante l algoritmo del simplesso duale il seguente problema di programmazione lineare: min x x +x x

Dettagli

Esame di Ricerca Operativa del 11/1/19

Esame di Ricerca Operativa del 11/1/19 Esame di Ricerca Operativa del // (Cognome) (Nome) (Numero di Matricola) Esercizio. (a) Risolvere il seguente problema di programmazione lineare, determinandone il problema duale ed applicando l algoritmo

Dettagli

Esame di Ricerca Operativa del 11/07/2016

Esame di Ricerca Operativa del 11/07/2016 Esame di Ricerca Operativa del /0/01 (Cognome) (Nome) (Matricola) Esercizio 1. Un erboristeria vuole produrre una nuova tisana utilizzando tipi di tisane già in commercio. Tali tisane sono per lo più composte

Dettagli

Esame di Ricerca Operativa del 07/09/2016

Esame di Ricerca Operativa del 07/09/2016 Esame di Ricerca Operativa del 0/09/201 (Cognome) (Nome) (Matricola) Esercizio 1. Un industria chimica produce due tipi di fertilizzanti (A e B) la cui lavorazione è affidata ai reparti di produzione e

Dettagli

5.4.5 Struttura dell algoritmo ed esempi

5.4.5 Struttura dell algoritmo ed esempi CAPITOLO 5. IL METODO DEL SIMPLESSO 6 5.4.5 Struttura dell algoritmo ed esempi Come abbiamo già ampiamente osservato, la fase II del metodo del simplesso, a partire da una soluzione di base ammissibile,

Dettagli

Esame di Ricerca Operativa del 09/06/15. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 09/06/15. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 0/0/ Cognome) Nome) Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: min y + y + y +0 y +y + y y y + y y y y

Dettagli

Formulazioni. Consideriamo il seguente problema di Knapsack 0-1. max (5x x 2. ) st 3x x 2. < 6 x {0,1} 2

Formulazioni. Consideriamo il seguente problema di Knapsack 0-1. max (5x x 2. ) st 3x x 2. < 6 x {0,1} 2 Formulazioni Consideriamo il seguente problema di Knapsack 0-1 max (5x 1 + 2x 2 ) st 3x 1 + 4x 2 < 6 x {0,1} 2 Insiemi ammissibili F = {(0, 0), (0, 1), (1, 0)} Rappresentiamo sul piano gli insiemi ammissibili.

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Seconda prova intermedia 17 giugno 2013

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Seconda prova intermedia 17 giugno 2013 A UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa Seconda prova intermedia 7 giugno 0 Nome: Cognome: Matricola: Orale /06/0 ore aula N Orale 0/07/0 ore aula N

Dettagli

Esame di Ricerca Operativa del 09/01/15. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 09/01/15. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 0/0/ (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: min 7 y +y + y + y +y +7 y y +y y y

Dettagli

x 1 x 2 x 3 x 5 La base iniziale è B 0 = I e risulta x B 0 = , x N 0 = Iterazione 0. Calcolo dei costi ridotti. γ 0 = c N 0 (N 0 ) T c B 0 =

x 1 x 2 x 3 x 5 La base iniziale è B 0 = I e risulta x B 0 = , x N 0 = Iterazione 0. Calcolo dei costi ridotti. γ 0 = c N 0 (N 0 ) T c B 0 = 56 IL METODO DEL SIMPLESSO 7.4 IL METODO DEL SIMPLESSO In questo paragrafo sono riportati alcuni esercizi risolti sul metodo del simplesso. Alcuni sono risolti utilizzando la procedura di pivot per determinare,

Dettagli

Esame di Ricerca Operativa del 19/01/2016

Esame di Ricerca Operativa del 19/01/2016 Esame di Ricerca Operativa del 19/01/201 (Cognome) (Nome) (Matricola) Esercizio 1. Una banca offre ai suoi clienti diversi tipi di prestito: mutuo casa, credito auto, credito famiglia, che rendono un interesse

Dettagli

Esame di Ricerca Operativa del 13/06/17. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 13/06/17. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del /0/ (Cognome) (Nome) (Numero di Matricola) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: min y y + y + y + y y + y y +y +y

Dettagli

Esame di Ricerca Operativa del 15/01/19. max 6 x 1 x 2 6 x x x 1 +2 x x 1 3 x x 1 4 x x 1 +2 x x 1 x 2 19

Esame di Ricerca Operativa del 15/01/19. max 6 x 1 x 2 6 x x x 1 +2 x x 1 3 x x 1 4 x x 1 +2 x x 1 x 2 19 Esame di Ricerca Operativa del /0/9 Cognome) Nome) Numero di Matricola) Esercizio. Effettuare due iterazioni dell algoritmo del simplesso primale: max x x x + x x + x 8 x x x x x + x x x 9 passo {,} passo

Dettagli

Esame di Ricerca Operativa del 03/07/18. Base x degenere y Indice Rapporti Indice entrante uscente

Esame di Ricerca Operativa del 03/07/18. Base x degenere y Indice Rapporti Indice entrante uscente Esame di Ricerca Operativa del 0/0/8 Cognome) Nome) Numero di Matricola) Esercizio. Effettuare due iterazioni dell algoritmo del simplesso duale per il problema min y + y + y + y + y +8 y y +y y y y y

Dettagli

RICERCA OPERATIVA (a.a. 2016/17) Nome: Cognome: Matricola:

RICERCA OPERATIVA (a.a. 2016/17) Nome: Cognome: Matricola: Secondo appello //0 RICERCA OPERATIVA (a.a. 0/) Nome: Cognome: Matricola: ) Si risolva il seguente problema di PL max x x x x x + x x x per via algebrica, mediante l algoritmo del Simplesso Primale a partire

Dettagli

Introduzione al Metodo del Simplesso. 1 Soluzioni di base e problemi in forma standard

Introduzione al Metodo del Simplesso. 1 Soluzioni di base e problemi in forma standard Introduzione al Metodo del Simplesso Giacomo Zambelli 1 Soluzioni di base e problemi in forma standard Consideriamo il seguente problema di programmazione lineare (PL), relativo all esempio di produzione

Dettagli

Esame di Ricerca Operativa del 15/01/2015

Esame di Ricerca Operativa del 15/01/2015 Esame di Ricerca Operativa del 1/01/201 (Cognome) (Nome) (Matricola) Esercizio 1. Un azienda produce palloni da calcio e da basket che vende a 1 e 20 euro rispettivamente. L azienda compra ogni settimana

Dettagli

Esame di Ricerca Operativa del 15/01/2015

Esame di Ricerca Operativa del 15/01/2015 Esame di Ricerca Operativa del 1/01/01 (Cognome) (Nome) (Matricola) Esercizio 1. Un azienda produce palloni da basket e da calcio che vende rispettivamente a 1 e euro. L azienda compra ogni settimana 00

Dettagli

Esame di Ricerca Operativa del 19/01/2016

Esame di Ricerca Operativa del 19/01/2016 Esame di Ricerca Operativa del 9/0/06 (Cognome) (Nome) (Matricola) Esercizio. Una banca offre ai suoi clienti diversi tipi di prestito: mutuo casa, credito auto, credito famiglia, che rendono un interesse

Dettagli

Parte IV: Matrici totalmente unimodulari

Parte IV: Matrici totalmente unimodulari Parte IV: Matrici totalmente unimodulari Formulazioni Consideriamo il seguente problema di Knapsack 0-1 max (5x 1 + 2x 2 ) st 3x 1 + 4x 2 < 6 x {0,1} 2 Insiemi ammissibili F = {(0, 0), (0, 1), (1, 0)}

Dettagli

Esame di Ricerca Operativa del 12/02/18. P 1 P 2 P 3 P 4 P 5 P 6 Peso bagaglio km di viaggio

Esame di Ricerca Operativa del 12/02/18. P 1 P 2 P 3 P 4 P 5 P 6 Peso bagaglio km di viaggio Esame di Ricerca Operativa del /0/8 (Cognome) (Nome) (Numero di Matricola) Esercizio. L autista di un taxi puo trasportare al massimo persone richiedendo a ciascuna Euro a km per il viaggio. Fanno richiesta

Dettagli

Esame di Ricerca Operativa del 21/07/15. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 21/07/15. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del /0/ (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: min y +y + y + y + y + y y y + y y +

Dettagli

Introduzione ai grafi

Introduzione ai grafi TFA A048 Anno Accademico 2012-13 Outline Cenni storici sui grafi Nozioni introduttive: cammini, connessione, alberi, cicli Cammini di costo minimo Origini storiche La nascita della teoria dei grafi risale

Dettagli

Esame di Ricerca Operativa del 08/09/17

Esame di Ricerca Operativa del 08/09/17 Esame di Ricerca Operativa del 08/09/ (Cognome) (Nome) (Numero di Matricola) Esercizio. Una dieta giornaliera consiste di tre cibi C, C e C, che vengono assunti nella quantità complessiva di 00 grammi.

Dettagli

Esame di Ricerca Operativa

Esame di Ricerca Operativa Esame di Ricerca Operativa (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: min y + y + y +7 y +y + y y y +y y y = y y +y

Dettagli

Esame di Ricerca Operativa del 16/02/15. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 16/02/15. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del /0/ Cognome) Nome) Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: min y + y +0 y +0 y +y + y y y +y y y y

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Seconda prova intermedia 20 giugno 2014

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Seconda prova intermedia 20 giugno 2014 A Ricerca Operativa 1 Seconda prova intermedia Un tifoso di calcio in partenza da Roma vuole raggiungere Rio De Janeiro per la finale del mondiale spendendo il meno possibile. Sono date le seguenti disponibilità

Dettagli

Esame di Ricerca Operativa del 03/09/2015

Esame di Ricerca Operativa del 03/09/2015 Esame di Ricerca Operativa del 0/09/201 (Cognome) (Nome) (Matricola) Esercizio 1. Una raffineria di petrolio miscela tipi di greggio per ottenere tipi di carburante: senza piombo, diesel e blu diesel.

Dettagli

Esame di Ricerca Operativa del 09/02/2016

Esame di Ricerca Operativa del 09/02/2016 Esame di Ricerca Operativa del 0/0/01 (Cognome) (Nome) (Matricola) Esercizio 1. Una sartoria produce tipi di vestiti: pantaloni, gonne e giacche, utilizzando stoffa e filo. Settimanalmente, la disponibilità

Dettagli

Quinto appello 27/6/ = 4. B b B = 2 b N = 4

Quinto appello 27/6/ = 4. B b B = 2 b N = 4 Quinto appello // RICERCA OPERATIVA (a.a. /) Nome: Cognome: Matricola: ) Si risolva il problema di PL dato applicando l algoritmo del Simplesso Duale, per via algebrica, a partire dalla base B {, }. Per

Dettagli

Esame di Ricerca Operativa del 16/01/18. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 16/01/18. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del /0/8 (Cognome) (Nome) (Numero di Matricola) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: min y +9 y +9 y + y +y +0 y y +

Dettagli

Esame di Ricerca Operativa del 04/07/17

Esame di Ricerca Operativa del 04/07/17 Esame di Ricerca Operativa del 0/0/ (Cognome) (Nome) (Numero di Matricola) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: min y y + y + y + y + y +9 y y y

Dettagli

Esempi di Problemi di Programmazione Lineare

Esempi di Problemi di Programmazione Lineare Esempi di Problemi di Programmazione Lineare Esempio 1: Soluzione con l algoritmo del simplesso dell esempio in forma standard ma = 2 + 0 1 2 + + = 5 1 2 3 + + = 0 1 2 4 6 + 2 + = 21 1 2 5 1 2 3 4 5 Il

Dettagli

Esame di Ricerca Operativa del 21/06/17

Esame di Ricerca Operativa del 21/06/17 Esame di Ricerca Operativa del /0/7 (Cognome) (Nome) (Numero di Matricola) Esercizio. Un azienda vinicola produce tre qualitá di vino Q, Q, Q che vende ad un prezzo di 0E, 0E, 0E ad ettolitro, rispettivamente

Dettagli

Esame di Ricerca Operativa del 25/06/12

Esame di Ricerca Operativa del 25/06/12 Esame di Ricerca Operativa del /0/ Cognome) Nome) Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x x x + x x x 8 x x x + x x x Base

Dettagli

Esame di Ricerca Operativa del 09/06/14. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 09/06/14. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 09/0/ (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x x +x x x x +x x + x x Base

Dettagli

Esame di Ricerca Operativa. x 1 +2 x 2 6 x 1 +x 2 6 x 1 4 x 1 1

Esame di Ricerca Operativa. x 1 +2 x 2 6 x 1 +x 2 6 x 1 4 x 1 1 Esame di Ricerca Operativa (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x + x x +x x 0 x + x x +x x x Base Soluzione

Dettagli

Esame di Ricerca Operativa del 16/06/2015

Esame di Ricerca Operativa del 16/06/2015 Esame di Ricerca Operativa del 1/0/01 (Cognome) (Nome) (Matricola) Esercizio 1. Una ditta produce vernici in tre diversi stabilimenti (Pisa, Cascina, Empoli) e le vende a tre imprese edili (A, B, C). Il

Dettagli

min 2x 1 +4x 2 2x 3 +2x 4 x 1 +4x 2 +2x 3 + x 4 =6 2x 1 + x 2 +2x 3 + x 5 =3 x 0.

min 2x 1 +4x 2 2x 3 +2x 4 x 1 +4x 2 +2x 3 + x 4 =6 2x 1 + x 2 +2x 3 + x 5 =3 x 0. 5 IL METODO DEL SIMPLESSO 6.4 IL METODO DEL SIMPLESSO In questo paragrafo sono riportati alcuni esercizi risolti sul metodo del simplesso. Alcuni sono risolti utilizzando la procedura di pivot per determinare,

Dettagli

RICERCA OPERATIVA (a.a. 2015/16) Nome: Cognome: Matricola:

RICERCA OPERATIVA (a.a. 2015/16) Nome: Cognome: Matricola: o Appello // RICERCA OPERATIVA (a.a. /) Nome: Cognome: Matricola: ) Si consideri il seguente problema di PL: max x + x x x x x x + x x Si applichi l algoritmo del Simplesso Duale, per via algebrica, a

Dettagli

ESERCIZIO 1: Punto 1

ESERCIZIO 1: Punto 1 ESERCIZIO : Punto La seguente matrice è una matrice delle distanze di un istanza del problema del Commesso Viaggiatore. - - - - - - - Calcolare.Il valore del rilassamento che si ottiene determinando l

Dettagli

Esame di Ricerca Operativa del 30/06/14. max 4 x 1 7 x 2 x 1 +7 x 2 7 x 1 4 x 2 7 x 1 +5 x 2 5 x 1 x 2 5 x 2 1 x 1 +4 x 2 6

Esame di Ricerca Operativa del 30/06/14. max 4 x 1 7 x 2 x 1 +7 x 2 7 x 1 4 x 2 7 x 1 +5 x 2 5 x 1 x 2 5 x 2 1 x 1 +4 x 2 6 Esame di Ricerca Operativa del 0/0/ Cognome) Nome) Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x 7 x x +7 x 7 x x 7 x + x x x x x

Dettagli

3.3 Problemi di PLI facili

3.3 Problemi di PLI facili 3.3 Problemi di PLI facili Consideriamo un generico problema di PLI espresso in forma standard min{c t x : Ax = b, x Z n +} (1) dove A Z m n con n m, e b Z m. Supponiamo che A sia di rango pieno. Sia P

Dettagli

Fac-simile dell esame di Ricerca Operativa. max 7 x 1 2 x 2 3 x 1 +x 2 2 x 1 2 x 2 3 x x 1 +x x 1 x 2 5

Fac-simile dell esame di Ricerca Operativa. max 7 x 1 2 x 2 3 x 1 +x 2 2 x 1 2 x 2 3 x x 1 +x x 1 x 2 5 Fac-simile dell esame di Ricerca Operativa (Cognome) (Nome) (Numero di Matricola) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x +x x x x x +x x

Dettagli

A-2 a PI. Esercizio 2. Domanda 3

A-2 a PI. Esercizio 2. Domanda 3 A-2 a PI Ricerca Operativa 1 Seconda prova intermedia È dato il problema di PL in figura. 1. Facendo uso delle condizioni di ortogonalità, dimostrare o confutare l ottimalità della soluzione x = 1; x =

Dettagli

Registro dell'insegnamento

Registro dell'insegnamento Registro dell'insegnamento Anno accademico 2016/2017 Prof. MARCO SCIANDRONE Settore inquadramento MAT/09 - RICERCA OPERATIVA REGISTRO Scuola Ingegneria NON CHIUSO Dipartimento Ingegneria dell'informazione

Dettagli

Esame di Ricerca Operativa del 23/02/17

Esame di Ricerca Operativa del 23/02/17 Esame di Ricerca Operativa del /0/ (Cognome) (Nome) (Numero di Matricola) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: min y + y + y + y y +0 y + y y y

Dettagli

min det det Allora è unimodulare se e solo se det 1, 1, 0 per ogni sottomatrice quadrata di di qualsiasi dimensione.

min det det Allora è unimodulare se e solo se det 1, 1, 0 per ogni sottomatrice quadrata di di qualsiasi dimensione. Se è unimodulare e è intero allora il poliedro 0 ha vertici interi. Sia un vertice di Per definizione esiste allora una base di tale che, 0 Poiché è non singolare ( invertibile det 0) si ha che det 1 è

Dettagli

Esame di Ricerca Operativa del 16/07/18

Esame di Ricerca Operativa del 16/07/18 Esame di Ricerca Operativa del /0/8 (Cognome) (Nome) (Numero di Matricola) Esercizio. Un terreno agricolo è costituito dalla miscela di tre tipi di terra T, T e T. Da un analisi di laboratorio viene rilevata,

Dettagli

Esame di Ricerca Operativa del 18/06/18

Esame di Ricerca Operativa del 18/06/18 Esame di Ricerca Operativa del 8/0/8 (Cognome) (Nome) (Numero di Matricola) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x +x x x x +x x x x + x

Dettagli

RICERCA OPERATIVA (a.a. 2014/15) Nome: Cognome: Matricola:

RICERCA OPERATIVA (a.a. 2014/15) Nome: Cognome: Matricola: 3 o Appello /2/2 RICERCA OPERATIVA (a.a. 2/) Nome: Cognome: Matricola: ) Si risolva algebricamente il seguente problema di PL max x 2x 2 x x 2 2 x x + x 2 3 x 2 7 mediante l algoritmo del Simplesso Primale

Dettagli

Esercizio 2. Domanda 3

Esercizio 2. Domanda 3 A-2 a PI Ricerca Operativa 1 Seconda prova intermedia È dato il problema di PL in figura. 1. Facendo uso delle condizioni di ortogonalità, dimostrare o confutare l ottimalità della soluzione 2; 0; 2. Facendo

Dettagli

Lezioni di Ricerca Operativa

Lezioni di Ricerca Operativa Lezioni di Ricerca Operativa Estratto per la parte di programmazione lineare e ottimizzazione sui grafi Corso di Metodi di Ottimizzazione per l'ingegneria della Sicurezza Laurea Magistrale in Ingegneria

Dettagli

Esame di Ricerca Operativa del 05/09/18

Esame di Ricerca Operativa del 05/09/18 Esame di Ricerca Operativa del 0/09/8 (Cognome) (Nome) (Numero di Matricola) Esercizio. Un azienda agricola produce mensilmente 0 ettolitri di olio (O) e 0 ettolitri di vino (V) che vengono venduti all

Dettagli

RICERCA OPERATIVA (a.a. 2017/18) Nome: Cognome: Matricola:

RICERCA OPERATIVA (a.a. 2017/18) Nome: Cognome: Matricola: Terzo appello //8 RICERCA OPERATIVA (a.a. 7/8) Nome: Cognome: Matricola: ) Si risolva il seguente problema di PL max x x x x x x x x x applicando l algoritmo del Simplesso Primale, per via algebrica, a

Dettagli

Possibile applicazione

Possibile applicazione p. 1/4 Assegnamento Siano dati due insiemi A e B entrambi di cardinalità n. Ad ogni coppia (a i,b j ) A B è associato un valore d ij 0 che misura la "incompatibilità" tra a i e b j, anche interpretabile

Dettagli

Esame di Ricerca Operativa del 06/02/17

Esame di Ricerca Operativa del 06/02/17 Esame di Ricerca Operativa del 0/0/ (Cognome) (Nome) (Numero d Matricola) Esercizio. Uno studente vuole definire un piano di studio settimanale per preparare gli esami A, B e C, massimizzando le ore (h)

Dettagli

Massimo flusso e matching

Massimo flusso e matching Capitolo Massimo flusso e matching. Problema del massimo matching. Nel problema del massimo matching è dato un grafo non orientato G(V, A); un matching in G è un insieme di archi M A tale che nessuna coppia

Dettagli

Esercizio 1. Variabili decisionali:

Esercizio 1. Variabili decisionali: Esercizio 1 Si noti che i costi sono dati per tonnellata, mentre molti vincoli riguardano il numero di navi. Si introducono pertanto DUE tipi di variabili, uno relativo al numero di tonnellate per tipo

Dettagli

4.5 Metodo del simplesso

4.5 Metodo del simplesso 4.5 Metodo del simplesso min z = c T x s.v. Ax = b x PL in forma standard Esamina una sequenza di soluzioni di base ammissibili con valori non crescenti della funzione obiettivo fino a raggiungerne una

Dettagli

Ricerca Operativa. G. Liuzzi. Lunedí 20 Aprile 2015

Ricerca Operativa. G. Liuzzi. Lunedí 20 Aprile 2015 1 Lunedí 20 Aprile 2015 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR Rilassamento di un problema Rilassare un problema di Programmazione Matematica vuol dire trascurare alcuni (tutti i)

Dettagli

Il valore di flusso che si ottiene è

Il valore di flusso che si ottiene è 1) Si consideri un insieme di piste da sci e di impianti di risalita. Lo si modelli con un grafo orientato che abbia archi di due tipi: tipo D (discesa e orientato nel senso della discesa) e tipo R (risalita

Dettagli

Il metodo del simplesso

Il metodo del simplesso Capitolo 5 Il metodo del simplesso 5. La forma standard Esercizio 5.. Porre il problema di Programmazione Lineare: in forma standard. min x +x + x + x x +x 5 x 4 x, x Si trasformano i vincoli di disuguaglianza

Dettagli

Esercizio 1. Esercizio 2

Esercizio 1. Esercizio 2 A-2 a PI Ricerca Operativa 1 Seconda prova intermedia La Pharmatix è un azienda di Anagni che produce due principi attivi, A e B, che consentono un profitto per grammo venduto di 20 e 30 euro rispettivamente.

Dettagli

Teoria dei Grafi Elementi di base della Teoria dei Grafi

Teoria dei Grafi Elementi di base della Teoria dei Grafi L. Pallottino, Sistemi Robotici Distribuiti - Versione del 4 Marzo 2015 42 Teoria dei Grafi Elementi di base della Teoria dei Grafi Definizione 1. Un grafo G = (V, E) è composto da un insieme finito di

Dettagli

Esame di Ricerca Operativa del 08/01/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 08/01/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 08/0/ Cognome) Nome) Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x + x x +x x x 0 x + x x x 8 x x 8

Dettagli

Algoritmo del Simplesso

Algoritmo del Simplesso Algoritmo del Simplesso Renato Bruni bruni@dis.uniroma.it Univertà di Roma Sapienza Corso di Ricerca Operativa, Corso di Laurea Ingegneria dell Informazione Vertici e Punti Estremi di un Poliedro Un poliedro

Dettagli

RICERCA OPERATIVA (a.a. 2011/12) Nome: Cognome: Matricola:

RICERCA OPERATIVA (a.a. 2011/12) Nome: Cognome: Matricola: 5 o Appello 8/0/0 RICERCA OPERATIVA (a.a. 0/) Nome: Cognome: Matricola: ) Si individui un albero dei cammini minimi di radice sul grafo in figura, utilizzando l algoritmo più appropriato dal punto di vista

Dettagli

Domini di funzioni di due variabili. Determinare i domini delle seguenti funzioni di due variabili (le soluzioni sono alla fine del fascicolo):

Domini di funzioni di due variabili. Determinare i domini delle seguenti funzioni di due variabili (le soluzioni sono alla fine del fascicolo): UNIVERSITA DEGLI STUDI DI SALERNO C.d.L. in INGEGNERIA GESTIONALE Esercizi di Ricerca Operativa Prof. Saverio Salerno Corso tenuto nell anno solare 2009 I seguenti esercizi sono da ritenersi di preparazione

Dettagli

2 OTTIMIZZAZIONE SU GRAFI. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

2 OTTIMIZZAZIONE SU GRAFI. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 2 OTTIMIZZAZIONE SU GRAFI E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Molti problemi decisionali possono essere formulati utilizzando il linguaggio della teoria dei grafi. Esempi: - problemi di

Dettagli

1) Data la seguente istanza di TSP (grafo completo con 5 nodi): c 12 = 52; c 13 = 51; c 14 = 40; c 15 = 53; c 23 = 44;

1) Data la seguente istanza di TSP (grafo completo con 5 nodi): c 12 = 52; c 13 = 51; c 14 = 40; c 15 = 53; c 23 = 44; 1) Data la seguente istanza di TSP (grafo completo con 5 nodi): c 12 = 52; c 13 = 51; c 14 = 40; c 15 = 53; c 23 = 44; c 24 = 15; c 25 = 12; c 34 = 32; c 35 = 55; c 45 = 24 Si calcoli l ottimo duale (formulazione

Dettagli

Introduzione ai grafi. Introduzione ai grafi p. 1/2

Introduzione ai grafi. Introduzione ai grafi p. 1/2 Introduzione ai grafi Introduzione ai grafi p. 1/2 Grafi Un grafo G é costituito da una coppia di insiemi (V,A) dove V é detto insieme dei nodi e A é detto insieme di archi ed é un sottinsieme di tutte

Dettagli

Esame di Ricerca Operativa del 21/02/19. max 3 x 1 +x 2 6 x x x 1 +2 x x 1 3 x x 1 4 x x 1 +2 x x 1 x 2 3

Esame di Ricerca Operativa del 21/02/19. max 3 x 1 +x 2 6 x x x 1 +2 x x 1 3 x x 1 4 x x 1 +2 x x 1 x 2 3 Esame di Ricerca Operativa del /0/ Cognome) Nome) Numero di Matricola) Esercizio. Effettuare due iterazioni dell algoritmo del simplesso primale. max x +x x +0 x x + x 8 x x x x x + x x x passo {,} passo

Dettagli

RICERCA OPERATIVA. Tema d esame del 04/12/2008 (Simulazione 1)

RICERCA OPERATIVA. Tema d esame del 04/12/2008 (Simulazione 1) RICERCA OPERATIVA Tema d esame del 04/12/2008 (Simulazione 1) COGNOME: NOME: MATRICOLA: 1. Un azienda meccanica deve pianificare il lavoro delle sue tre macchine per un dato giorno. I lotti che è possibile

Dettagli

Esame di Ricerca Operativa del 17/07/17. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 17/07/17. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 7/07/7 (Cognome) (Nome) (Numero di Matricola) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x +x x + x x x x x x x +x

Dettagli

Geometria della programmazione lineare

Geometria della programmazione lineare Geometria della programmazione lineare p. 1/39 Geometria della programmazione lineare Mariantonia Cotronei Facoltà di Ingegneria Università degli Studi Mediterranea di Reggio Calabria Geometria della programmazione

Dettagli

B.1 I grafi: notazione e nomenclatura

B.1 I grafi: notazione e nomenclatura Appendice B Grafi e Reti In questa appendice richiamiamo i principali concetti relativi a grafi e reti; descriviamo inoltre alcune classi di strutture dati che possono essere utilizzate per implementare

Dettagli

LEZIONE N.7 INTRODUZIONE AI METODI DI PROGRAMMAZIONE LINEARE, IL METODO DEL SIMPLESSO. 1di 18

LEZIONE N.7 INTRODUZIONE AI METODI DI PROGRAMMAZIONE LINEARE, IL METODO DEL SIMPLESSO. 1di 18 LEZIONE N.7 INTRODUZIONE AI METODI DI PROGRAMMAZIONE LINEARE, IL METODO DEL SIMPLESSO 1di 18 Metodo del Simplesso Il metodo del simplesso dovuto a Dantzing ed a Kantorovich è un algoritmo il cui nome deriva

Dettagli

Flusso a Costo Minimo

Flusso a Costo Minimo Sapienza Università di Roma - Dipartimento di Ingegneria Informatica, Automatica e Gestionale Flusso a Costo Minimo Docente: Renato Bruni bruni@dis.uniroma.it Corso di: Ottimizzazione Combinatoria Dal

Dettagli

Università Roma Tre - PAS Classe A048 "Matematica Applicata" - Corso di Informatica a.a. 2013/2014

Università Roma Tre - PAS Classe A048 Matematica Applicata - Corso di Informatica a.a. 2013/2014 Università Roma Tre Dipartimento di Matematica e Fisica Percorso Abilitante Speciale Classe A08 Matematica Applicata Corso di Informatica Algoritmi su Grafi Marco Liverani (liverani@mat.uniroma.it) Sommario

Dettagli

COMPITO DI RICERCA OPERATIVA. max 5 2x 1 + 3x 2 x 3 = 2 + x 1 5x 2 x 4 = 5 + x 2. x 5 = 1 + x 1 x 2

COMPITO DI RICERCA OPERATIVA. max 5 2x 1 + 3x 2 x 3 = 2 + x 1 5x 2 x 4 = 5 + x 2. x 5 = 1 + x 1 x 2 COMPITO DI RICERCA OPERATIVA ESERCIZIO. ( punti) La riformulazione di un problema di PL rispetto alla base B = {x, x, x } è la seguente: max 2x + x 2 x = 2 + x x 2 x = + x 2 x = 2 + x + x 2 x, x 2, x,

Dettagli

Flusso di costo minimo

Flusso di costo minimo Flusso di costo minimo Un grafo G = (N,A) è una coppia di insiemi: N, di cardinalità finita, i nodi, ed A, sottoinsieme del prodotto cartesiano N N, gli archi. N = {,,,} e A = {(,),(,),(,),(,),(,)} è rappresentato

Dettagli