Branch-and-bound per KNAPSACK

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Branch-and-bound per KNAPSACK"

Transcript

1 p. 1/1 Branch-and-bound per KNAPSACK Rispetto allo schema generale visto in precedenza dobbiamo specificare: come si calcola un upper bound su un sottinsieme;

2 p. 1/1 Branch-and-bound per KNAPSACK Rispetto allo schema generale visto in precedenza dobbiamo specificare: come si calcola un upper bound su un sottinsieme; come si effettua il branching;

3 p. 1/1 Branch-and-bound per KNAPSACK Rispetto allo schema generale visto in precedenza dobbiamo specificare: come si calcola un upper bound su un sottinsieme; come si effettua il branching; come si individuano soluzioni ammissibili con cui, eventualmente, aggiornare il valore del lower bound LB.

4 p. 2/1 Upper bound U(S) Cominciamo con il calcolare l upper bound U(S) su tutta la regione ammissibile S.

5 p. 2/1 Upper bound U(S) Cominciamo con il calcolare l upper bound U(S) su tutta la regione ammissibile S. L upper bound si calcola utilizzando il rilassamento lineare del problema originale: max n i=1 v ix i n i=1 p ix i b 0 x i 1 i {1,...,n}

6 p. 2/1 Upper bound U(S) Cominciamo con il calcolare l upper bound U(S) su tutta la regione ammissibile S. L upper bound si calcola utilizzando il rilassamento lineare del problema originale: max n i=1 v ix i n i=1 p ix i b 0 x i 1 i {1,...,n} Questo è un problema di PL, ma è di forma molto semplice e non abbiamo bisogno di scomodare l algoritmo del simplesso per risolverlo.

7 p. 3/1 Risoluzione del rilassamento lineare Riordinare, eventualmente, gli oggetti in modo non crescente rispetto ai rapporti valore/peso v i p i, cioè si abbia che: v 1 v 2 v n. p 1 p 2 p n

8 p. 4/1 Si calcolino i valori b p 1 b p 1 p 2 fino ad arrivare al primo valore negativo. b r+1 se vi si arriva (se non vi si arriva vuol dire semplicemente che tutti gli oggetti possono essere messi nello zaino e la soluzione ottima del problema è proprio quella di mettere tutti gli oggetti nello zaino). j=1 p j

9 p. 5/1 Soluzione rilassamento lineare La soluzione ottima del rilassamento lineare è la seguente x 1 = x 2 = = x r = 1 x r+1 = b r j=1 p j p r+1 x r+2 = x r+3 = = x n = 0

10 p. 5/1 Soluzione rilassamento lineare La soluzione ottima del rilassamento lineare è la seguente ed ha il valore ottimo x 1 = x 2 = = x r = 1 x r+1 = b r j=1 p j p r+1 x r+2 = x r+3 = = x n = 0 r j=1 v j + v r+1 b r j=1 p j p r+1.

11 p. 6/1 Soluzione ammissibile Notiamo anche che la soluzione x 1 = x 2 = = x r = 1 x r+1 = x r+2 = x r+3 = = x n = 0 ottenuta approssimando per difetto il valore dell unica variabile (la x r+1 ) che può avere coordinate non intere nella soluzione del rilassamento lineare, è appartenente a S (il peso dei primi r oggetti non supera la capacità dello zaino). Quindi tale soluzione può essere utilizzata per il calcolo del lower bound LB.

12 p. 7/1 Sottinsiemi di S di forma particolare Consideriamo sottinsiemi di S con questa forma: S(I 0,I 1 ) = {N S : l oggetto i N i I 0, l oggetto i N i I 1 } dove I 0,I 1 {1,...,n} e I 0 I 1 =.

13 p. 7/1 Sottinsiemi di S di forma particolare Consideriamo sottinsiemi di S con questa forma: S(I 0,I 1 ) = {N S : l oggetto i N i I 0, l oggetto i N i I 1 } dove I 0,I 1 {1,...,n} e I 0 I 1 =. In altre parole S(I 0,I 1 ) contiene tutti gli elementi di S che non contengono gli oggetti in I 0 e contengono gli oggetti in I 1. Possono invece indifferentemente contenere o non contenere gli oggetti nell insieme con i 1 < < i k. I f = {i 1,...,i k } = {1,...,n} \ (I 0 I 1 ),

14 p. 8/1 Nota bene Si ha che S = S(, ), cioè la regione ammissibile del problema può essere vista come caso particolare di sottinsieme di forma S(I 0,I 1 ) con I 0 = I 1 =.

15 p. 9/1 Upper bound per tali sottinsiemi Il nostro originario problema KN AP SACK ristretto al sottinsieme S(I 0,I 1 ) si presenta nella seguente forma: max i I 0 v i x i + i I 1 v i x i + i I f v i x i i I 0 p i x i + i I 1 p i x i + i I f p i x i b da cui: x i {0, 1} i I f

16 p. 9/1 Upper bound per tali sottinsiemi Il nostro originario problema KN AP SACK ristretto al sottinsieme S(I 0,I 1 ) si presenta nella seguente forma: max i I 0 v i x i + i I 1 v i x i + i I f v i x i i I 0 p i x i + i I 1 p i x i + i I f p i x i b x i {0, 1} i I f da cui: max i I 1 v i + i I f v i x i i I f p i x i b i I 1 p i x i {0, 1} i I f

17 p. 10/1 Continua Possiamo notare che si tratta ancora di un problema di tipo KNAPSACK dove è presente una quantità costante nell obiettivo ( i I 1 v i ), dove lo zaino ha ora capacità b i I 1 p i e dove l insieme di oggetti in esame è ora ristretto ai soli oggetti in I f.

18 p. 10/1 Continua Possiamo notare che si tratta ancora di un problema di tipo KNAPSACK dove è presente una quantità costante nell obiettivo ( i I 1 v i ), dove lo zaino ha ora capacità b i I 1 p i e dove l insieme di oggetti in esame è ora ristretto ai soli oggetti in I f. Trattandosi ancora di un problema dello zaino, possiamo applicare ad esso la stessa procedura che abbiamo adottato per trovare l upper bound U(S), ovvero si risolve il rilassamento lineare.

19 p. 10/1 Continua Possiamo notare che si tratta ancora di un problema di tipo KNAPSACK dove è presente una quantità costante nell obiettivo ( i I 1 v i ), dove lo zaino ha ora capacità b i I 1 p i e dove l insieme di oggetti in esame è ora ristretto ai soli oggetti in I f. Trattandosi ancora di un problema dello zaino, possiamo applicare ad esso la stessa procedura che abbiamo adottato per trovare l upper bound U(S), ovvero si risolve il rilassamento lineare. Tale procedura darà in output oltre all upper bound U(S(I 0,I 1 )), anche una soluzione appartenente a S(I 0,I 1 ) (e quindi a S) utilizzabile per il calcolo del lower bound LB.

20 p. 11/1 Procedura di calcolo Passo 1 Se b i I 1 p i < 0, il nodo non contiene soluzioni ammissibili (gli oggetti in I 1 hanno già un peso superiore alla capacità b dello zaino). In tal caso ci si arresta e si pone U(S(I 0,I 1 )) =

21 p. 12/1 Continua Passo 2 Altrimenti, si sottraggano successivamente a b i I 1 p i i pesi degli oggetti in I f nell ordine dato arrestandoci se

22 p. 12/1 Continua Passo 2 Altrimenti, si sottraggano successivamente a b i I 1 p i i pesi degli oggetti in I f nell ordine dato arrestandoci se Caso A si arriva ad un valore negativo, ovvero esiste r {1,...,k 1} tale che b i I 1 p i p i1 p ir 0 ma b i I 1 p i p i1 p ir p ir+1 < 0.

23 p. 12/1 Continua Passo 2 Altrimenti, si sottraggano successivamente a b i I 1 p i i pesi degli oggetti in I f nell ordine dato arrestandoci se Caso A si arriva ad un valore negativo, ovvero esiste r {1,...,k 1} tale che b i I 1 p i p i1 p ir 0 ma b i I 1 p i p i1 p ir p ir+1 < 0. Caso B Si sono sottratti i pesi di tutti gli oggetti in I f senza mai arrivare ad un valore negativo.

24 p. 13/1 Soluzioni ottime Caso A: x i1 = x i2 = = x ir = 1 x ir+1 = b i I 1 p i r j=1 p i j p ir+1 x ir+2 = x ir+3 = = x ik = 0

25 p. 13/1 Soluzioni ottime Caso A: x i1 = x i2 = = x ir = 1 x ir+1 = b i I 1 p i r j=1 p i j p ir+1 x ir+2 = x ir+3 = = x ik = 0 Caso B: x i1 = x i2 = = x ik = 1

26 Passo 3 Output caso A: p. 14/1

27 p. 14/1 Passo 3 Output caso A: U(S(I 0, I 1 )) = i I 1 v i + r h=1 v ih + v ir+1 b i I 1 p i r h=1 p i h p ir+1.

28 p. 14/1 Passo 3 Output caso A: U(S(I 0, I 1 )) = i I 1 v i + r h=1 v ih + v ir+1 b i I 1 p i r h=1 p i h p ir+1. N = I 1 {i 1,..., i r } con f(n) = r v i + i I 1 h=1 v ih

29 p. 14/1 Passo 3 Output caso A: U(S(I 0, I 1 )) = i I 1 v i + r h=1 v ih + v ir+1 b i I 1 p i r h=1 p i h p ir+1. Output caso B: N = I 1 {i 1,..., i r } con f(n) = r v i + i I 1 U(S(I 0, I 1 )) = k v i + v ih. i I 1 h=1 h=1 v ih

30 p. 14/1 Passo 3 Output caso A: U(S(I 0, I 1 )) = i I 1 v i + r h=1 v ih + v ir+1 b i I 1 p i r h=1 p i h p ir+1. Output caso B: N = I 1 {i 1,..., i r } con f(n) = r v i + i I 1 U(S(I 0, I 1 )) = k v i + v ih. i I 1 h=1 h=1 v ih N = I 1 I f, con f(n) = U(S(I 0, I 1 )) = k v i + i I 1 h=1 v ih

31 p. 15/1 Nota bene Nel caso B il sottinsieme S(I 0,I 1 ) verrà sicuramente cancellato. Infatti in tal caso si ha: U(S(I 0,I 1 )) = f(n) LB, da cui segue la cancellazione del sottinsieme.

32 p. 16/1 Branching Vediamo ora di descrivere l operazione di branching. Dapprima la descriviamo per l insieme S e poi l estendiamo agli altri sottinsiemi generati dall algoritmo.

33 p. 16/1 Branching Vediamo ora di descrivere l operazione di branching. Dapprima la descriviamo per l insieme S e poi l estendiamo agli altri sottinsiemi generati dall algoritmo. Supponiamo di trovarci, al termine dell esecuzione della procedura per il calcolo di U(S), nel caso A (il caso B è un caso banale in cui tutti gli oggetti possono essere inseriti nello zaino). Avremo quindi un indice r + 1 che è il primo oggetto per cui la sottrazione successiva dei pesi assume valore negativo.

34 p. 17/1 Continua La regola di branching prescrive di suddividere S nei due sottinsiemi S({r + 1}, ) e S(, {r + 1}), ovvero in un sottinsieme della partizione si aggiunge l oggetto r + 1 all insieme I 0, nell altro lo si aggiunge all insieme I 1.

35 p. 18/1 Estensione Quanto visto per l insieme S può essere esteso a tutti i sottinsiemi di forma S(I 0,I 1 ): dato un tale sottinsieme, l oggetto i r+1 che appare nel calcolo dell upper bound nel caso A viene aggiunto in I 0 in un sottinsieme della partizione di S(I 0,I 1 ) e in I 1 nell altro sottinsieme, ovvero la partizione di S(I 0,I 1 ) sarà data dai seguenti sottinsiemi S(I 0 {i r+1 },I 1 ) e S(I 0,I 1 {i r+1 }).

36 p. 18/1 Estensione Quanto visto per l insieme S può essere esteso a tutti i sottinsiemi di forma S(I 0,I 1 ): dato un tale sottinsieme, l oggetto i r+1 che appare nel calcolo dell upper bound nel caso A viene aggiunto in I 0 in un sottinsieme della partizione di S(I 0,I 1 ) e in I 1 nell altro sottinsieme, ovvero la partizione di S(I 0,I 1 ) sarà data dai seguenti sottinsiemi S(I 0 {i r+1 },I 1 ) e S(I 0,I 1 {i r+1 }). Si noti che con questa regola di branching tutti i sottinsiemi che appariranno nell insieme C saranno del tipo S(I 0,I 1 ) e quindi un upper bound per essi potrà sempre essere calcolato tramite la procedura vista.

Branch-and-bound per KNAPSACK

Branch-and-bound per KNAPSACK p. 1/1 Branch-and-bound per KNAPSACK Rispetto allo schema generale visto in precedenza dobbiamo specificare: come si calcola un upper bound su un sottinsieme; come si effettua il branching; come si individuano

Dettagli

Branch and Bound. Branch and Bound p. 1/3

Branch and Bound. Branch and Bound p. 1/3 Branch and Bound Branch and Bound p. 1/3 Branch-and-bound Un esempio di problema di PLI: P 0 : max x 1 + 3x 2 (u 1 ) x 1 1 2 (u 2 ) 5x 1 + 3x 2 5 (u 3 ) x 1 + 7 5 x 2 13 2 x 1,x 2 0 x 1,x 2 I Branch and

Dettagli

Algoritmi esatti. La teoria ci dice che per problemi difficili (come il

Algoritmi esatti. La teoria ci dice che per problemi difficili (come il p. 1/4 Algoritmi esatti La teoria ci dice che per problemi difficili (come il KNAPSACK o, ancora di più, il TSP ) i tempi di risoluzione delle istanze, calcolati tramite analisi worst-case, tendono a crescere

Dettagli

Il Branch & Bound. Definizione 1. Sia S R n. La famiglia S = {S 1, S 2,..., S k S} tale che S 1 S 2 S k = S viene detta suddivisione di S.

Il Branch & Bound. Definizione 1. Sia S R n. La famiglia S = {S 1, S 2,..., S k S} tale che S 1 S 2 S k = S viene detta suddivisione di S. Il Branch & Bound Il metodo Branch & Bound è una tecnica che permette di risolvere all ottimo un generico problema di Programmazione Lineare Intera. Tale metodo si basa su due concetti cardine: quello

Dettagli

5.1 Metodo Branch and Bound

5.1 Metodo Branch and Bound 5. Metodo Branch and Bound Consideriamo un generico problema di ottimizzazione min{ c(x) : x X } Idea: Ricondurre la risoluzione di un problema difficile a quella di sottoproblemi più semplici effettuando

Dettagli

Ricerca Operativa. G. Liuzzi. Lunedí 20 Aprile 2015

Ricerca Operativa. G. Liuzzi. Lunedí 20 Aprile 2015 1 Lunedí 20 Aprile 2015 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR Rilassamento di un problema Rilassare un problema di Programmazione Matematica vuol dire trascurare alcuni (tutti i)

Dettagli

Università Ca Foscari Venezia

Università Ca Foscari Venezia Università Ca Foscari Venezia Dipartimento di Scienze Ambientali, Informatica e Statistica Giovanni Fasano Brevi NOTE sul Metodo del BRANCH & BOUND Università Ca Foscari Venezia, Dipartimento di Management,

Dettagli

Programmazione Lineare Intera. Programmazione Lineare Intera p. 1/4

Programmazione Lineare Intera. Programmazione Lineare Intera p. 1/4 Programmazione Lineare Intera Programmazione Lineare Intera p. 1/4 Programmazione Lineare Intera Problema di PLI in forma standard: max cx Ax = b x 0, x I n I insieme degli interi. Regione ammissibile:

Dettagli

3.4 Metodo di Branch and Bound

3.4 Metodo di Branch and Bound 3.4 Metodo di Branch and Bound Consideriamo un generico problema di Ottimizzazione Discreta dove X è la regione ammissibile. (P ) z = max{c(x) : x X} Metodologia generale di enumerazione implicita (Land

Dettagli

Programmazione a numeri interi: il metodo del Branch and Bound

Programmazione a numeri interi: il metodo del Branch and Bound Programmazione a numeri interi: il metodo del Branch and Bound L. De Giovanni G. Zambelli Un problema di programmazione lineare intera è una problema della forma z I = maxc T x Ax b x 0 x i Z, i I. (1)

Dettagli

Esercizi sulla Programmazione Lineare Intera

Esercizi sulla Programmazione Lineare Intera Soluzioni 4.7-4.0 Fondamenti di Ricerca Operativa Prof. E. Amaldi Esercizi sulla Programmazione Lineare Intera 4.7 Algoritmo del Simplesso Duale. Risolvere con l algoritmo del simplesso duale il seguente

Dettagli

Parte III: Algoritmo di Branch-and-Bound

Parte III: Algoritmo di Branch-and-Bound Parte III: Algoritmo di Branch-and-Bound Divide et Impera Sia z * max {c T x : x S} (1) un problema di ottimizzazione combinatoria difficile da risolvere. Domanda: E possibile decomporre il problema (1)

Dettagli

Possibile applicazione

Possibile applicazione p. 1/4 Assegnamento Siano dati due insiemi A e B entrambi di cardinalità n. Ad ogni coppia (a i,b j ) A B è associato un valore d ij 0 che misura la "incompatibilità" tra a i e b j, anche interpretabile

Dettagli

Problemi dello zaino e di bin packing

Problemi dello zaino e di bin packing Problemi dello zaino e di bin packing Laura Galli Dipartimento di Informatica Largo B. Pontecorvo 3, 56127 Pisa laura.galli@unipi.it http://www.di.unipi.it/~galli 2 Dicembre 2014 Ricerca Operativa 2 Laurea

Dettagli

Branch-and-bound per TSP

Branch-and-bound per TSP p. 1/6 Branch-and-bound per TSP Anche qui, rispetto allo schema generale visto in precedenza dobbiamo specificare: p. 1/6 Branch-and-bound per TSP Anche qui, rispetto allo schema generale visto in precedenza

Dettagli

5.1 Metodo Branch and Bound

5.1 Metodo Branch and Bound 5. Metodo Branch and Bound Si consideri il problema min{ c(x) : x X } Idea: Ricondurre la risoluzione di un problema difficile a quella di sottoproblemi più semplici effettuando una partizione (ricorsiva)

Dettagli

città

città Esercitazione 11-4-18 Esercizio 1. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella: città 2 3 4 5 1

Dettagli

COMPITO DI RICERCA OPERATIVA. max 8 5x 1 3x 2 x 3 = 1 + 4x 1 + x 2 x 4 = 1 x 1 + x 2 x 5 = 5 x 1 x 2

COMPITO DI RICERCA OPERATIVA. max 8 5x 1 3x 2 x 3 = 1 + 4x 1 + x 2 x 4 = 1 x 1 + x 2 x 5 = 5 x 1 x 2 COMPITO DI RICERCA OPERATIVA ESERCIZIO. (5 punti) Dato un problema di PL, la sua riformulazione rispetto alla base B = {x 3, x, x 5 } é la seguente: max 8 5x 3x x 3 = + x + x x = x + x x 5 = 5 x x Solo

Dettagli

Esame di Ricerca Operativa del 24/07/18. max 7 x 1 +4 x 2 x 1 +3 x x 1 +x x 1 +x 2 12 x 1 x x 1 3 x 2 2 x 1 2 x 2 14

Esame di Ricerca Operativa del 24/07/18. max 7 x 1 +4 x 2 x 1 +3 x x 1 +x x 1 +x 2 12 x 1 x x 1 3 x 2 2 x 1 2 x 2 14 Esame di Ricerca Operativa del /07/18 Cognome) Nome) Numero di Matricola) Esercizio 1. Effettuare due iterazioni dell algoritmo del simplesso primale per il problema max 7 x 1 + x x 1 + x 6 x 1 +x x 1

Dettagli

COMPITO DI RICERCA OPERATIVA APPELLO DEL 07/04/04

COMPITO DI RICERCA OPERATIVA APPELLO DEL 07/04/04 COMPITO DI RICERCA OPERATIVA APPELLO DEL 07/04/04 Esercizio 1 1)Dato il seguente problema di PL: max 2x 1 x 2 x 1 + x 2 2 x 1 + 2x 2 7 x 1 + x 2 1 x 1, x 2 0 trasformarlo in forma standard (2 punti) 2)

Dettagli

ESERCIZIO 1: Punto 1

ESERCIZIO 1: Punto 1 ESERCIZIO : Punto La seguente matrice è una matrice delle distanze di un istanza del problema del Commesso Viaggiatore. - - - - - - - Calcolare.Il valore del rilassamento che si ottiene determinando l

Dettagli

COMPITO DI RICERCA OPERATIVA. max 3x 1 + 2x 2 x x 2 + x 3 = 4 2x 1 + x 2 + x 4 = 3

COMPITO DI RICERCA OPERATIVA. max 3x 1 + 2x 2 x x 2 + x 3 = 4 2x 1 + x 2 + x 4 = 3 COMPITO DI RICERCA OPERATIVA ESERCIZIO 1. (7 punti) Sia dato il seguente problema di PL: max 3x 1 + 2x 2 x 1 + 1 2 x 2 + x 3 = 4 2x 1 + x 2 + x 4 = 3 Lo si risolva con l algoritmo che si ritiene più opportuno

Dettagli

Esame di Ricerca Operativa del 12/02/18. P 1 P 2 P 3 P 4 P 5 P 6 Peso bagaglio km di viaggio

Esame di Ricerca Operativa del 12/02/18. P 1 P 2 P 3 P 4 P 5 P 6 Peso bagaglio km di viaggio Esame di Ricerca Operativa del /0/8 (Cognome) (Nome) (Numero di Matricola) Esercizio. L autista di un taxi puo trasportare al massimo persone richiedendo a ciascuna Euro a km per il viaggio. Fanno richiesta

Dettagli

Esame di Ricerca Operativa del 13/06/17. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 13/06/17. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del /0/ (Cognome) (Nome) (Numero di Matricola) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: min y y + y + y + y y + y y +y +y

Dettagli

Formulazioni. Consideriamo il seguente problema di Knapsack 0-1. max (5x x 2. ) st 3x x 2. < 6 x {0,1} 2

Formulazioni. Consideriamo il seguente problema di Knapsack 0-1. max (5x x 2. ) st 3x x 2. < 6 x {0,1} 2 Formulazioni Consideriamo il seguente problema di Knapsack 0-1 max (5x 1 + 2x 2 ) st 3x 1 + 4x 2 < 6 x {0,1} 2 Insiemi ammissibili F = {(0, 0), (0, 1), (1, 0)} Rappresentiamo sul piano gli insiemi ammissibili.

Dettagli

Figura 1: 1) Si scriva la formulazione del problema come problema di PLI (con un numero minimo di vincoli) e la matrice dei vincoli.

Figura 1: 1) Si scriva la formulazione del problema come problema di PLI (con un numero minimo di vincoli) e la matrice dei vincoli. ESERCIZIO 1 Sia dato il grafo orientato in Figura 1. Si consideri il problema di flusso a 1 2 4 Figura 1: costo minimo su tale grafo con b 1 = 4 b 2 = 2 b = b 4 = e c 12 = 2 c 1 = 4 c 14 = 1 c 2 = 1 c

Dettagli

Soluzione di problemi di Programmazione Lineare Intera

Soluzione di problemi di Programmazione Lineare Intera 11 Soluzione di problemi di Programmazione Lineare Intera 11.1 ESERCIZI SULLA SOLUZIONE DI PROBLEMI DI PROGRAMMAZIONE LINEARE INTERA Esercizio 11.1.1 Risolvere con il metodo del Branch and Bound il seguente

Dettagli

Esame di Ricerca Operativa del 09/06/15. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 09/06/15. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 0/0/ Cognome) Nome) Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: min y + y + y +0 y +y + y y y + y y y y

Dettagli

Soluzione di problemi di Programmazione Lineare Intera

Soluzione di problemi di Programmazione Lineare Intera 10 Soluzione di problemi di Programmazione Lineare Intera 10.1 ESERCIZI SULLA SOLUZIONE DI PROBLEMI DI PROGRAMMAZIONE LINEARE INTERA Esercizio 10.1.1 Risolvere con il metodo del Branch and Bound il seguente

Dettagli

Programmazione Matematica: VI Estensioni dell algoritmo del Simplesso

Programmazione Matematica: VI Estensioni dell algoritmo del Simplesso Programmazione Matematica: VI Estensioni dell algoritmo del Simplesso Daniele Vigo D.E.I.S. Università di Bologna dvigo@deis.unibo.it rev. 1.0 Aprile 2004 Algoritmo del Simplesso L algoritmo del Simplesso

Dettagli

i completi l'esecuzione dell'algoritmo di programmazione dinamica per questo problema restituendo il valore ottimo e una soluzione ottima del problema

i completi l'esecuzione dell'algoritmo di programmazione dinamica per questo problema restituendo il valore ottimo e una soluzione ottima del problema Compito di Ricerca Operativa II Esercizio ( punti). ia dato il problema di flusso massimo sulla rete in figura (le capacit a degli archi sono riportate sopra di essi). 0 8 i consideri il seguente flusso

Dettagli

5.5 Metodi generali per la soluzione di problemi

5.5 Metodi generali per la soluzione di problemi 5.5 Metodi generali per la soluzione di problemi di PLI I problemi di PLI hanno caratteristiche molto diverse dai problemi di PL. In alcuni casi, la soluzione del problema lineare rilassato, ottenuto cioè

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Cover inequalities

Metodi e Modelli per l Ottimizzazione Combinatoria Cover inequalities Metodi e Modelli per l Ottimizzazione Combinatoria Cover inequalities L. De Giovanni M. Di Summa In questa lezione introdurremo una classe di disuguaglianze, dette cover inequalities, che permettono di

Dettagli

Esame di Ricerca Operativa del 09/01/15. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 09/01/15. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 0/0/ (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: min 7 y +y + y + y +y +7 y y +y y y

Dettagli

COMPITO DI RICERCA OPERATIVA. min 2x 1 x 2 + x 3 x 4 x 1 x 2 + x 3 + x 4 = 5 x 1 + x 2 + x 3 3. x 1, x 2, x 3, x 4, x 5 I

COMPITO DI RICERCA OPERATIVA. min 2x 1 x 2 + x 3 x 4 x 1 x 2 + x 3 + x 4 = 5 x 1 + x 2 + x 3 3. x 1, x 2, x 3, x 4, x 5 I COMPITO DI RICERCA OPERATIVA ESERCIZIO. (8 punti) Sia dato il seguente problema di PL: min x x + x x 4 x x + x + x 4 = 5 x + x + x x, x, x, x 4 0 Lo si trasformi in forma standard ( punto). Si determini

Dettagli

Esame di Ricerca Operativa del 12/06/18. Base x Degenere? y Indice Rapporti Indice uscente entrante

Esame di Ricerca Operativa del 12/06/18. Base x Degenere? y Indice Rapporti Indice uscente entrante Esame di Ricerca Operativa del /0/ (Cognome) (Nome) (Numero di Matricola) Esercizio. Effettuare due iterazioni dell algoritmo del simplesso duale: min y + y + y + y + y + y y y y + y +y = y y + y +y y

Dettagli

Esame di Ricerca Operativa del 08/09/17

Esame di Ricerca Operativa del 08/09/17 Esame di Ricerca Operativa del 08/09/ (Cognome) (Nome) (Numero di Matricola) Esercizio. Una dieta giornaliera consiste di tre cibi C, C e C, che vengono assunti nella quantità complessiva di 00 grammi.

Dettagli

COMPITO DI RICERCA OPERATIVA. max x 1 + x 2 x 1 + x 2 1 x 1 + x 2 2. Lo si trasformi in forma standard e se ne determini una soluzione ottima.

COMPITO DI RICERCA OPERATIVA. max x 1 + x 2 x 1 + x 2 1 x 1 + x 2 2. Lo si trasformi in forma standard e se ne determini una soluzione ottima. COMPITO DI RICERCA OPERATIVA APPELLO DEL 06/07/05 ESERCIZIO 1. (5 punti) Sia dato il seguente problema di PL: max x 1 + x 2 x 1 + x 2 1 x 1 + x 2 2 x 1 0 x 2 0 Lo si trasformi in forma standard e se ne

Dettagli

Esame di Ricerca Operativa. x 1 +2 x 2 6 x 1 +x 2 6 x 1 4 x 1 1

Esame di Ricerca Operativa. x 1 +2 x 2 6 x 1 +x 2 6 x 1 4 x 1 1 Esame di Ricerca Operativa (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x + x x +x x 0 x + x x +x x x Base Soluzione

Dettagli

1 Programmazione Lineare Intera

1 Programmazione Lineare Intera 1 Programmazione Lineare Intera Fino ad ora abbiamo affrontato problemi in cui le variabili potevano assumere valori reali. Ora invece ci concentreremo su problemi in cui le variabili possono assumere

Dettagli

Parte IV: Matrici totalmente unimodulari

Parte IV: Matrici totalmente unimodulari Parte IV: Matrici totalmente unimodulari Formulazioni Consideriamo il seguente problema di Knapsack 0-1 max (5x 1 + 2x 2 ) st 3x 1 + 4x 2 < 6 x {0,1} 2 Insiemi ammissibili F = {(0, 0), (0, 1), (1, 0)}

Dettagli

Algoritmo di Branch & Bound

Algoritmo di Branch & Bound Sapienza Università di Roma - Dipartimento di Ingegneria Informatica, Automatica e Gestionale Algoritmo di Branch & Bound Docente: Renato Bruni bruni@dis.uniroma.it Corso di: Ottimizzazione Combinatoria

Dettagli

Esame di Ricerca Operativa del 17/02/14. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 17/02/14. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del /0/ (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max 9 x +x x +x 8 x x x + x 9 x +x x

Dettagli

RICERCA OPERATIVA (9 cfu)

RICERCA OPERATIVA (9 cfu) a PROVA scritta di RICERCA OPERATIVA (9 cfu) gennaio Cognome Nome Ai fini della pubblicazione (cartacea e elettronica) del risultato ottenuto nella prova di esame, autorizzo al trattamento dei miei dati

Dettagli

Esame di Ricerca Operativa del 21/06/17

Esame di Ricerca Operativa del 21/06/17 Esame di Ricerca Operativa del /0/7 (Cognome) (Nome) (Numero di Matricola) Esercizio. Un azienda vinicola produce tre qualitá di vino Q, Q, Q che vende ad un prezzo di 0E, 0E, 0E ad ettolitro, rispettivamente

Dettagli

Introduzione al Column Generation Caso di Studio: il Bin Packing Problem

Introduzione al Column Generation Caso di Studio: il Bin Packing Problem Introduzione al Column Generation Caso di Studio: il Bin Packing Problem November 15, 2014 1 / 26 Introduzione Il column generation è una metodologia che può essere usata per risolvere problemi di ottimizzazione

Dettagli

Esame di Ricerca Operativa del 15/09/14. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 15/09/14. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del /09/ Cognome) Nome) Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x x x x x x +x 9 x + x 8 x +x Base

Dettagli

Esame di Ricerca Operativa del 25/06/12

Esame di Ricerca Operativa del 25/06/12 Esame di Ricerca Operativa del /0/ Cognome) Nome) Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x x x + x x x 8 x x x + x x x Base

Dettagli

COMPITO DI RICERCA OPERATIVA. max x 1 + x 2 x 1 2x 2 + x 3 = 4 x 1 x 2 x 3 = 3 x 2 + 2x 3 = 1 x 1, x 2, x 3 0

COMPITO DI RICERCA OPERATIVA. max x 1 + x 2 x 1 2x 2 + x 3 = 4 x 1 x 2 x 3 = 3 x 2 + 2x 3 = 1 x 1, x 2, x 3 0 COMPITO DI RICERCA OPERATIVA ESERCIZIO. (5 punti) Sia dato il seguente problema di PL: max x + x 2 x 2x 2 + x 3 = 4 x x 2 x 3 = 3 x 2 + 2x 3 = x, x 2, x 3 0 Utilizzando il metodo due fasi, si stablisca

Dettagli

Algoritmo dibranch & Bound

Algoritmo dibranch & Bound Sapienza Università di Roma - Dipartimento di Ingegneria Informatica, Automatica e Gestionale Algoritmo dibranch & Bound Docente: Renato Bruni bruni@dis.uniroma.it Corso di: Ottimizzazione Combinatoria

Dettagli

Esame di Ricerca Operativa del 06/02/17

Esame di Ricerca Operativa del 06/02/17 Esame di Ricerca Operativa del 0/0/7 (Cognome) (Nome) (Numero d Matricola) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max 7 x x x x x x x + x x x 0 x

Dettagli

Esame di Ricerca Operativa del 11/02/2015

Esame di Ricerca Operativa del 11/02/2015 Esame di Ricerca Operativa del /0/0 (Cognome) (Nome) (Matricola) Esercizio. Un azienda produce tipi di TV (, 0, 0 e pollici) ed è divisa in stabilimenti (A e B). L azienda dispone di 0 operai in A e 0

Dettagli

Esame di Ricerca Operativa del 28/05/14. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 28/05/14. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del /0/ Cognome) Nome) Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x x +x x x x +x x x Base Soluzione

Dettagli

RICERCA OPERATIVA. Tema d esame del 13/12/2005

RICERCA OPERATIVA. Tema d esame del 13/12/2005 RICERCA OPERATIVA Tema d esame del 13/12/2005 COGNOME: NOME: MATRICOLA: 1. Un associazione umanitaria ha raccolto 150.000 euro per inviare dei pacchetti regalo natalizi ai bambini di Haiti. Per l acquisto

Dettagli

Esame di Ricerca Operativa del 11/07/2016

Esame di Ricerca Operativa del 11/07/2016 Esame di Ricerca Operativa del /0/01 (Cognome) (Nome) (Matricola) Esercizio 1. Un erboristeria vuole produrre una nuova tisana utilizzando tipi di tisane già in commercio. Tali tisane sono per lo più composte

Dettagli

Esame di Ricerca Operativa del 16/07/18

Esame di Ricerca Operativa del 16/07/18 Esame di Ricerca Operativa del /0/8 (Cognome) (Nome) (Numero di Matricola) Esercizio. Un terreno agricolo è costituito dalla miscela di tre tipi di terra T, T e T. Da un analisi di laboratorio viene rilevata,

Dettagli

Parte V: Rilassamento Lagrangiano

Parte V: Rilassamento Lagrangiano Parte V: Rilassamento Lagrangiano Tecnica Lagrangiana Consideriamo il seguente problema di Programmazione Lineare Intera: P 1 min c T x L I Ax > b Cx > d x > 0, intera in cui A = matrice m x n C = matrice

Dettagli

Esame di Ricerca Operativa del 19/01/2016

Esame di Ricerca Operativa del 19/01/2016 Esame di Ricerca Operativa del 19/01/201 (Cognome) (Nome) (Matricola) Esercizio 1. Una banca offre ai suoi clienti diversi tipi di prestito: mutuo casa, credito auto, credito famiglia, che rendono un interesse

Dettagli

COMPITO DI RICERCA OPERATIVA. (5 punti) Sia dato il seguente problema di PL: min x 1 + x 2 x 1 + x 2 3 x 1 + x 2 2 2x 1 + x 2 3.

COMPITO DI RICERCA OPERATIVA. (5 punti) Sia dato il seguente problema di PL: min x 1 + x 2 x 1 + x 2 3 x 1 + x 2 2 2x 1 + x 2 3. COMPITO DI RICERCA OPERATIVA ESERCIZIO 1. (5 punti) Sia dato il seguente problema di PL: min x 1 + x 2 x 1 + x 2 x 1 + x 2 2 2x 1 + x 2 x 1 0 x 2 0 Si trasformi questo problema in forma standard e lo si

Dettagli

Tecniche di Decomposizione per Programmazione Lineare Intera (Mista)

Tecniche di Decomposizione per Programmazione Lineare Intera (Mista) Tecniche di Decomposizione per Programmazione Lineare Intera (Mista) Domenico Salvagnin 2011-06-12 1 Introduzione Dato un problema di programmazione lineare intera (mista), non è sempre possibile (o conveniente)

Dettagli

COMPITO DI RICERCA OPERATIVA. max x 1 + 2x 2 + x 3 x 1 x 2 + x 3 = 1 2x 1 + 3x 2 + x 4 = 2

COMPITO DI RICERCA OPERATIVA. max x 1 + 2x 2 + x 3 x 1 x 2 + x 3 = 1 2x 1 + 3x 2 + x 4 = 2 COMPITO DI RICERCA OPERATIVA ESERCIZIO. (9 punti) Sia dato il seguente problema di PL: max x + 2x 2 + x 3 x x 2 + x 3 = 2x + 3x 2 + x 4 = 2 x, x 2, x 3, x 4 0 Si determini il duale del problema ( punto).

Dettagli

Esame di Ricerca Operativa del 09/06/14. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 09/06/14. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 09/0/ (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x x +x x x x +x x + x x Base

Dettagli

COMPITO DI RICERCA OPERATIVA APPELLO DEL 08/01/04

COMPITO DI RICERCA OPERATIVA APPELLO DEL 08/01/04 COMPITO DI RICERCA OPERATIVA APPELLO DEL 08/01/04 Esercizio 1 Si risolva con il metodo branch-and-bound il seguente problema di PLI max x 1 + x 4x 1 + x + x = 0 x 1 + x + x 4 = x 1, x, x, x 4 0 x 1, x,

Dettagli

Esame di Ricerca Operativa del 15/01/2015

Esame di Ricerca Operativa del 15/01/2015 Esame di Ricerca Operativa del 1/01/201 (Cognome) (Nome) (Matricola) Esercizio 1. Un azienda produce palloni da calcio e da basket che vende a 1 e 20 euro rispettivamente. L azienda compra ogni settimana

Dettagli

Esame di Ricerca Operativa del 15/01/2015

Esame di Ricerca Operativa del 15/01/2015 Esame di Ricerca Operativa del 1/01/01 (Cognome) (Nome) (Matricola) Esercizio 1. Un azienda produce palloni da basket e da calcio che vende rispettivamente a 1 e euro. L azienda compra ogni settimana 00

Dettagli

Esame di Ricerca Operativa del 07/09/2016

Esame di Ricerca Operativa del 07/09/2016 Esame di Ricerca Operativa del 0/09/201 (Cognome) (Nome) (Matricola) Esercizio 1. Un industria chimica produce due tipi di fertilizzanti (A e B) la cui lavorazione è affidata ai reparti di produzione e

Dettagli

Ricerca Operativa A.A. 2007/ Esercitazione di laboratorio: Branch and Bound.

Ricerca Operativa A.A. 2007/ Esercitazione di laboratorio: Branch and Bound. Ricerca Operativa A.A. 2007/2008 17. Esercitazione di laboratorio: Branch and Bound. Luigi De Giovanni - Ricerca Operativa - 17. Esercitazione di laboratorio: Branch and Bound 17.1. Luigi De Giovanni -

Dettagli

Esame di Ricerca Operativa del 19/01/2016

Esame di Ricerca Operativa del 19/01/2016 Esame di Ricerca Operativa del 9/0/06 (Cognome) (Nome) (Matricola) Esercizio. Una banca offre ai suoi clienti diversi tipi di prestito: mutuo casa, credito auto, credito famiglia, che rendono un interesse

Dettagli

Esame di Ricerca Operativa del 03/07/18. Base x degenere y Indice Rapporti Indice entrante uscente

Esame di Ricerca Operativa del 03/07/18. Base x degenere y Indice Rapporti Indice entrante uscente Esame di Ricerca Operativa del 0/0/8 Cognome) Nome) Numero di Matricola) Esercizio. Effettuare due iterazioni dell algoritmo del simplesso duale per il problema min y + y + y + y + y +8 y y +y y y y y

Dettagli

Esame di Ricerca Operativa del 16/02/15. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 16/02/15. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del /0/ Cognome) Nome) Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: min y + y +0 y +0 y +y + y y y +y y y y

Dettagli

Esame di Ricerca Operativa del 17/07/17. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 17/07/17. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 7/07/7 (Cognome) (Nome) (Numero di Matricola) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x +x x + x x x x x x x +x

Dettagli

Ricerca Operativa A.A. 2007/ Esercitazione di laboratorio: Branch and Bound.

Ricerca Operativa A.A. 2007/ Esercitazione di laboratorio: Branch and Bound. Ricerca Operativa A.A. 2007/2008 17. Esercitazione di laboratorio: Branch and Bound. Luigi De Giovanni - Ricerca Operativa - 17. Esercitazione di laboratorio: Branch and Bound 17.1 . Luigi De Giovanni

Dettagli

METODI DELLA RICERCA OPERATIVA

METODI DELLA RICERCA OPERATIVA Università degli Studi di Cagliari FACOLTA' DI INGEGNERIA CORSO DI METODI DELLA RICERCA OPERATIVA Dott.ing. Massimo Di Francesco (mdifrance@unica.it) i i Dott.ing. Maria Ilaria Lunesu (ilaria.lunesu@unica.it)

Dettagli

Esame di Ricerca Operativa del 12/07/17

Esame di Ricerca Operativa del 12/07/17 Esame di Ricerca Operativa del /0/ (Cognome) (Nome) (Numero di Matricola) Esercizio. Un azienda produttrice di mobili possiede due sedi S e S, che richiedono mensilmente 0 e 0 quintali di legname per il

Dettagli

RICERCA OPERATIVA. Tema d esame del 04/12/2008 (Simulazione 1)

RICERCA OPERATIVA. Tema d esame del 04/12/2008 (Simulazione 1) RICERCA OPERATIVA Tema d esame del 04/12/2008 (Simulazione 1) COGNOME: NOME: MATRICOLA: 1. Un azienda meccanica deve pianificare il lavoro delle sue tre macchine per un dato giorno. I lotti che è possibile

Dettagli

Esame di Ricerca Operativa del 03/09/2015

Esame di Ricerca Operativa del 03/09/2015 Esame di Ricerca Operativa del 0/09/201 (Cognome) (Nome) (Matricola) Esercizio 1. Una raffineria di petrolio miscela tipi di greggio per ottenere tipi di carburante: senza piombo, diesel e blu diesel.

Dettagli

Esame di Ricerca Operativa

Esame di Ricerca Operativa Esame di Ricerca Operativa (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: min y + y + y +7 y +y + y y y +y y y = y y +y

Dettagli

Esame di Ricerca Operativa del 18/06/18

Esame di Ricerca Operativa del 18/06/18 Esame di Ricerca Operativa del 8/0/8 (Cognome) (Nome) (Numero di Matricola) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x +x x x x +x x x x + x

Dettagli

Fac-simile dell esame di Ricerca Operativa. max 7 x 1 2 x 2 3 x 1 +x 2 2 x 1 2 x 2 3 x x 1 +x x 1 x 2 5

Fac-simile dell esame di Ricerca Operativa. max 7 x 1 2 x 2 3 x 1 +x 2 2 x 1 2 x 2 3 x x 1 +x x 1 x 2 5 Fac-simile dell esame di Ricerca Operativa (Cognome) (Nome) (Numero di Matricola) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x +x x x x x +x x

Dettagli

Esame di Ricerca Operativa del 17/01/17. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 17/01/17. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del /0/ Cognome) Nome) Numero di Matricola) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: min 8 y y + y + y + y + y +0 y y +y

Dettagli

Appunti sui Codici di Reed Muller. Giovanni Barbarino

Appunti sui Codici di Reed Muller. Giovanni Barbarino Appunti sui Codici di Reed Muller Giovanni Barbarino Capitolo 1 Codici di Reed-Muller I codici di Reed-Muller sono codici lineari su F q legati alle valutazioni dei polinomi sullo spazio affine. Per semplicità

Dettagli

Domande d esame. Ricerca Operativa. G. Liuzzi. Giovedí 14 Maggio 2015. 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR

Domande d esame. Ricerca Operativa. G. Liuzzi. Giovedí 14 Maggio 2015. 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR 1 Giovedí 14 Maggio 2015 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR Geometria di R n 1 Dare la definizione di Poliedro e Vertice di un Poliedro 2 Dare la definizione di Poliedro e di Politopo

Dettagli

A T x b x 0. che chiameremo problema primale, possiamo associare ad esso un altro problema di PL, detto problema duale, definito come segue.

A T x b x 0. che chiameremo problema primale, possiamo associare ad esso un altro problema di PL, detto problema duale, definito come segue. 1 Dualitá Dato un problema di PL in forma canonica max c T x A T x b x 0 che chiameremo problema primale, possiamo associare ad esso un altro problema di PL, detto problema duale, definito come segue min

Dettagli

Esame di Ricerca Operativa del 21/07/15. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 21/07/15. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del /0/ (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: min y +y + y + y + y + y y y + y y +

Dettagli

Esame di Ricerca Operativa del 30/06/14. max 4 x 1 7 x 2 x 1 +7 x 2 7 x 1 4 x 2 7 x 1 +5 x 2 5 x 1 x 2 5 x 2 1 x 1 +4 x 2 6

Esame di Ricerca Operativa del 30/06/14. max 4 x 1 7 x 2 x 1 +7 x 2 7 x 1 4 x 2 7 x 1 +5 x 2 5 x 1 x 2 5 x 2 1 x 1 +4 x 2 6 Esame di Ricerca Operativa del 0/0/ Cognome) Nome) Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x 7 x x +7 x 7 x x 7 x + x x x x x

Dettagli

Programmazione Lineare Intera (ILP)

Programmazione Lineare Intera (ILP) Programmazione Lineare Intera (ILP) (P) min (x), x F Z : R n ->R è lineare: (x) = c, x = c 1 x 1 + c 2 x 2 +... + c n x n F R n è definito da : g i (x) 0 (i = 1,...,m), con g i : R n R lineare i Z insieme

Dettagli

Si consideri il seguente tableau ottimo di un problema di programmazione lineare

Si consideri il seguente tableau ottimo di un problema di programmazione lineare ESERCIZIO 1 Si consideri il seguente tableau ottimo di un problema di programmazione lineare -25/3 0 4/3 19/6 9/2 0 0 0 7/6 1 0 1-1/2-3/2 1 0 0 3/2 11/3 1-2/3-1/3 0 0 0 0 2/3 2/3 0 1/3 1/6-1/2 0 1 0 7/6

Dettagli

min 2x 1 +4x 2 2x 3 +2x 4 x 1 +4x 2 +2x 3 + x 4 =6 2x 1 + x 2 +2x 3 + x 5 =3 x 0.

min 2x 1 +4x 2 2x 3 +2x 4 x 1 +4x 2 +2x 3 + x 4 =6 2x 1 + x 2 +2x 3 + x 5 =3 x 0. 5 IL METODO DEL SIMPLESSO 6.4 IL METODO DEL SIMPLESSO In questo paragrafo sono riportati alcuni esercizi risolti sul metodo del simplesso. Alcuni sono risolti utilizzando la procedura di pivot per determinare,

Dettagli

Esame di Ricerca Operativa del 21/02/19. max 3 x 1 +x 2 6 x x x 1 +2 x x 1 3 x x 1 4 x x 1 +2 x x 1 x 2 3

Esame di Ricerca Operativa del 21/02/19. max 3 x 1 +x 2 6 x x x 1 +2 x x 1 3 x x 1 4 x x 1 +2 x x 1 x 2 3 Esame di Ricerca Operativa del /0/ Cognome) Nome) Numero di Matricola) Esercizio. Effettuare due iterazioni dell algoritmo del simplesso primale. max x +x x +0 x x + x 8 x x x x x + x x x passo {,} passo

Dettagli

Ricerca Operativa 2. Ricerca Operativa 2 p. 1/6

Ricerca Operativa 2. Ricerca Operativa 2 p. 1/6 Ricerca Operativa 2 Ricerca Operativa 2 p. 1/6 Introduzione In questo corso ci occuperemo di problemi di ottimizzazione. Ricerca Operativa 2 p. 2/6 Introduzione In questo corso ci occuperemo di problemi

Dettagli

Esame di Ricerca Operativa del 05/09/18

Esame di Ricerca Operativa del 05/09/18 Esame di Ricerca Operativa del 0/09/8 (Cognome) (Nome) (Numero di Matricola) Esercizio. Un azienda agricola produce mensilmente 0 ettolitri di olio (O) e 0 ettolitri di vino (V) che vengono venduti all

Dettagli

Esame di Ricerca Operativa del 15/01/19. max 6 x 1 x 2 6 x x x 1 +2 x x 1 3 x x 1 4 x x 1 +2 x x 1 x 2 19

Esame di Ricerca Operativa del 15/01/19. max 6 x 1 x 2 6 x x x 1 +2 x x 1 3 x x 1 4 x x 1 +2 x x 1 x 2 19 Esame di Ricerca Operativa del /0/9 Cognome) Nome) Numero di Matricola) Esercizio. Effettuare due iterazioni dell algoritmo del simplesso primale: max x x x + x x + x 8 x x x x x + x x x 9 passo {,} passo

Dettagli

Il metodo dei Piani di Taglio (Cutting Planes Method)

Il metodo dei Piani di Taglio (Cutting Planes Method) Il metodo dei Piani di Taglio (Cutting Planes Method) E un metodo di soluzione dei problemi (IP) di tipo generale. L idea di base: Se la soluzione di (RL) non è intera allora la soluzione ottima intera

Dettagli

Esame di Ricerca Operativa del 06/02/17

Esame di Ricerca Operativa del 06/02/17 Esame di Ricerca Operativa del 0/0/ (Cognome) (Nome) (Numero d Matricola) Esercizio. Uno studente vuole definire un piano di studio settimanale per preparare gli esami A, B e C, massimizzando le ore (h)

Dettagli

Esame di Ricerca Operativa del 09/02/2016

Esame di Ricerca Operativa del 09/02/2016 Esame di Ricerca Operativa del 0/0/01 (Cognome) (Nome) (Matricola) Esercizio 1. Una sartoria produce tipi di vestiti: pantaloni, gonne e giacche, utilizzando stoffa e filo. Settimanalmente, la disponibilità

Dettagli

Esame di Ricerca Operativa del 08/01/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 08/01/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 08/0/ Cognome) Nome) Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x + x x +x x x 0 x + x x x 8 x x 8

Dettagli