Tecniche euristiche greedy

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Tecniche euristiche greedy"

Transcript

1 Tecniche euristiche greedy PRTLC -

2 Schema delle esercitazioni Come ricavare la soluzione ottima Modelli Solver commerciali

3 Schema delle esercitazioni Come ricavare la soluzione ottima Modelli Solver commerciali Come ricavare una stima dell ottimo: rilassamenti Rilassamento continuo - generazione di colonne Rilassamento Lagrangiano e surrogato

4 Schema delle esercitazioni Come ricavare la soluzione ottima Modelli Solver commerciali Come ricavare una stima dell ottimo: rilassamenti Rilassamento continuo - generazione di colonne Rilassamento Lagrangiano e surrogato Come ricavare una soluzione ammissibile Euristiche greedy e tecniche costruttive (costruiscono una soluzione ammissibile) Euristiche di ricerca locale (partono da una soluzione data e la migliorano)

5 (goloso) Costruisce la soluzione per passi

6 (goloso) Costruisce la soluzione per passi Inizialmente parte da una soluzione vuota Ad ogni iterazione aggiunge un elemento alla soluzione, mantenendo la soluzione parziale potenzialmente ammissibile

7 (goloso) Costruisce la soluzione per passi Inizialmente parte da una soluzione vuota Ad ogni iterazione aggiunge un elemento alla soluzione, mantenendo la soluzione parziale potenzialmente ammissibile In ogni iterazione seleziona la scelta migliore sulla base della soluzione attuale (scelta miopica)

8 (goloso) Costruisce la soluzione per passi Inizialmente parte da una soluzione vuota Ad ogni iterazione aggiunge un elemento alla soluzione, mantenendo la soluzione parziale potenzialmente ammissibile In ogni iterazione seleziona la scelta migliore sulla base della soluzione attuale (scelta miopica) Le decisioni non vengono ridiscusse (soluzione non ottima, in generale) Si eseguono un numero di iterazioni note a priori (polinomiali nelle dimensioni del problema)

9 Ingredienti Struttura della soluzione, gli elementi che la compongono

10 Ingredienti Struttura della soluzione, gli elementi che la compongono Criterio per selezionare la miglior scelta da fare data la soluzione parziale corrente

11 Ingredienti Struttura della soluzione, gli elementi che la compongono Criterio per selezionare la miglior scelta da fare data la soluzione parziale corrente Verifica dell ammissibilità della soluzione parziale

12 Schema dell algoritmo begin { X :=,

13 Schema dell algoritmo begin { X :=,S:=E;

14 Schema dell algoritmo begin { X :=,S:=E; repeat { e:= Best(S); (miglior scelta) S:= S\{e}

15 Schema dell algoritmo begin { X :=,S:=E; repeat { e:= Best(S); (miglior scelta) S:= S\{e} if(x e è ammissibile) then X:=X e;

16 Schema dell algoritmo begin { end} X :=,S:=E; repeat { e:= Best(S); (miglior scelta) S:= S\{e} if(x e è ammissibile) then X:=X e; }until (S= X completa)

17 Connessione di una rete Problema Una rete rappresentata da un grafo non direzionato G = (N, A) Costo associato ad ogni arco della rete Selezionare un sottoinsieme di archi in modo da collegare tutti i nodi della rete a costo minimo Albero di copertura di costo minimo

18 per albero di copertura di costo minimo Kruskal Soluzione è rappresentata da un sottoinsieme di archi

19 per albero di copertura di costo minimo Kruskal Soluzione è rappresentata da un sottoinsieme di archi Gli elementi della soluzione sono archi: ad ogni iterazione seleziono il nuovo arco da aggiungere

20 per albero di copertura di costo minimo Kruskal Soluzione è rappresentata da un sottoinsieme di archi Gli elementi della soluzione sono archi: ad ogni iterazione seleziono il nuovo arco da aggiungere La miglior scelta è l arco di costo minimo

21 per albero di copertura di costo minimo Kruskal Soluzione è rappresentata da un sottoinsieme di archi Gli elementi della soluzione sono archi: ad ogni iterazione seleziono il nuovo arco da aggiungere La miglior scelta è l arco di costo minimo Soluzione parziale è ammissibile se non contiene cicli e può essere completata connettendo tutti i nodi

22 per albero di copertura di costo minimo Kruskal Inizialmente la solusione è l insieme vuoto Gli archi vengono ordinati dal meno costoso al più costoso Ad ogni iterazione si estrae il primo arco dall elenco Se l arco scelto non genera cicli con quelli già selezionati viene aggiunto alla soluzione La procedura termina quando tutti i nodi sono collegati (la soluzione contiene N 1 archi) Per questo problema il greedy garantisce di trovare sempre la soluzione ottima

23 Dati Insieme A di possibili siti in cui installare antenne

24 Dati Insieme A di possibili siti in cui installare antenne Un costo di installazione di un antenna associato ad ogni possibile sito Un insieme di test point T, da servire

25 Dati Insieme A di possibili siti in cui installare antenne Un costo di installazione di un antenna associato ad ogni possibile sito Un insieme di test point T, da servire Distanza d ij tra ogni possibile antenna i e ogni test point j Distanza massima R tra antenna e test point che possono comunicare

26 Problema Decidere dove installare le antenne in modo che per ogni test point ci sia almeno un antenna a distanza inferiore a R

27 Problema Decidere dove installare le antenne in modo che per ogni test point ci sia almeno un antenna a distanza inferiore a R con l obiettivo di minimizzare il costo complessivo delle antenne installate

28 Modello Variabili y i i A : y i = 1 se viene installata un antenna nel sito i

29 Modello Variabili y i i A : y i = 1 se viene installata un antenna nel sito i Modello min i A c i y i m ij y i 1, i A j T

30 Algoritmo greedy Inizialmente non ci sono antenne scelte

31 Algoritmo greedy Inizialmente non ci sono antenne scelte I siti vengono ordinati per costo descrescente

32 Algoritmo greedy Inizialmente non ci sono antenne scelte I siti vengono ordinati per costo descrescente Si aggiunge l antenna migliore finché tutti i test point non sono coperti

33 Algoritmo greedy Inizialmente non ci sono antenne scelte I siti vengono ordinati per costo descrescente Si aggiunge l antenna migliore finché tutti i test point non sono coperti Varianti Ordinare per rapporto tra costo e numero di test point raggiunti crescente: c i {j T : d ij R}

34 Algoritmo greedy Inizialmente non ci sono antenne scelte I siti vengono ordinati per costo descrescente Si aggiunge l antenna migliore finché tutti i test point non sono coperti Varianti Ordinare per rapporto tra costo e numero di test point raggiunti crescente: c i {j T : d ij R} Ordinare per rapporto crescente tra costo e numero di test point raggiunti che non sono ancora coperti dalla soluzione corrente

35 Caso con antenne capacitate Come cambia il problema Ogni antenna può servire un numero massimo di test point (P)

36 Caso con antenne capacitate Come cambia il problema Ogni antenna può servire un numero massimo di test point (P) Oltre alla localizzazione delle antenne bisogna definire anche l assegnamento

37 Caso con antenne capacitate Come cambia il problema Ogni antenna può servire un numero massimo di test point (P) Oltre alla localizzazione delle antenne bisogna definire anche l assegnamento Come cambia il Si ordinano i siti e si seleziona il miglior sito Si assegnano all antenna scelta al più P test point coperti dal sito

38 Caso con antenne capacitate Come cambia il problema In questo modo si garantisce l ammissibilità? Cosa accade se un test point è raggiungibile da una sola antenna e se ad essa sono già stati assegnati P test point?

39 Caso con antenne capacitate Come cambia il problema In questo modo si garantisce l ammissibilità? Cosa accade se un test point è raggiungibile da una sola antenna e se ad essa sono già stati assegnati P test point? Possiamo ad esempio ordinare i test point coperti dall antenna selezionata in base al numero di antenne che li possono servire.

40 j V : (i,j) A k K min (i,j) A xij k xji k = j V : (j,i) A c ij y ij 1 se i = s k, 1 se i = t k 0 se i s k, t k, d k x k ij λy ij, (i, j) A µ ij 0 x k ij {0, 1}, y ij Z +

41 Elementi della soluzione Instradamento delle domande Dimensionamento dei canali sugli archi

42 Elementi della soluzione Instradamento delle domande Dimensionamento dei canali sugli archi Fissato l instradamento il dimensionamento è una conseguenza

43 Elementi della soluzione Instradamento delle domande Dimensionamento dei canali sugli archi Fissato l instradamento il dimensionamento è una conseguenza Basiamo il greedy sull instradamento

44 Ordiniamo le domande per quantità di traffico descrescente Per ogni domanda calcoliamo il percorso con il minor costo incrementale Assegnamo costo 0 agli archi su cui è disponibile una capacità superiore all entità della domanda Assegnamo costo pari all installazione del numero di canali necessario per gestire la domanda considerata Calcoliamo il cammino minimo sulla base di questi costi Instradiamo la domanda sul percorso calcolato Aggiorniamo il dimensionamento della capacità sugli archi coinvolti

45 Esempio Tre domande: 1 da 1 a 6, di traffico 7 2 da 1 a 4, di traffico 3 3 da 1 a 5, di traffico 2 Capacità dei canali λ = 10

46 Soluzione Ordino le domande per volume di traffico non crescente (1,2,3) Tutti gli archi hanno costo originale

47 Soluzione Ordino le domande per volume di traffico non crescente (1,2,3) Tutti gli archi hanno costo originale La domanda 1 è instradata sul cammino minimo (1, 2), (2, 3), (3, 6), su ciascun arco si installa un canale

48 Soluzione Ordino le domande per volume di traffico non crescente (1,2,3) Tutti gli archi hanno costo originale La domanda 1 è instradata sul cammino minimo (1, 2), (2, 3), (3, 6), su ciascun arco si installa un canale Considero la seconda domanda: i costi degli archi (1, 2), (2, 3), (3, 6) sono nulli La seconda domanda è instradata sul cammino (1, 2), (2, 3), (3, 4): sull arco (3, 4) si installa un canale

49 Soluzione Ordino le domande per volume di traffico non crescente (1,2,3) Tutti gli archi hanno costo originale La domanda 1 è instradata sul cammino minimo (1, 2), (2, 3), (3, 6), su ciascun arco si installa un canale Considero la seconda domanda: i costi degli archi (1, 2), (2, 3), (3, 6) sono nulli La seconda domanda è instradata sul cammino (1, 2), (2, 3), (3, 4): sull arco (3, 4) si installa un canale Considero la terza domanda: tutti gli archi hanno costo originale, tranne (3, 4) e (3, 6), di costo nullo La domanda è instradata sull arco (1, 5), su cui si installa un canale.

50 Soluzione Su ogni arco della soluzione è installato un canale costo complessivo 24

51 È la soluzione ottima? Su ogni arco della soluzione è installato un canale costo complessivo 23

52 Problema: dati Insieme I di trasmettitori

53 Problema: dati Insieme I di trasmettitori Insieme F di frequenze che possono essere assegnate ai trasmettitori

54 Problema: dati Insieme I di trasmettitori Insieme F di frequenze che possono essere assegnate ai trasmettitori Distanza d ij tra il trsmettitore i e il trasmettitore j

55 Problema: dati Insieme I di trasmettitori Insieme F di frequenze che possono essere assegnate ai trasmettitori Distanza d ij tra il trsmettitore i e il trasmettitore j Problema Assegnare una frequenza a ciascun trasmettitore

56 Problema: dati Insieme I di trasmettitori Insieme F di frequenze che possono essere assegnate ai trasmettitori Distanza d ij tra il trsmettitore i e il trasmettitore j Problema Assegnare una frequenza a ciascun trasmettitore garantendo che due trasmettitori che distano meno di d non siano assegnati alla stessa frequenza

57 Problema: dati Insieme I di trasmettitori Insieme F di frequenze che possono essere assegnate ai trasmettitori Distanza d ij tra il trsmettitore i e il trasmettitore j Problema Assegnare una frequenza a ciascun trasmettitore garantendo che due trasmettitori che distano meno di d non siano assegnati alla stessa frequenza con l obiettivo di minimizzare il numero di frequenze usate

58 Modello x if {0, 1} = 1 se al trasmettitore i è assegnata la frequenza f y f {0, 1} = 1 se la frequenza f viene usata min f F x if = 1 f F y f i I x if + x jf 1 f F, i, j I : d ij d x if y f i I, f F

59 Problema di coloramento di grafo

60 Soluzione euristica Idea Seleziono il nodo con grado massimo Assegno una frequenza (colore) Coloro la sua stella Cerco un nuovo nodo non ancora colorato

61

62

63

64 Stime dell ottimo Clique Sottoinsieme di nodi completamente connesso Bound Devono essere tutti di colori diversi Il numero minimo di colori è maggiore od uguale alla cardinalità della clique massima

Tecniche euristiche Ricerca Locale

Tecniche euristiche Ricerca Locale Tecniche euristiche Ricerca Locale PRTLC - Ricerca Locale Schema delle esercitazioni Come ricavare la soluzione ottima Modelli Solver commerciali Come ricavare una stima dell ottimo: rilassamenti Rilassamento

Dettagli

Stime dell ottimo - Rilassamenti. PRTLC - Rilassamenti

Stime dell ottimo - Rilassamenti. PRTLC - Rilassamenti Stime dell ottimo - Rilassamenti PRTLC - Rilassamenti Schema delle esercitazioni Come ricavare la soluzione ottima Modelli Solver commerciali Come ricavare una stima dell ottimo: rilassamenti Rilassamento

Dettagli

Alberi di copertura. Mauro Passacantando. Dipartimento di Informatica Largo B. Pontecorvo 3, Pisa

Alberi di copertura. Mauro Passacantando. Dipartimento di Informatica Largo B. Pontecorvo 3, Pisa Alberi di copertura Mauro Passacantando Dipartimento di Informatica Largo B. Pontecorvo, Pisa mpassacantando@di.unipi.it M. Passacantando TFA 0/ - Corso di Ricerca Operativa Università di Pisa / 9 Definizioni

Dettagli

Il problema del commesso viaggiatore

Il problema del commesso viaggiatore Il problema del commesso viaggiatore Mauro Passacantando Dipartimento di Informatica Largo B. Pontecorvo 3, Pisa mpassacantando@di.unipi.it M. Passacantando TFA 2012/13 - Corso di Ricerca Operativa Università

Dettagli

Il Problema dell Albero Ricoprente Minimo (Shortest Spanning Tree - SST)

Il Problema dell Albero Ricoprente Minimo (Shortest Spanning Tree - SST) Il Problema dell Albero Ricoprente Minimo (Shortest Spanning Tree - SST) È dato un grafo non orientato G=(V,E). Ad ogni arco e i E, i=1,,m, è associato un costo c i 0 7 14 4 10 9 11 8 12 6 13 5 17 3 2

Dettagli

I Appello Ricerca Operativa 2 bis Compito A

I Appello Ricerca Operativa 2 bis Compito A I Appello Ricerca Operativa 2 bis Compito A Cognome e nome:. Esercizio 1. Si consideri il problema del matching di cardinalità massima in un grafo G ed il suo problema di decisione associato: esiste un

Dettagli

INSTRADAMENTO: ALGORITMO DI KRUSKAL

INSTRADAMENTO: ALGORITMO DI KRUSKAL UNIVERSITA' DEGLI STUDI DI BERGAMO Dipartimento di Ingegneria INSTRADAMENTO: ALGORITMO DI KRUSKAL FONDAMENTI DI RETI E TELECOMUNICAZIONE A.A. 2012/13 - II Semestre Esercizio 1 Sia dato il grafo G= (N,

Dettagli

2.2 Alberi di supporto di costo ottimo

2.2 Alberi di supporto di costo ottimo . Alberi di supporto di costo ottimo Problemi relativi ad alberi hanno numerose applicazioni: progettazione di reti (comunicazione, teleriscaldamento,...) protocolli reti IP memorizzazione compatta di

Dettagli

3.2 Rilassamenti lineari/combinatori e bounds

3.2 Rilassamenti lineari/combinatori e bounds 3.2 Rilassamenti lineari/combinatori e bounds Consideriamo un problema di Ottimizzazione Discreta min{f(x) : x X} e sia z il valore di una soluzione ottima x X. Metodi di risoluzione spesso generano una

Dettagli

ESERCIZIO 1: Punto 1

ESERCIZIO 1: Punto 1 ESERCIZIO : Punto La seguente matrice è una matrice delle distanze di un istanza del problema del Commesso Viaggiatore. - - - - - - - Calcolare.Il valore del rilassamento che si ottiene determinando l

Dettagli

Ottimizzazione Combinatoria e Reti (a.a. 2007/08)

Ottimizzazione Combinatoria e Reti (a.a. 2007/08) o Appello 6/07/008 Ottimizzazione Combinatoria e Reti (a.a. 007/08) Nome Cognome: Matricola: ) Dopo avere finalmente superato l esame di Ricerca Operativa, Tommaso è pronto per partire in vacanza. Tommaso

Dettagli

METODI DELLA RICERCA OPERATIVA

METODI DELLA RICERCA OPERATIVA Università degli Studi di Cagliari FACOLTA' DI INGEGNERIA CORSO DI METODI DELLA RICERCA OPERATIVA Dott.ing. Massimo Di Francesco (mdifrance@unica.it) i i Dott.ing. Maria Ilaria Lunesu (ilaria.lunesu@unica.it)

Dettagli

Formulazioni. Consideriamo il seguente problema di Knapsack 0-1. max (5x x 2. ) st 3x x 2. < 6 x {0,1} 2

Formulazioni. Consideriamo il seguente problema di Knapsack 0-1. max (5x x 2. ) st 3x x 2. < 6 x {0,1} 2 Formulazioni Consideriamo il seguente problema di Knapsack 0-1 max (5x 1 + 2x 2 ) st 3x 1 + 4x 2 < 6 x {0,1} 2 Insiemi ammissibili F = {(0, 0), (0, 1), (1, 0)} Rappresentiamo sul piano gli insiemi ammissibili.

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi Golosi (Greedy) Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino un algoritmo goloso correttezza Problema della selezione di attività

Dettagli

2.2 Alberi di supporto di costo ottimo

2.2 Alberi di supporto di costo ottimo . Alberi di supporto di costo ottimo Problemi relativi ad alberi hanno numerose applicazioni: progettazione di reti (comunicazione, teleriscaldamento,...) diffusione di messaggi segreti memorizzazione

Dettagli

Parte IV: Matrici totalmente unimodulari

Parte IV: Matrici totalmente unimodulari Parte IV: Matrici totalmente unimodulari Formulazioni Consideriamo il seguente problema di Knapsack 0-1 max (5x 1 + 2x 2 ) st 3x 1 + 4x 2 < 6 x {0,1} 2 Insiemi ammissibili F = {(0, 0), (0, 1), (1, 0)}

Dettagli

Nome Cognome: RICERCA OPERATIVA (a.a. 2012/13) 5 o Appello 14/1/ Corso di Laurea: L Sp Matricola:

Nome Cognome: RICERCA OPERATIVA (a.a. 2012/13) 5 o Appello 14/1/ Corso di Laurea: L Sp Matricola: o Appello // RICERCA OPERATIVA (a.a. /) Nome Cognome: Corso di Laurea: L- Sp Matricola: ) Si individui un albero dei cammini minimi di radice sul grafo in figura. - - Si utilizzi l algoritmo più appropriato

Dettagli

Problema del cammino minimo

Problema del cammino minimo Algoritmi e Strutture di Dati II Problema del cammino minimo Un viaggiatore vuole trovare la via più corta per andare da una città ad un altra. Possiamo rappresentare ogni città con un nodo e ogni collegamento

Dettagli

Possibile applicazione

Possibile applicazione p. 1/4 Assegnamento Siano dati due insiemi A e B entrambi di cardinalità n. Ad ogni coppia (a i,b j ) A B è associato un valore d ij 0 che misura la "incompatibilità" tra a i e b j, anche interpretabile

Dettagli

Il problema del commesso viaggiatore e problemi di vehicle routing

Il problema del commesso viaggiatore e problemi di vehicle routing Il problema del commesso viaggiatore e problemi di vehicle routing Laura Galli Dipartimento di Informatica Largo B. Pontecorvo 3, 56127 Pisa laura.galli@unipi.it http://www.di.unipi.it/~galli 2 Dicembre

Dettagli

4.1 Localizzazione e pianificazione delle base station per le reti UMTS

4.1 Localizzazione e pianificazione delle base station per le reti UMTS esercitazione Ottimizzazione Prof E Amaldi Localizzazione e pianificazione delle base station per le reti UMTS Consideriamo il problema di localizzare un insieme di stazioni radio base, base station (BS),

Dettagli

Constraint Satisfaction Problems

Constraint Satisfaction Problems Constraint Satisfaction Problems Corso di Intelligenza Artificiale, a.a. 2017-2018 Prof. Francesco Trovò 19/03/2018 Constraint Satisfaction problem Fino ad ora ogni stato è stato modellizzato come una

Dettagli

3.1 Progetto di rete con capacità

3.1 Progetto di rete con capacità .1 Progetto di rete con capacità Un azienda deve progettare la propria rete di telecomunicazioni per permettere l invio di una quantità di dati d k 0 per ogni coppia origine-destinazione di nodi (s k,t

Dettagli

Massimo flusso e matching

Massimo flusso e matching Capitolo Massimo flusso e matching. Problema del massimo matching. Nel problema del massimo matching è dato un grafo non orientato G(V, A); un matching in G è un insieme di archi M A tale che nessuna coppia

Dettagli

ALGORITMI DI OTTIMIZZAZIONE M Esercizi Parte I

ALGORITMI DI OTTIMIZZAZIONE M Esercizi Parte I ALGORITMI DI OTTIMIZZAZIONE M Esercizi Parte I Esercizio 1 Dati n oggetti ed un contenitore, ad ogni oggetto j (j = 1,, n) sono associati un peso p j ed un costo c j (con p j e c j interi positivi). Si

Dettagli

2.2 Alberi di supporto di costo ottimo

2.2 Alberi di supporto di costo ottimo . Alberi di supporto di costo ottimo Problemi relativi ad alberi hanno numerose applicazioni: progettazione di reti (comunicazione, teleriscaldamento,...) memorizzazione compatta di sequenze (DNA) diffusione

Dettagli

RICERCA OPERATIVA (a.a. 2016/17) Nome: Cognome: Matricola:

RICERCA OPERATIVA (a.a. 2016/17) Nome: Cognome: Matricola: Secondo appello //0 RICERCA OPERATIVA (a.a. 0/) Nome: Cognome: Matricola: ) Si risolva il seguente problema di PL max x x x x x + x x x per via algebrica, mediante l algoritmo del Simplesso Primale a partire

Dettagli

Algoritmi euristici. Parte I: metodi classici

Algoritmi euristici. Parte I: metodi classici Algoritmi euristici. Parte I: metodi classici Daniele Vigo D.E.I.S. - Università di Bologna dvigo@deis.unibo.it rev. 1.0 - febbraio 2003 Algoritmi Euristici Algoritmi Euristici, Approssimati, Approssimanti

Dettagli

Richiami di Teoria dei Grafi. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Richiami di Teoria dei Grafi. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Richiami di Teoria dei Grafi Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Teoria dei grafi La Teoria dei Grafi costituisce, al pari della Programmazione Matematica, un corpo

Dettagli

2.2 Alberi di supporto di costo ottimo

2.2 Alberi di supporto di costo ottimo . Alberi di supporto di costo ottimo Problemi relativi ad alberi hanno numerose applicazioni: progettazione di reti (comunicazione, teleriscaldamento,...) memorizzazione compatta di sequenze (DNA) diffusione

Dettagli

Algoritmo basato su cancellazione di cicli

Algoritmo basato su cancellazione di cicli Algoritmo basato su cancellazione di cicli Dato un flusso ammissibile iniziale, si costruisce una sequenza di flussi ammissibili di costo decrescente. Ciascun flusso è ottenuto dal precedente flusso ammissibile

Dettagli

RICERCA OPERATIVA (a.a. 2011/12) Nome: Cognome: Matricola:

RICERCA OPERATIVA (a.a. 2011/12) Nome: Cognome: Matricola: 5 o Appello 8/0/0 RICERCA OPERATIVA (a.a. 0/) Nome: Cognome: Matricola: ) Si individui un albero dei cammini minimi di radice sul grafo in figura, utilizzando l algoritmo più appropriato dal punto di vista

Dettagli

2.3 Cammini ottimi. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

2.3 Cammini ottimi. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 . Cammini ottimi E. Amaldi Fondamenti di R.O. Politecnico di Milano .. Cammini minimi e algoritmo di Dijkstra Dato un grafo orientato G = (N, A) con una funzione di costo c : A c ij R e due nodi s e t,

Dettagli

Gestione della produzione e della supply chain Logistica distributiva

Gestione della produzione e della supply chain Logistica distributiva Gestione della produzione e della supply chain Logistica distributiva Paolo Detti Dipartimento di Ingegneria dell Informazione e Scienze Matematiche Università di Siena Convergenza dell algoritmo Se non

Dettagli

Esame di Ricerca Operativa del 21/02/19. max 3 x 1 +x 2 6 x x x 1 +2 x x 1 3 x x 1 4 x x 1 +2 x x 1 x 2 3

Esame di Ricerca Operativa del 21/02/19. max 3 x 1 +x 2 6 x x x 1 +2 x x 1 3 x x 1 4 x x 1 +2 x x 1 x 2 3 Esame di Ricerca Operativa del /0/ Cognome) Nome) Numero di Matricola) Esercizio. Effettuare due iterazioni dell algoritmo del simplesso primale. max x +x x +0 x x + x 8 x x x x x + x x x passo {,} passo

Dettagli

Esame di Ricerca Operativa del 23/02/17

Esame di Ricerca Operativa del 23/02/17 Esame di Ricerca Operativa del /0/ (Cognome) (Nome) (Numero di Matricola) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: min y + y + y + y y +0 y + y y y

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Collegio Didattico in Ingegneria Informatica corso di Ricerca operativa 2. Esercizi sul problema dell assegnamento

UNIVERSITÀ DEGLI STUDI ROMA TRE Collegio Didattico in Ingegneria Informatica corso di Ricerca operativa 2. Esercizi sul problema dell assegnamento UNIVERSITÀ DEGLI STUDI ROMA TRE Collegio Didattico in Ingegneria Informatica corso di Ricerca operativa Esercizi sul problema dell assegnamento Richiami di Teoria Ricordiamo che, dato un grafo G=(N,A),

Dettagli

Esame di Ricerca Operativa del 04/07/17

Esame di Ricerca Operativa del 04/07/17 Esame di Ricerca Operativa del 0/0/ (Cognome) (Nome) (Numero di Matricola) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: min y y + y + y + y + y +9 y y y

Dettagli

Esame di Ricerca Operativa del 16/02/15. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 16/02/15. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del /0/ Cognome) Nome) Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: min y + y +0 y +0 y +y + y y y +y y y y

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e Strutture Dati Minimo albero ricoprente Fabio Patrizi 1 Albero ricoprente Sia G=(V,E) un grafo non orientato e connesso. Un albero ricoprente di G è un sottografo T G tale che: T è un albero;

Dettagli

RICERCA OPERATIVA (a.a. 2015/16) Nome: Cognome: Matricola:

RICERCA OPERATIVA (a.a. 2015/16) Nome: Cognome: Matricola: o Appello // RICERCA OPERATIVA (a.a. /) Nome: Cognome: Matricola: ) Si consideri il seguente problema di PL: max x + x x x x x x + x x Si applichi l algoritmo del Simplesso Duale, per via algebrica, a

Dettagli

Esame di Ricerca Operativa del 30/06/14. max 4 x 1 7 x 2 x 1 +7 x 2 7 x 1 4 x 2 7 x 1 +5 x 2 5 x 1 x 2 5 x 2 1 x 1 +4 x 2 6

Esame di Ricerca Operativa del 30/06/14. max 4 x 1 7 x 2 x 1 +7 x 2 7 x 1 4 x 2 7 x 1 +5 x 2 5 x 1 x 2 5 x 2 1 x 1 +4 x 2 6 Esame di Ricerca Operativa del 0/0/ Cognome) Nome) Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x 7 x x +7 x 7 x x 7 x + x x x x x

Dettagli

Esame di Ricerca Operativa del 11/1/19

Esame di Ricerca Operativa del 11/1/19 Esame di Ricerca Operativa del // (Cognome) (Nome) (Numero di Matricola) Esercizio. (a) Risolvere il seguente problema di programmazione lineare, determinandone il problema duale ed applicando l algoritmo

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e Strutture Dati Minimo albero ricoprente Domenico Fabio Savo 1 Albero ricoprente Sia G=(V,E) un grafo non orientato e connesso. Un albero ricoprente di G è un sottografo T G tale che: T è un

Dettagli

città

città Esercitazione 11-4-18 Esercizio 1. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella: città 2 3 4 5 1

Dettagli

Esame di Ricerca Operativa del 03/07/18. Base x degenere y Indice Rapporti Indice entrante uscente

Esame di Ricerca Operativa del 03/07/18. Base x degenere y Indice Rapporti Indice entrante uscente Esame di Ricerca Operativa del 0/0/8 Cognome) Nome) Numero di Matricola) Esercizio. Effettuare due iterazioni dell algoritmo del simplesso duale per il problema min y + y + y + y + y +8 y y +y y y y y

Dettagli

1) Disegnare la rete di progetto con le attività sugli archi, e la rete di progetto con le attività sui nodi.

1) Disegnare la rete di progetto con le attività sugli archi, e la rete di progetto con le attività sui nodi. Un progetto di ricerca e sviluppo di una società si compone di 12 (principali) attività con precedenze, durate normali b ij (in giorni), costi diretti c ij (in dollari) delle attività alla loro durata

Dettagli

RICERCA OPERATIVA (a.a. 2017/18) Nome: Cognome: Matricola:

RICERCA OPERATIVA (a.a. 2017/18) Nome: Cognome: Matricola: Terzo appello //8 RICERCA OPERATIVA (a.a. 7/8) Nome: Cognome: Matricola: ) Si risolva il seguente problema di PL max x x x x x x x x x applicando l algoritmo del Simplesso Primale, per via algebrica, a

Dettagli

Esame di Ricerca Operativa del 18/06/18

Esame di Ricerca Operativa del 18/06/18 Esame di Ricerca Operativa del 8/0/8 (Cognome) (Nome) (Numero di Matricola) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x +x x x x +x x x x + x

Dettagli

Ricerca Operativa A.A. 2007/ Esercitazione di laboratorio: Branch and Bound.

Ricerca Operativa A.A. 2007/ Esercitazione di laboratorio: Branch and Bound. Ricerca Operativa A.A. 2007/2008 17. Esercitazione di laboratorio: Branch and Bound. Luigi De Giovanni - Ricerca Operativa - 17. Esercitazione di laboratorio: Branch and Bound 17.1 . Luigi De Giovanni

Dettagli

Un esempio di applicazione della programmazione lineare intera al progetto di una rete stradale con vincoli di network survivability

Un esempio di applicazione della programmazione lineare intera al progetto di una rete stradale con vincoli di network survivability Un esempio di applicazione della programmazione lineare intera al progetto di una rete stradale con vincoli di network survivability Corso di Ricerca Operativa per il Corso di Laurea Magistrale in Ingegneria

Dettagli

Minimo albero di copertura

Minimo albero di copertura apitolo 0 Minimo albero di copertura efinizione 0.. ato un grafo G = (V, E) non orientato e connesso, un albero di copertura di G è un sottoinsieme T E tale che il sottografo (V, T ) è un albero libero.

Dettagli

Esame di Ricerca Operativa del 25/06/12

Esame di Ricerca Operativa del 25/06/12 Esame di Ricerca Operativa del /0/ Cognome) Nome) Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x x x + x x x 8 x x x + x x x Base

Dettagli

Esame di Ricerca Operativa del 11/02/2015

Esame di Ricerca Operativa del 11/02/2015 Esame di Ricerca Operativa del /0/0 (Cognome) (Nome) (Matricola) Esercizio. Un azienda produce tipi di TV (, 0, 0 e pollici) ed è divisa in stabilimenti (A e B). L azienda dispone di 0 operai in A e 0

Dettagli

Introduzione ai grafi

Introduzione ai grafi TFA A048 Anno Accademico 2012-13 Outline Cenni storici sui grafi Nozioni introduttive: cammini, connessione, alberi, cicli Cammini di costo minimo Origini storiche La nascita della teoria dei grafi risale

Dettagli

PROBLEMA DEI CAMMINI MINIMI [CORMEN ET AL. CAP. 24] Il costo di cammino minimo da un vertice u ad un vertice v è definito nel seguente modo:

PROBLEMA DEI CAMMINI MINIMI [CORMEN ET AL. CAP. 24] Il costo di cammino minimo da un vertice u ad un vertice v è definito nel seguente modo: PROBLEMA DEI CAMMINI MINIMI [CORMEN ET AL. CAP. 24] Sia G = (V,E) un grafo orientato ai cui archi è associato un costo W(u,v). Il costo di un cammino p = (v 1,v 2,...,v k ) è la somma dei costi degli archi

Dettagli

Problemi di localizzazione

Problemi di localizzazione Problemi di localizzazione Claudio Arbib Università di L Aquila Prima Parte (marzo 200): problemi con singolo decisore . Introduzione Un problema di localizzazione consiste in generale nel decidere dove

Dettagli

Euristiche per il Problema del Commesso Viaggiatore

Euristiche per il Problema del Commesso Viaggiatore Sapienza Università di Roma - Dipartimento di Ingegneria Informatica, Automatica e Gestionale Euristiche per il Problema del Commesso Viaggiatore Renato Bruni bruni@dis.uniroma.it Il materiale presentato

Dettagli

Quinto appello 27/6/ = 4. B b B = 2 b N = 4

Quinto appello 27/6/ = 4. B b B = 2 b N = 4 Quinto appello // RICERCA OPERATIVA (a.a. /) Nome: Cognome: Matricola: ) Si risolva il problema di PL dato applicando l algoritmo del Simplesso Duale, per via algebrica, a partire dalla base B {, }. Per

Dettagli

3.3 Problemi di PLI facili

3.3 Problemi di PLI facili 3.3 Problemi di PLI facili Consideriamo un generico problema di PLI espresso in forma standard min{c t x : Ax = b, x Z n +} (1) dove A Z m n con n m, e b Z m. Supponiamo che A sia di rango pieno. Sia P

Dettagli

Algoritmi Greedy. Tecniche Algoritmiche: tecnica greedy (o golosa) Un esempio

Algoritmi Greedy. Tecniche Algoritmiche: tecnica greedy (o golosa) Un esempio Algoritmi Greedy Tecniche Algoritmiche: tecnica greedy (o golosa) Idea: per trovare una soluzione globalmente ottima, scegli ripetutamente soluzioni ottime localmente Un esempio Input: lista di interi

Dettagli

1) Data la seguente istanza di TSP (grafo completo con 5 nodi): c 12 = 52; c 13 = 51; c 14 = 40; c 15 = 53; c 23 = 44;

1) Data la seguente istanza di TSP (grafo completo con 5 nodi): c 12 = 52; c 13 = 51; c 14 = 40; c 15 = 53; c 23 = 44; 1) Data la seguente istanza di TSP (grafo completo con 5 nodi): c 12 = 52; c 13 = 51; c 14 = 40; c 15 = 53; c 23 = 44; c 24 = 15; c 25 = 12; c 34 = 32; c 35 = 55; c 45 = 24 Si calcoli l ottimo duale (formulazione

Dettagli

RICERCA OPERATIVA (a.a. 2014/15) Nome: Cognome: Matricola:

RICERCA OPERATIVA (a.a. 2014/15) Nome: Cognome: Matricola: 3 o Appello /2/2 RICERCA OPERATIVA (a.a. 2/) Nome: Cognome: Matricola: ) Si risolva algebricamente il seguente problema di PL max x 2x 2 x x 2 2 x x + x 2 3 x 2 7 mediante l algoritmo del Simplesso Primale

Dettagli

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Gestione della produzione e della supply chain Logistica distributiva Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Un algoritmo per il flusso a costo minimo: il simplesso

Dettagli

2.3.3 Cammini ottimi nei grafi senza circuiti

2.3.3 Cammini ottimi nei grafi senza circuiti .. Cammini ottimi nei grafi senza circuiti Sia un grafo G = (N, A) orientato senza circuiti e una funzione di costo che assegna un valore c ij R ad ogni arco (i, j) A circuito Proprietà I nodi di un grafo

Dettagli

AA Prova del 4 Dicembre 2012 Compito A

AA Prova del 4 Dicembre 2012 Compito A Prova del 4 Dicembre 2012 Compito A A.1). (14 punti) Un agenzia viaggi sta organizzando una visita guidata a Berlino: per questo motivo ha selezionato 11 escursioni, tra tante che erano possibili. Scrivere

Dettagli

Grafo per n/m/g/c max r i =0

Grafo per n/m/g/c max r i =0 M1 M2 M3 M JOB SHOP SENZA RICIRCOLAZIONE Grafo per n/m/g/c max r i =0 Archi (precedenze) disgiuntivi(macch.) Arco(precedenza) congiuntivo(pezzi) 1,1 2,1 3,1 I 2,2 1,2,2 3,2 F 1,3 2,3,3 Operazione(i,j):

Dettagli

Esame di Ricerca Operativa del 15/01/19. max 6 x 1 x 2 6 x x x 1 +2 x x 1 3 x x 1 4 x x 1 +2 x x 1 x 2 19

Esame di Ricerca Operativa del 15/01/19. max 6 x 1 x 2 6 x x x 1 +2 x x 1 3 x x 1 4 x x 1 +2 x x 1 x 2 19 Esame di Ricerca Operativa del /0/9 Cognome) Nome) Numero di Matricola) Esercizio. Effettuare due iterazioni dell algoritmo del simplesso primale: max x x x + x x + x 8 x x x x x + x x x 9 passo {,} passo

Dettagli

Progettazione di Algoritmi

Progettazione di Algoritmi Corso di laurea in Informatica Prova scritta del: Progettazione di Algoritmi 0/06/06 Prof. De Prisco Inserire i propri dati nell apposito spazio. Non voltare la finché non sarà dato il via. Dal via avrai

Dettagli

LABORATORIO DI ALGORITMI E STRUTTURE DATI A-L. Ingegneria e scienze informatiche Cesena A.A: 2016/2017 Docente: Greta Sasso

LABORATORIO DI ALGORITMI E STRUTTURE DATI A-L. Ingegneria e scienze informatiche Cesena A.A: 2016/2017 Docente: Greta Sasso LABORATORIO DI ALGORITMI E STRUTTURE DATI A-L Ingegneria e scienze informatiche Cesena A.A: 2016/2017 Docente: Greta Sasso Minimum Spanning Tree Albero di copertura (Spanning Tree): un albero di copertura

Dettagli

2 OTTIMIZZAZIONE SU GRAFI. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

2 OTTIMIZZAZIONE SU GRAFI. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 2 OTTIMIZZAZIONE SU GRAFI E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Molti problemi decisionali possono essere formulati utilizzando il linguaggio della teoria dei grafi. Esempi: - problemi di

Dettagli

Problemi dello zaino e di bin packing

Problemi dello zaino e di bin packing Problemi dello zaino e di bin packing Laura Galli Dipartimento di Informatica Largo B. Pontecorvo 3, 56127 Pisa laura.galli@unipi.it http://www.di.unipi.it/~galli 2 Dicembre 2014 Ricerca Operativa 2 Laurea

Dettagli

Matroidi, algoritmi greedy e teorema di Rado

Matroidi, algoritmi greedy e teorema di Rado Matroidi, algoritmi greedy e teorema di Rado per il corso di Laboratorio di Algoritmi e Ricerca Operativa Dott. Alberto Leporati / Prof.ssa Enza Messina Dipartimento di Informatica, Sistemistica e Comunicazione

Dettagli

Esame di Ricerca Operativa del 08/01/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 08/01/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 08/0/ Cognome) Nome) Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x + x x +x x x 0 x + x x x 8 x x 8

Dettagli

Flusso a Costo Minimo

Flusso a Costo Minimo Sapienza Università di Roma - Dipartimento di Ingegneria Informatica, Automatica e Gestionale Flusso a Costo Minimo Docente: Renato Bruni bruni@dis.uniroma.it Corso di: Ottimizzazione Combinatoria Dal

Dettagli

Esame di Ricerca Operativa del 09/01/15. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 09/01/15. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 0/0/ (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: min 7 y +y + y + y +y +7 y y +y y y

Dettagli

PROBLEMA DEL COMMESSO VIAGGIATORE

PROBLEMA DEL COMMESSO VIAGGIATORE PROBLEMA DEL COMMESSO VIAGGIATORE INTRODUZIONE Il problema del commesso viaggiatore (traveling salesman problem :TSP) è un classico problema di ottimizzazione che si pone ogni qual volta, dati un numero

Dettagli

AMPL Problemi su Reti

AMPL Problemi su Reti Dipartimento di Matematica Università di Padova Corso di Laurea Informatica Outline Problemi su Reti Cammino Minimo Molti problemi di ottimizzazione combinatoria possono essere modellati ricorrendo ai

Dettagli

Algoritmi Euristici. Corso di Laurea in Informatica e Corso di Laurea in Matematica. Roberto Cordone DI - Università degli Studi di Milano

Algoritmi Euristici. Corso di Laurea in Informatica e Corso di Laurea in Matematica. Roberto Cordone DI - Università degli Studi di Milano Algoritmi Euristici Corso di Laurea in Informatica e Corso di Laurea in Matematica Roberto Cordone DI - Università degli Studi di Milano Lezioni: Martedì 14.30-16.30 in Aula Omega Venerdì 14.30-16.30 in

Dettagli

Ottimizzazione Combinatoria 2 Presentazione

Ottimizzazione Combinatoria 2 Presentazione Ottimizzazione Combinatoria Presentazione ANTONIO SASSANO Università di Roma La Sapienza Dipartimento di Informatica, Automatica e Gestionale «Antonio Ruberti» Roma, Febbraio Prerequisiti (cosa sapete)

Dettagli

Branch-and-bound per TSP

Branch-and-bound per TSP p. 1/6 Branch-and-bound per TSP Anche qui, rispetto allo schema generale visto in precedenza dobbiamo specificare: p. 1/6 Branch-and-bound per TSP Anche qui, rispetto allo schema generale visto in precedenza

Dettagli

Problema dell albero di cammini minimi (SPT, Shortest Path Tree) o problema dei cammini minimi :

Problema dell albero di cammini minimi (SPT, Shortest Path Tree) o problema dei cammini minimi : Per almeno una delle soluzioni ottime { P i, i r } del problema generalizzato, l unione dei cammini P i forma un albero di copertura per G radicato in r e orientato, ossia un albero la cui radice è r i

Dettagli

COMPITO DI RICERCA OPERATIVA. max 8 5x 1 3x 2 x 3 = 1 + 4x 1 + x 2 x 4 = 1 x 1 + x 2 x 5 = 5 x 1 x 2

COMPITO DI RICERCA OPERATIVA. max 8 5x 1 3x 2 x 3 = 1 + 4x 1 + x 2 x 4 = 1 x 1 + x 2 x 5 = 5 x 1 x 2 COMPITO DI RICERCA OPERATIVA ESERCIZIO. (5 punti) Dato un problema di PL, la sua riformulazione rispetto alla base B = {x 3, x, x 5 } é la seguente: max 8 5x 3x x 3 = + x + x x = x + x x 5 = 5 x x Solo

Dettagli

Nome Cognome... Firma...

Nome Cognome... Firma... Prova del 2 Dicembre 2013 Compito A A.1). (14 punti) Due elettricisti stanno progettando un nuovo impianto elettrico. Hanno a disposizione 50 componenti, con caratteristiche tecniche diverse, e devono

Dettagli

PROBLEMI SU GRAFO (combinatori)

PROBLEMI SU GRAFO (combinatori) PROLMI SU GRO (combinatori) In molti problemi il numero di soluzioni ammissibili è finito. Questi problemi sono quasi sempre descritti su grafi. Rete stradale: come andare da a in tempo minimo? Grafo orientato

Dettagli

Algoritmi esatti. La teoria ci dice che per problemi difficili (come il

Algoritmi esatti. La teoria ci dice che per problemi difficili (come il p. 1/4 Algoritmi esatti La teoria ci dice che per problemi difficili (come il KNAPSACK o, ancora di più, il TSP ) i tempi di risoluzione delle istanze, calcolati tramite analisi worst-case, tendono a crescere

Dettagli

Algoritmi e Strutture di Dati (3 a Ed.) Algoritmo dei tre indiani. Alan Bertossi, Alberto Montresor

Algoritmi e Strutture di Dati (3 a Ed.) Algoritmo dei tre indiani. Alan Bertossi, Alberto Montresor Algoritmi e Strutture di Dati ( a Ed.) Algoritmo dei tre indiani Alan Bertossi, Alberto Montresor Vediamo a grandi linee un algoritmo proposto da Kumar, Malhotra e Maheswari (978) come raffinamento di

Dettagli

Esame di Ricerca Operativa. x 1 +2 x 2 6 x 1 +x 2 6 x 1 4 x 1 1

Esame di Ricerca Operativa. x 1 +2 x 2 6 x 1 +x 2 6 x 1 4 x 1 1 Esame di Ricerca Operativa (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x + x x +x x 0 x + x x +x x x Base Soluzione

Dettagli

Week #9 Assessment. Practice makes perfect... November 23, 2016

Week #9 Assessment. Practice makes perfect... November 23, 2016 Week #9 Assessment Practice makes perfect... November 23, 2016 Esercizio 1 Un azienda di trasporto deve caricare m camion {1,..., m} in modo da servire giornalmente un dato insieme di clienti. Nei camion

Dettagli

Ricerca per ispezione guidata (Branch and Bound) per min L max con r j 0

Ricerca per ispezione guidata (Branch and Bound) per min L max con r j 0 Per esporre il più importante algoritmo per lo scheduling in sistemi ad instradamento differenziato occorre considerare un estensione del min L max Ricerca per ispezione guidata (Branch and Bound) per

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Cognome................................ Nome................................... Matricola............................... Algoritmi e Strutture Dati Prova scritta del 4 luglio 207 TEMPO DISPONIBILE: 2 ore

Dettagli

RICERCA OPERATIVA (a.a. 2017/18) Nome: Cognome: Matricola:

RICERCA OPERATIVA (a.a. 2017/18) Nome: Cognome: Matricola: Primo appello 9//8 RICERCA OPERATIVA (a.a. 7/8) Nome: Cognome: Matricola: ) Si risolva il seguente problema di PL max x + x x + x x x x x applicando l algoritmo del Simplesso Primale, per via algebrica,

Dettagli