Valutazione di progressioni geometriche

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Valutazione di progressioni geometriche"

Transcript

1 Universitá degli Studi di Salerno Corso di Introduzione agli Algoritmi e Strutture Dati Prof. Ugo Vaccaro Anno Acc. 2015/16 p. 1/22 Valutazione di progressioni geometriche Somme finite: Sia S n = n i=0 αi. Se α 1 allora S n (α 1) = α S n S n = n α i+1 i=0 n i=0 = α+α α n +α n+1 1 α α 2... α n = α n+1 1 da cui S n = (α n+1 1)/(α 1). Somme infinite: Supponiamo 0 < α < 1 e sia S = i=0 αi. Allora αs = i=1 αi, da cui α i S(1 α) = S αs = α i i=0 α i = α 0 = 1, ovvero S = 1/(1 α) i=1

2 Universitá degli Studi di Salerno Corso di Introduzione agli Algoritmi e Strutture Dati Prof. Ugo Vaccaro Anno Acc. 2015/16 p. 2/22 Esempio Calcoliamo log 3 n i=0 (1/3) i ovviamente vale che ) i < ( 1 i i=0 3) log3 n i=0 ( 1 3 Applicando quindi la formula S n = i=0 α i = 1 1 α alla espressione otteniamo log 3 n i=0 ( ) 1 i < 3 i=0 i=0 ( ) 1 i 3 ( ) 1 i = (1/3) = (3/2)

3 Universitá degli Studi di Salerno Corso di Introduzione agli Algoritmi e Strutture Dati Prof. Ugo Vaccaro Anno Acc. 2015/16 p. 3/22 Parliamo ora di Analisi di Algoritmi Ricorsivi: Come esprimere la complessità di algoritmi ricorsivi mediante relazioni di ricorrenza Come derivare le relazioni di ricorrenza Come risolvere le relazioni di ricorrenza

4 Universitá degli Studi di Salerno Corso di Introduzione agli Algoritmi e Strutture Dati Prof. Ugo Vaccaro Anno Acc. 2015/16 p. 4/22 Struttura tipica di algoritmi ricorsivi Algoritmo A(I). A(I 1 ). A(I a ) I è l input iniziale all algoritmo. i puntini ". sono istruzioni di qualche tipo A(I 1 ),...,A(I a ) sono le a chiamate ricorsive all algoritmo A, rispettivamente sugli input I 1,...,I a.

5 Universitá degli Studi di Salerno Corso di Introduzione agli Algoritmi e Strutture Dati Prof. Ugo Vaccaro Anno Acc. 2015/16 p. 5/22 Derivazione di relazioni di ricorrenza Per derivare le relazioni di ricorrenza che descrivono il tempo di esecuzione T(n) di un algoritmo occorre: Determinare la taglia dell input n Determinare quale valore n 0 di n è usato per la base della ricorsione (generalmente, ma non sempre, n 0 = 1). Determinare il valore T(n 0 ) del tempo di esecuzione sulla base della ricorsione (spesso basterà essere certi che T(n 0 ) = c, per qualche costante c) Il valore T(n) sarà generalmente uguale ad una somma del tipo T(m 1 )+...+T(m a ) (per le chiamate ricorsive), piú la somma di eventuale altro lavoro fatto. Spesso le a chiamate ricorsive saranno effettuate tutte su sottoproblemi di taglia uguale f(n), dando un termine at(f(n)) nella relazione di ricorrenza.

6 Universitá degli Studi di Salerno Corso di Introduzione agli Algoritmi e Strutture Dati Prof. Ugo Vaccaro Anno Acc. 2015/16 p. 6/22 Tipica relazione di ricorrenza T(n) = c sen = n 0 at(f(n))+g(n) altrimenti n 0 =base ricorsione, c =tempo di esecuzione per la base a =numero di volte che le chiamate ricorsive sono effettuate f(n) =taglia dei problemi risolti nelle chiamate ricorsive g(n) =tutto il tempo di calcolo non incluso nelle chiamate ricorsive

7 Universitá degli Studi di Salerno Corso di Introduzione agli Algoritmi e Strutture Dati Prof. Ugo Vaccaro Anno Acc. 2015/16 p. 7/22 Esempi procedure bugs(n) if n = 1 then do qualcosa else bugs(n 1); bugs(n 2); for i = 1 to n do qualcosa T(n) = c sen = 1 T(n 1)+T(n 2)+cn altrimenti

8 Universitá degli Studi di Salerno Corso di Introduzione agli Algoritmi e Strutture Dati Prof. Ugo Vaccaro Anno Acc. 2015/16 p. 8/22 Esempi procedure daffy(n) if n = 1 or n = 2 then do qualcosa else daffy(n 1); for i = 1 to n do qualcosa di nuovo daffy(n 1) T(n) = c sen 2 2T(n 1)+cn altrimenti

9 Universitá degli Studi di Salerno Corso di Introduzione agli Algoritmi e Strutture Dati Prof. Ugo Vaccaro Anno Acc. 2015/16 p. 9/22 Esempi procedure elmer(n) if n = 1 then do qualcosa else if n = 2 then do qualcos altro else for i = 1 to n do elmer(n 1) fa qualcosa di differente T(n) = c sen 2 nt(n 1)+cn altrimenti

10 Universitá degli Studi di Salerno Corso di Introduzione agli Algoritmi e Strutture Dati Prof. Ugo Vaccaro Anno Acc. 2015/16 p. 10/22 Esempi procedure bar(n) if n = 1 then do qualcosa else for i = 1 to n do bar(i) fa qualcosa di differente T(n) = c sen = 1 n i=1 T(i)+cn altrimenti

11 Universitá degli Studi di Salerno Corso di Introduzione agli Algoritmi e Strutture Dati Prof. Ugo Vaccaro Anno Acc. 2015/16 p. 11/22 Un teorema generale Teorema: Se n è potenza di c, la soluzione alla ricorrenza T(n) = d sen 1 at(n/c) + bn altrimenti è T(n) = O(n) sea < c O(nlogn) sea = c O(n log c a ) sea > c Esempi: Se T(n) = 2T(n/3)+dn, allora T(n) = O(n) Se T(n) = 2T(n/2)+dn, allora T(n) = O(nlogn) Se T(n) = 4T(n/2)+dn, allora T(n) = O(n 2 )

12 Universitá degli Studi di Salerno Corso di Introduzione agli Algoritmi e Strutture Dati Prof. Ugo Vaccaro Anno Acc. 2015/16 p. 12/22 Cenni di dimostrazione, quando n = c i T(n) = a T(n/c)+bn (per ipotesi) = a(a T(n/c 2 )+bn/c)+bn (in quanto T(n/c) = at(n/c 2 )+bn/c) = a 2 T(n/c 2 )+abn/c+bn = a 2 (a T(n/c 3 )+bn/c 2 )+abn/c+bn = a 3 T(n/c 3 )+a 2 bn/c 2 +abn/c+bn i 1 = a i T(n/c i )+bn (a/c) j = a log c n T(1)+bn log c n 1 (a/c) j (poichè i = log c n)

13 Universitá degli Studi di Salerno Corso di Introduzione agli Algoritmi e Strutture Dati Prof. Ugo Vaccaro Anno Acc. 2015/16 p. 13/22 continuando... T(n) = a log c n T(1)+bn = da log c n +bn log c n 1 log c n 1 (a/c) j (dalla slide precedente) (a/c) j (per ipotesi T(1) = d) Ricordando che x = y log y x, abbiamo a log c n = (c log c a ) log c n = (c log c n ) log c a = n log c a e quindi T(n) = d n log c a +bn log c n 1 (a/c) j

14 Universitá degli Studi di Salerno Corso di Introduzione agli Algoritmi e Strutture Dati Prof. Ugo Vaccaro Anno Acc. 2015/16 p. 14/22 Per calcolare log c n 1 (a/c) j occorre ricordare ció che abbiamo già visto sulle Progressioni Geometriche, ovvero: Somme finite: Se α 1 allora n i=0 α i = αn+1 1 α 1 (1) Somme infinite: Se 0 < α < 1. Allora i=0 α i = 1 1 α (2)

15 Universitá degli Studi di Salerno Corso di Introduzione agli Algoritmi e Strutture Dati Prof. Ugo Vaccaro Anno Acc. 2015/16 p. 15/22 ritornando alla dimostrazione... Caso 1: a < c (cioè (a/c) < 1) log c n 1 (a/c) j < (a/c) j = 1 1 a/c = c c a Pertanto (dalla formula (2) precedente) T(n) < d n log c a +bcn/(c a) = O(n) (Infatti, a < c log c a < 1 e quindi il termine d n log c a è O(n))

16 Universitá degli Studi di Salerno Corso di Introduzione agli Algoritmi e Strutture Dati Prof. Ugo Vaccaro Anno Acc. 2015/16 p. 16/22 altro caso... Caso 2: a = c Allora T(n) = d n log c a +bn = d n log c a +bn = O(nlogn) log c n 1 log c n 1 (a/c) j (1) j

17 Universitá degli Studi di Salerno Corso di Introduzione agli Algoritmi e Strutture Dati Prof. Ugo Vaccaro Anno Acc. 2015/16 p. 17/22 ed infine... Caso 3: a > c (il che implica (a/c) 1) Dalla precedente formula (1) otteniamo log c n 1 Pertanto, (a/c) j = (a/c)log c n 1 (a/c) 1 = nlog c a 1 1 (a/c) 1 (poichè a log c n = n log c a e (1/c) log c n = 1/n) = O(n log c a 1 ) T(n) = d n log c a +bn log c n 1 (a/c) j = O(n log c a )

18 Universitá degli Studi di Salerno Corso di Introduzione agli Algoritmi e Strutture Dati Prof. Ugo Vaccaro Anno Acc. 2015/16 p. 18/22 Qualche noioso dettaglio... Cosa accade se n NON è potenza di c? Osserviamo che per k = log c n vale che c k n < c k+1 e cn c k+1 (3) Immaginiamo quindi di "aumentare" l input di taglia n, fino a farlo diventare di taglia c k+1. É ovvio che T(n) < T(c k+1 ). Applicando ora il teorema a T(c k+1 ), otteniamo O(c k+1 ) = O(cn) = O(n) sea < c T(n) < T(c k+1 ) = O(c k+1 logc k+1 ) = O(cnlog(cn)) = O(nlogn) sea = c O((c k+1 ) log c a ) = O((cn) log c a ) = O(n log c a ) sea > c

19 Universitá degli Studi di Salerno Corso di Introduzione agli Algoritmi e Strutture Dati Prof. Ugo Vaccaro Anno Acc. 2015/16 p. 19/22 Esempi Sia T(1) = 1. Valutiamo T(n) = 2T(n/2)+6n T(n) = 3T(n/3)+6n 9 T(n) = 2T(n/3)+5n T(n) = O(nlogn) T(n) = O(nlogn) T(n) = O(n) T(n) = 2T(n/3)+12n+16 T(n) = O(n) T(n) = 4T(n/2)+n T(n) = O(n log 2 4 ) = O(n 2 ) T(n) = 3T(n/2)+9n T(n) = O(n log 2 3 ) = O(n )

20 Universitá degli Studi di Salerno Corso di Introduzione agli Algoritmi e Strutture Dati Prof. Ugo Vaccaro Anno Acc. 2015/16 p. 20/22 Concludendo Con esattamente la stessa tecnica è possibile dimostrare una forma un pó piú generale del Teorema, ad esempio la seguente: Teorema: La soluzione alla ricorrenza d sen 1 T(n) = at(n/c)+bn k altrimenti per a,c,b,k costanti, è T(n) = O(n k ) sea < c k O(n k logn) sea = c k O(n log c a ) sea > c k

21 Universitá degli Studi di Salerno Corso di Introduzione agli Algoritmi e Strutture Dati Prof. Ugo Vaccaro Anno Acc. 2015/16 p. 21/22 Altri esempi Sia T(1) = 1. Valutate T(n) = 2T(n/2)+n 3 T(n) = O(n 3 ) T(n) = T(9n/10)+n T(n) = 16T(n/4)+n 2 T(n) = O(n) T(n) = O(n 2 logn) T(n) = 7T(n/3)+n 2 T(n) = O(n 2 ) T(n) = 7T(n/2)+n 2 T(n) = O(n log 2 7 ) T(n) = 2T(n/3)+ n T(n) = O(n log 3 2 ) T(n) = T(n 1)+n T(n) = T( n)+1 T(n) = O(?) T(n) = O(?)

22 Universitá degli Studi di Salerno Corso di Introduzione agli Algoritmi e Strutture Dati Prof. Ugo Vaccaro Anno Acc. 2015/16 p. 22/22 Infine Esistono forme ancora piú generali del Teorema, che permettono la risoluzione di equazioni di ricorrenza del tipo generale T(n) = at(n/b)+f(n) Sussiste il seguente risultato 1.Se f(n) = O(n log b a ǫ ), per qualche ǫ > 0, allora T(n) = Θ(n log b a ) 2. Se f(n) = Θ(n log b a ), allora T(n) = Θ(n log b a logn) 3. Se f(n) = Ω(n log b a+ǫ ), per qualche ǫ > 0, e se af(n/b) cf(n) per qualche costante c > 1 ed n sufficientemente grande, allora T(n) = Θ(f(n))

Di cosa parliamo oggi?

Di cosa parliamo oggi? Universitá degli Studi di Salerno Corso di Algoritmi Prof. Ugo Vaccaro Anno Acc. 2014/15 p. 1/41 Di cosa parliamo oggi? Oggi parliamo di Analisi di Algoritmi Analisi di Algoritmi = valutazione delle risorse

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi Ricorsivi e Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino A.A. 2006/07 I conigli di Fibonacci Ricerca Binaria L isola dei conigli

Dettagli

Algoritmi (9 CFU) (A.A )

Algoritmi (9 CFU) (A.A ) Algoritmi (9 CFU) (A.A. 2009-10) Equazioni di ricorrenza Prof. V. Cutello Algoritmi 1 Overview Definiamo cos è una ricorrenza Introduciamo 3 metodi per risolvere equazioni di ricorrenza Sostituzione e

Dettagli

Algoritmi e strutture dati. Analisi di algoritmi Funzioni di costo, notazione asintotica

Algoritmi e strutture dati. Analisi di algoritmi Funzioni di costo, notazione asintotica Algoritmi e strutture dati Analisi di algoritmi Funzioni di costo, notazione asintotica Alberto Montresor Università di Trento 2016/09/11 This work is licensed under a Creative Commons Attribution-ShareAlike

Dettagli

COMPLESSITÀ COMPUTAZIONALE DEGLI ALGORITMI

COMPLESSITÀ COMPUTAZIONALE DEGLI ALGORITMI COMPLESSITÀ COMPUTAZIONALE DEGLI ALGORITMI Fondamenti di Informatica a.a.200.2005/06 Prof. V.L. Plantamura Dott.ssa A. Angelini Ω (grande omega) Diciamo che T(n) = Ω (f(n)), - leggiamo T(n) ha complessità

Dettagli

Analisi algoritmi ricorsivi e relazioni di ricorrenza

Analisi algoritmi ricorsivi e relazioni di ricorrenza Analisi algoritmi ricorsivi e relazioni di ricorrenza Punto della situazione Finora abbiamo affrontato: il tempo di esecuzione di un algoritmo, l analisi asintotica con le notazioni asintotiche e la tecnica

Dettagli

5. DIVIDE AND CONQUER I

5. DIVIDE AND CONQUER I Divide-et-Impera (Divide and conquer) 5. DIVIDE AND CONQUER I Mergesort e Relazioni di ricorrenza Esempi di progettazione D&I Moltiplicazione di interi Contare inversioni Divide-et-Impera. Definizione

Dettagli

Tecniche Algoritmiche: divide et impera

Tecniche Algoritmiche: divide et impera Tecniche Algoritmiche: divide et impera Una breve presentazione F. Damiani - Alg. & Lab. 04/05 Divide et impera (o Divide and conquer) Per regnare occorre tenere divisi i nemici e trarne vantaggio F. Damiani

Dettagli

Notazione asintotica. notazione Ω. notazione O. notazione o notazione ω. Marina Zanella Algoritmi e strutture dati Richiami matematici 1

Notazione asintotica. notazione Ω. notazione O. notazione o notazione ω. Marina Zanella Algoritmi e strutture dati Richiami matematici 1 Notazione asintotica Sebbene si possa talvolta determinare il tempo esatto di esecuzione di un algoritmo, l estrema precisione non giustifica lo sforzo del calcolo; infatti, per input sufficientemente

Dettagli

Note per la Lezione 6 Ugo Vaccaro

Note per la Lezione 6 Ugo Vaccaro Progettazione di Algoritmi Anno Accademico 2016 2017 Note per la Lezione 6 Ugo Vaccaro Ancora sulla tecnica Programmazione Dinamica Nella lezione scorsa abbiamo appreso che la tecnica Divide-et-Impera,

Dettagli

Introduzione al Corso di Algoritmi

Introduzione al Corso di Algoritmi Introduzione al Corso di Algoritmi Di cosa parliamo oggi: Una discussione generale su cosa studieremo, perchè lo studeriemo, come lo studieremo,... Un esempio illustrativo di cosa studeriemo Informazione

Dettagli

Un algoritmo realizza una relazione funzionale tra i valori di input e quelli di output

Un algoritmo realizza una relazione funzionale tra i valori di input e quelli di output Un algoritmo realizza una relazione funzionale tra i valori di input e quelli di output F = { (s, s ) } per ogni s esiste una e una sola coppia (s, s ). Esempio: un algoritmo che calcola il quadrato di

Dettagli

Esercizi sulla complessità di frammenti di pseudo-codice

Esercizi sulla complessità di frammenti di pseudo-codice Esercizi sulla complessità di frammenti di pseudo-codice Esercizio 1 Si determini la complessità temporale del seguente frammento di pseudo-codice in funzione di n. Il ciclo contiene solo istruzioni elementari;

Dettagli

5) Equazioni di ricorrenza

5) Equazioni di ricorrenza Pag 37 5) Equazioni di ricorrenza Valutare la complessità di un algoritmo ricorsivo è, in genere, più laborioso che nel caso degli algoritmi iterativi. Infatti, la natura ricorsiva della soluzione algoritmica

Dettagli

Esercizi di Algoritmi e Strutture Dati

Esercizi di Algoritmi e Strutture Dati Esercizi di Algoritmi e Strutture Dati Moreno Marzolla http://www.moreno.marzolla.name/ Ultima Modifica: 7 ottobre 202 Copyright Portions of this work are Copyright 202, Moreno Marzolla. This work is licensed

Dettagli

Appunti lezione Capitolo 2 Analisi delle funzioni di costo

Appunti lezione Capitolo 2 Analisi delle funzioni di costo Appunti lezione Capitolo Analisi delle funzioni di costo Alberto Montresor 0 Settembre, 016 1 Funzioni di costo Definizione 1 (Funzione di costo). Utilizziamo il termine funzione di costo per indicare

Dettagli

Nell informatica esistono alcuni problemi particolarmente rilevanti, poiché essi:

Nell informatica esistono alcuni problemi particolarmente rilevanti, poiché essi: Pag 24 3) Il problema della ricerca Nell informatica esistono alcuni problemi particolarmente rilevanti, poiché essi: si incontrano in una grande varietà di situazioni reali; appaiono come sottoproblemi

Dettagli

Esercizi per il corso di Algoritmi, anno accademico 2014/15

Esercizi per il corso di Algoritmi, anno accademico 2014/15 1 Esercizi per il corso di Algoritmi, anno accademico 2014/15 Esercizi sulle Notazioni Asintotiche 1. Esercizio: Provare le seguenti relazioni, esibendo opportune costanti c 1,c 2 ed n 0. Si assuma per

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Analisi Asintotica Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino Un graduale processo di astrazione Passo 1: abbiamo ignorato il costo effettivo

Dettagli

L1 L2 L3 L4 L5 L6 L7 L8 L9. Esercizio. Determinare l insieme di disuguaglianze che descrive esattamente la regione di piano della figura

L1 L2 L3 L4 L5 L6 L7 L8 L9. Esercizio. Determinare l insieme di disuguaglianze che descrive esattamente la regione di piano della figura Determinare l insieme di disuguaglianze che descrive esattamente la regione di piano della figura [1] y x, x 1 [2] y x, x 1 [3] y x, x 1 [4] y x, x 1 [5] y x, x 1 L insieme è simmetrico rispetto all origine

Dettagli

Ω (grande omega) Esempio 10 COMPLESSITÀ COMPUTAZIONALE DEGLI ALGORITMI

Ω (grande omega) Esempio 10 COMPLESSITÀ COMPUTAZIONALE DEGLI ALGORITMI COMPLESSITÀ COMPUTAZIONALE DEGLI ALGORITMI Fondamenti di Informatica a.a.2006/07 Prof. V.L. Plantamura Dott.ssa A. Angelini Esempio 10 int potenza(int base, int esp); main () { \* Genera le prime potenze

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e Strutture Dati Capitolo 1 Un introduzione informale agli algoritmi Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Definizione informale di algoritmo Insieme di istruzioni, definite

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Analisi asintotica e Ricorrenze Esercizi Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino A.A. 2006/07 Notazioni O, Ω e Θ Parte I Notazioni

Dettagli

Algoritmi e strutture di dati 2

Algoritmi e strutture di dati 2 Algoritmi e strutture di dati 2 Paola Vocca Lezione 1: Divide et Impera 1 Paradigma del divide et impera Strutturato in tre fasi. Sia Π() istanza di dimensione di un problema computazionale Π (dove è immediato

Dettagli

Esercizi sul Principio d Induzione

Esercizi sul Principio d Induzione AM110 - ESERCITAZIONI I - II - 4 OTTOBRE 01 Esercizi sul Principio d Induzione Esercizio svolto 1. Dimostrare che per ogni n 1, il numero α(n) := n 3 + 5n è divisibile per 6. Soluzione. Dimostriamolo usando

Dettagli

Crescita funzioni. 20 novembre Come possiamo confrontare le funzioni di costo che abbiamo ottenuto finora?

Crescita funzioni. 20 novembre Come possiamo confrontare le funzioni di costo che abbiamo ottenuto finora? Crescita funzioni 20 novembre 2006 1 Funzioni di costo Definizione 1 (Funzione di costo). Utilizziamo il termine funzione di costo per indicare una funzione f : N R dall insieme dei numeri naturali ai

Dettagli

Tempo e spazio di calcolo (continua)

Tempo e spazio di calcolo (continua) Tempo e spazio di calcolo (continua) I numeri di Fibonacci come case study (applichiamo ad un esempio completo le tecniche illustrate nei lucidi precedenti) Abbiamo introdotto tecniche per la correttezza

Dettagli

Dati e Algoritmi I (Pietracaprina) Esercizi sulle Nozioni di Base

Dati e Algoritmi I (Pietracaprina) Esercizi sulle Nozioni di Base Dati e Algoritmi I (Pietracaprina) Esercizi sulle Nozioni di Base Dati e Algoritmi I (Pietracaprina): Esercizi 1 Problema 1. Sia T una stringa arbitraria di lunghezza n 1 su un alfabeto Σ. È sempre possibile

Dettagli

Tempo e spazio di calcolo (continua)

Tempo e spazio di calcolo (continua) Tempo e spazio di calcolo (continua) I numeri di Fibonacci come case study (applichiamo ad un esempio completo le tecniche illustrate nei lucidi precedenti) Abbiamo introdotto tecniche per la correttezza

Dettagli

Esercizi su alberi binari

Esercizi su alberi binari Esercizi su alberi binari Esercizi svolti: Determinazione nodi contenti verifica completezza verifica quasi completezza lunghezza del cammino interno determinazione ultima foglia in un quasi completo verifica

Dettagli

Proprietà delle notazioni asintotiche

Proprietà delle notazioni asintotiche Proprietà delle notazioni asintotiche Punto della situazione Cos è un algoritmo Tempo di esecuzione T(n) Analisi di algoritmi: analisi asintotica di T(n) Notazioni asintotiche Argomento di oggi Proprietà

Dettagli

La principale modalità di calcolo è l applicazione di funzioni

La principale modalità di calcolo è l applicazione di funzioni 1 La principale modalità di calcolo è l applicazione di funzioni Nei linguaggi funzionali puri non esistono strutture di controllo predefinite per la realizzazione di cicli quali for, while, repeat Un

Dettagli

QuickSort (1962, The Computer Journal)

QuickSort (1962, The Computer Journal) QuickSort (1962, The Computer Journal) Charles Antony Richard Hoare (1934 -) Attualmente senior researcher al Microsoft Research Center di Cambridge Hoare ha vinto nel 1980 il Turing Award, il premio più

Dettagli

Sommario della lezione

Sommario della lezione Universitá degli Studi di Salerno Corso di Algoritmi Prof. Ugo Vaccaro Anno Acc. 2014/15 p. 1/27 Sommario della lezione Ancora altri esempi di applicazione della Programmazione Dinamica: Il Problema della

Dettagli

Esercizi Capitolo 2 - Analisi di Algoritmi

Esercizi Capitolo 2 - Analisi di Algoritmi Esercizi Capitolo - Analisi di Algoritmi Alberto Montresor 19 Agosto, 014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile saltare

Dettagli

Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Successioni e loro limiti

Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Successioni e loro limiti Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Successioni e loro limiti Docente: Anna Valeria Germinario Università di Bari A.V.Germinario (Università di

Dettagli

Esempio : i numeri di Fibonacci

Esempio : i numeri di Fibonacci Esempio : i numeri di Fibonacci La successione di Fibonacci F 1, F 2,... F n,... è definita come: F 1 =1 F 2 =1 F n =F n 1 F n 2,n 2 Leonardo Fibonacci (Pisa, 1170 Pisa, 1250) http://it.wikipedia.org/wiki/leonardo_fibonacci

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e Strutture Dati Informazioni sul corso + Un introduzione informale agli algoritmi Domenico Fabio Savo 1 Domenico Fabio Savo Email: savo@dis.uniroma1.it Web: http://www.dis.uniroma1.it/~savo

Dettagli

Quando non espressamente detto, intendiamo che: f : R R x 0 R è punto di accumulazione per dom(f).

Quando non espressamente detto, intendiamo che: f : R R x 0 R è punto di accumulazione per dom(f). Teoremi sui iti Quando non espressamente detto, intendiamo che: f : R R 0 R è punto di accumulazione per dom(f). Teorema di unicità del ite. Supponiamo che f ammetta ite l (finito o infinito) per 0. Allora

Dettagli

Matlab. Istruzioni condizionali, cicli for e cicli while.

Matlab. Istruzioni condizionali, cicli for e cicli while. Matlab. Istruzioni condizionali, cicli for e cicli while. Alvise Sommariva Università degli Studi di Padova Dipartimento di Matematica 17 marzo 2016 Alvise Sommariva Introduzione 1/ 18 Introduzione Il

Dettagli

La ricorsione. Sommario. Fulvio CORNO - Matteo SONZA REORDA Dip. Automatica e Informatica Politecnico di Torino

La ricorsione. Sommario. Fulvio CORNO - Matteo SONZA REORDA Dip. Automatica e Informatica Politecnico di Torino La ricorsione Fulvio CORNO - Matteo SONZA REORDA Dip. Automatica e Informatica Politecnico di Torino Sommario! Definizione di ricorsione e strategie divide et impera! Semplici algoritmi ricorsivi! Merge

Dettagli

Introduzione alla tecnica di Programmazione Dinamica

Introduzione alla tecnica di Programmazione Dinamica Universitá degli Studi di Salerno Corso di Algoritmi Prof. Ugo Vaccaro Anno Acc. 2014/15 p. 1/37 Sommario della lezione Introduzione alla tecnica di Programmazione Dinamica Esempio di applicazione n. 1:

Dettagli

Esercitazione. Ricorsione. May 31, Esercizi presi dal libro di Rosen

Esercitazione. Ricorsione. May 31, Esercizi presi dal libro di Rosen Esercitazione Ricorsione May 31, 2016 Esercizi presi dal libro di Rosen Problema 2 a) sezione 5.3 Data la seguente funzione definita ricorsivamente come: f(n+1) = 2f(n) f(0) = 3 Determinare il valore di

Dettagli

Serie numeriche e serie di potenze

Serie numeriche e serie di potenze Serie numeriche e serie di potenze Sommare un numero finito di numeri reali è senza dubbio un operazione che non può riservare molte sorprese Cosa succede però se ne sommiamo un numero infinito? Prima

Dettagli

Principio di induzione: esempi ed esercizi

Principio di induzione: esempi ed esercizi Principio di induzione: esempi ed esercizi Principio di induzione: Se una proprietà P n dipendente da una variabile intera n vale per n e se, per ogni n N vale P n P n + allora P vale su tutto N Variante

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

Soluzione. Soluzione. Soluzione. Soluzione

Soluzione. Soluzione. Soluzione. Soluzione SUCCESSIONI E PROGRESSIONI Esercizio 78.A, 5, 8,, 4, La differenza tra ogni termine e il suo precedente è sempre uguale a 3. Pertanto si tratta di una progressione aritmetica crescente di ragione 3. La

Dettagli

I numeri rossi sulla Mole Antonelliana a Natale. Algoritmi e Laboratorio a.a Lezioni. Le regole della riproduzione dei conigli.

I numeri rossi sulla Mole Antonelliana a Natale. Algoritmi e Laboratorio a.a Lezioni. Le regole della riproduzione dei conigli. I numeri rossi sulla Mole Antonelliana a Natale Università di Torino acoltà di Scienze MN Corso di Studi in Informatica Curriculum SR (Sistemi e Reti) Algoritmi e Laboratorio a.a. 29- Lezioni prof. Elio

Dettagli

Macchina RAM. Modelli di calcolo e metodologie di analisi. Linguaggio di una macchina RAM. Algoritmi e Strutture Dati. Istruzioni.

Macchina RAM. Modelli di calcolo e metodologie di analisi. Linguaggio di una macchina RAM. Algoritmi e Strutture Dati. Istruzioni. Algoritmi e Strutture Dati Macchina RAM Nastro di ingresso Modelli di calcolo e metodologie di analisi Contatore istruzioni Programm a Accumulatore Unità centrale M[0] M[1] Nastro di uscita Basato su materiale

Dettagli

Corso di Controllo Digitale Equazioni alle Differenze e Z-trasformate a

Corso di Controllo Digitale Equazioni alle Differenze e Z-trasformate a Corso di Controllo Digitale Equazioni alle Differenze e Z-trasformate a Università degli Studi della Calabria Corso di Laurea in Ingegneria Elettronica. Ing. Domenico Famularo a Proprietà Letteraria Riservata

Dettagli

A.A CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5.

A.A CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5. A.A. 2015-2016. CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5. Esercizio 5.1. Determinare le ultime tre cifre di n = 13 1625. (Suggerimento. Sfruttare il Teorema di Eulero-Fermat)

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Analisi di algoritmi Maria Rita Di Berardini 2, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino 2 Polo di Scienze Università di Camerino ad Ascoli Piceno Parte I Analisi

Dettagli

Note per la Lezione 4 Ugo Vaccaro

Note per la Lezione 4 Ugo Vaccaro Progettazione di Algoritmi Anno Accademico 2016 2017 Note per la Lezione 4 Ugo Vaccaro Ripasso di nozioni su Alberi Ricordiamo che gli alberi rappresentano una generalizzazione delle liste, nel senso che

Dettagli

Richiami di Matematica. 1. Insiemi, relazioni, funzioni. 2. Cardinalitá degli insiemi infiniti e numerabilitá. 3. Notazione asintotica.

Richiami di Matematica. 1. Insiemi, relazioni, funzioni. 2. Cardinalitá degli insiemi infiniti e numerabilitá. 3. Notazione asintotica. Richiami di Matematica 1. Insiemi, relazioni, funzioni. 2. Cardinalitá degli insiemi infiniti e numerabilitá. 3. Notazione asintotica. Insiemi Definizioni di base Dato un insieme A: x A: elemento x appartenente

Dettagli

Analisi Matematica I Primo Appello ( ) - Fila 1

Analisi Matematica I Primo Appello ( ) - Fila 1 Analisi Matematica I Primo Appello (4-11-003) - Fila 1 1. Determinare la retta tangente alla funzione f() = (1 + ) 1+ in = 0. R. f(0) = 1, mentre la derivata è f () = ( e (1+) log(1+)) ( ) = e (1+) log(1+)

Dettagli

Algoritmi greedy. Gli algoritmi che risolvono problemi di ottimizzazione devono in genere operare una sequenza di scelte per arrivare alla soluzione

Algoritmi greedy. Gli algoritmi che risolvono problemi di ottimizzazione devono in genere operare una sequenza di scelte per arrivare alla soluzione Algoritmi greedy Gli algoritmi che risolvono problemi di ottimizzazione devono in genere operare una sequenza di scelte per arrivare alla soluzione Gli algoritmi greedy sono algoritmi basati sull idea

Dettagli

PROGRAMMAZIONE: Le strutture di controllo

PROGRAMMAZIONE: Le strutture di controllo PROGRAMMAZIONE: Le strutture di controllo Prof. Enrico Terrone A. S: 2008/09 Le tre modalità La modalità basilare di esecuzione di un programma è la sequenza: le istruzioni vengono eseguite una dopo l

Dettagli

Appunti lezione Capitolo 14 Greedy

Appunti lezione Capitolo 14 Greedy Appunti lezione Capitolo 14 Greedy Alberto Montresor 21 Novembre, 2016 1 Domanda: dimostrare che S[i, j] = con i j Nel problema della selezione delle attività, il sottoinsieme S[i, j] è definito nel modo

Dettagli

Algoritmi e strutture dati

Algoritmi e strutture dati Algoritmi e Strutture Dati Capitolo 1 Un introduzione informale agli algoritmi Definizione informale di algoritmo Insieme di istruzioni, definite passo per passo, in modo da poter essere eseguite meccanicamente

Dettagli

Un tipico esempio è la definizione del fattoriale n! di un numero n, la cui definizione è la seguente:

Un tipico esempio è la definizione del fattoriale n! di un numero n, la cui definizione è la seguente: Pag 29 4) La ricorsione 4.1 Funzioni matematiche ricorsive Partiamo da un concetto ben noto, quello delle funzioni matematiche ricorsive. Una funzione matematica è detta ricorsiva quando la sua definizione

Dettagli

2. Analisi degli Algoritmi

2. Analisi degli Algoritmi 2. Analisi degli Algoritmi Introduzione 2.1 Un modello di macchina elementare: la Macchina a Registri 2.2 Costo di esecuzione di un programma 2.3 Analisi del costo di esecuzione: il modello a costi uniformi

Dettagli

Sommario della lezione

Sommario della lezione Universitá degli Studi di Salerno Corso di Algoritmi Prof. Ugo Vaccaro Anno Acc. 2014/15 p. 1/36 Sommario della lezione Ulteriori esempi di applicazione della Programmazione Dinamica Esempio di applicazione

Dettagli

L algoritmo AKS. L algoritmo AKS. Seminario per il corso di Elementi di Algebra Computazionale. Oscar Papini. 22 luglio 2013

L algoritmo AKS. L algoritmo AKS. Seminario per il corso di Elementi di Algebra Computazionale. Oscar Papini. 22 luglio 2013 L algoritmo AKS Seminario per il corso di Elementi di Algebra Computazionale Oscar Papini 22 luglio 2013 Test di primalità Come facciamo a sapere se un numero n è primo? Definizione (Test di primalità)

Dettagli

Zeri di funzioni e teorema di Sturm

Zeri di funzioni e teorema di Sturm Zeri di funzioni e teorema di Sturm Enrico Bertolazzi Dipartimento di Ingegneria Meccanica e Strutturale Università degli Studi di Trento via Mesiano 77, I 38050 Trento, Italia EnricoBertolazzi@ingunitnit

Dettagli

Note per la Lezione 7 Ugo Vaccaro

Note per la Lezione 7 Ugo Vaccaro Progettazione di Algoritmi Anno Accademico 2016 2017 Note per la Lezione 7 Ugo Vaccaro Sempre sulla tecnica Programmazione Dinamica Ricordiamo che lo sviluppo di algoritmi basati sulla Programmazione Dinamica

Dettagli

L1 L2 L3 L4 L5 L6. Esercizio. [1] ha infinite soluzioni [2] non ha soluzioni [3] ha esattamente due soluzioni

L1 L2 L3 L4 L5 L6. Esercizio. [1] ha infinite soluzioni [2] non ha soluzioni [3] ha esattamente due soluzioni La disequazione x x + 1 0 [1] ha infinite soluzioni [] non ha soluzioni [3] ha esattamente due soluzioni [4] nessuna delle precedenti possibilità è corretta Introduciamo la funzione f : R R definita da

Dettagli

Tempo e spazio di calcolo

Tempo e spazio di calcolo Tempo e spazio di calcolo Modelli di calcolo e metodologie di analisi F. Damiani - Alg. & Lab. 04/05 (da M. Zacchi - Alg. & Lab. 03/04) In quale modo stimiamo il tempo di calcolo? Possiamo considerare

Dettagli

Informatica II. Capitolo 2 Analisi di algoritmi. Valutare la complessità in tempo. Complessità in tempo: cosa serve?

Informatica II. Capitolo 2 Analisi di algoritmi. Valutare la complessità in tempo. Complessità in tempo: cosa serve? Valutare la complessità in tempo Complessità in tempo: cosa serve? Informatica II Capitolo 2 Analisi di algoritmi Per stimare il tempo impiegato da un programma Per stimare il più grande input gestibile

Dettagli

Anno 5 Regole di derivazione

Anno 5 Regole di derivazione Anno 5 Regole di derivazione 1 Introduzione In questa lezione mostreremo quali sono le regole da seguire per effettuare la derivata di una generica funzione. Seguendo queste regole e conoscendo le derivate

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni Corso di Geometria 2- BIAR, BSIR Esercizi 2: soluzioni Esercizio Calcolare il determinante della matrice 2 3 : 3 2 a) con lo sviluppo lungo la prima riga, b) con lo sviluppo lungo la terza colonna, c)

Dettagli

Studieremo le congruenze lineari, cioe le equazioni del tipo

Studieremo le congruenze lineari, cioe le equazioni del tipo Congruenze lineari 1. Oggetto di studio - Definizione 1. Studieremo le congruenze lineari, cioe le equazioni del tipo dove ax b (mod n) (1) n, il modulo della congruenza, e un intero positivo fissato x,

Dettagli

La trasformata di Laplace

La trasformata di Laplace La trasformata di Laplace (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi DIMS Universitá di Trento anno accademico 2005/2006 La trasformata di Laplace 1 / 34 Outline 1 La trasformata di

Dettagli

poiché f(n) max{f(n),g(n)}, e g(n) max{f(n),g(n)}, sommando termine a termine: Quindi possiamo concludere che f(n)+g(n) = Θ(max{f(n),g(n)})

poiché f(n) max{f(n),g(n)}, e g(n) max{f(n),g(n)}, sommando termine a termine: Quindi possiamo concludere che f(n)+g(n) = Θ(max{f(n),g(n)}) Sol Esercizio 1 Es. Notazione asintotica: 1. Si dimostri che f(n)+g(n) = Θ(max{f(n),g(n)}) sotto l ip. f(n),g(n) >0, a partire da un certo n 0. poiché f(n) max{f(n),g(n)}, e g(n) max{f(n),g(n)}, sommando

Dettagli

3.2 Notazioni standard e funzioni comuni

3.2 Notazioni standard e funzioni comuni 3.2 Notazioni standard e funzioni comuni 43 Esercizi 3.1-1 Se f(n) e g(n) sono funzioni asintoticamente non negative, usate la definizione di base della notazione Θ per dimostrare che max(f(n), g(n)) =

Dettagli

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni Soluzioni dello scritto di Analisi Matematica II - /7/9 C.L. in Matematica e Matematica per le Applicazioni Proff. K. Payne, C. Tarsi, M. Calanchi Esercizio. a La funzione f è limitata e essendo lim fx

Dettagli

Algoritmi e Strutture Dati (Mod. B) Algoritmi Greedy (parte I)

Algoritmi e Strutture Dati (Mod. B) Algoritmi Greedy (parte I) Algoritmi e Strutture Dati (Mod. B) Algoritmi Greedy (parte I) Algoritmi greedy Gli algoritmi per problemi di ottimizzazione devono in genere operare una sequenza di scelte per arrivare alla soluzione

Dettagli

ESERCIZI SUI PUNTI DI NON DERIVABILITÀ TRATTI DA TEMI D ESAME

ESERCIZI SUI PUNTI DI NON DERIVABILITÀ TRATTI DA TEMI D ESAME ESERCIZI SUI PUNTI DI NON DERIVABILITÀ TRATTI DA TEMI D ESAME a cura di Michele Scaglia FUNZIONI DERIVABILI Sia f : domf R una funzione e sia 0 domf di accumulazione per domf Chiamiamo derivata prima di

Dettagli

Corso di Laurea in Ingegneria per l Ambiente e il Territorio - sede distaccata di Latina Corso di Analisi Matematica (1 modulo) - a.a.

Corso di Laurea in Ingegneria per l Ambiente e il Territorio - sede distaccata di Latina Corso di Analisi Matematica (1 modulo) - a.a. Corso di Laurea in Ingegneria per l Ambiente e il Territorio - sede distaccata di Latina Corso di Analisi Matematica ( modulo) - a.a. 00/04 APPUNTI INTEGRATIVI SUI CRITERI DI CONVERGENZA PER LE SERIE Serie

Dettagli

Il passo del gambero. La soluzione di problemi con la tecnica del Backtracking. Ugo de' Liguoro - Algoritmi e Sperimentazioni 03/04 - Lez.

Il passo del gambero. La soluzione di problemi con la tecnica del Backtracking. Ugo de' Liguoro - Algoritmi e Sperimentazioni 03/04 - Lez. Il passo del gambero La soluzione di problemi con la tecnica del Backtracking Nel labirinto Nel labirinto In ogni posizione provo sistematicamente tutte le strade, ricordando ogni volta l ultima scelta

Dettagli

x 1 Fig.1 Il punto P = P =

x 1 Fig.1 Il punto P = P = Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi

Dettagli

inferiore ai 180, ha area uguale al quadrato della corda AD che sottende un arco uguale alla somma dell arco AC e dell arco 180

inferiore ai 180, ha area uguale al quadrato della corda AD che sottende un arco uguale alla somma dell arco AC e dell arco 180 L approssimazione di π secondo al-kashi Al-Kashi calcola il π in modo tale che soddisfi una condizione, detta Condizione di Al-Kashi : La circonferenza di un cerchio deve essere espressa in funzione del

Dettagli

Algoritmi e strutture dati

Algoritmi e strutture dati Algoritmi e Strutture Dati Capitolo 4 Ordinamento Ordinamento Dato un insieme S di n oggetti presi da un dominio totalmente ordinato, ordinare S Esempi: ordinare alfabeticamente lista di nomi, o insieme

Dettagli

Introduzione agli Algoritmi

Introduzione agli Algoritmi Introduzione agli Algoritmi Informatica Sara Zuppiroli A.A. 2012-2013 Informatica () Introduzione agli Algoritmi A.A. 2012-2013 1 / 25 Risoluzione dei problemi Dalla descrizione del problema all individuazione

Dettagli

Ottimizzazione dei Sistemi Complessi

Ottimizzazione dei Sistemi Complessi 1 Giovedì 2 Marzo 2017 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR Pseudo-code del metodo Fermi-Metropolis Input: x 0, 0, min, maxit k 0, x x 0, 0 while k maxit and min do k k + 1, x x

Dettagli

IIASS International Institute for Advanced Scientific Studies. Dipartimento di Fisica E.R. Caianiello Università di Salerno Premio

IIASS International Institute for Advanced Scientific Studies. Dipartimento di Fisica E.R. Caianiello Università di Salerno Premio IIASS International Institute for Advanced Scientific Studies Eduardo R. Caianiello Dipartimento di Fisica E.R. Caianiello Università di Salerno Premio Eduardo R. Caianiello per gli studenti delle Scuole

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis Dipartimento di Matematica, Informatica e Economia Università della Basilicata a.a. 2014-15 Errori Cause principali di errori nella risoluzione

Dettagli

CORSO DI LAUREA IN FISICA

CORSO DI LAUREA IN FISICA CORSO DI LAUREA IN FISICA ANALISI MATEMATICA I BREVI RICHIAMI DELLA TEORIA DEI LIMITI. Confronto di infinitesimi. Sia A sottoinsieme di R, sia 0 punto di accumulazione di A nella topologia di R quindi

Dettagli

La forma normale di Schur

La forma normale di Schur La forma normale di Schur Dario A Bini, Università di Pisa 30 ottobre 2013 Sommario Questo modulo didattico contiene risultati relativi alla forma normale di Schur, alle sue proprietà e alle sue applicazioni

Dettagli

Geometria e Topologia I (U1-4) 2006-mag-10 61

Geometria e Topologia I (U1-4) 2006-mag-10 61 Geometria e Topologia I (U1-4) 2006-mag-10 61 (15.9) Teorema. Consideriamo il piano affine. Se A A 2 (K) è un punto e r una retta che non passa per A, allora esiste unica la retta per A che non interseca

Dettagli

Cenni di programmazione ricorsiva. Appunti per gli studenti di Programmazione I e Laboratorio (corsi A-B)

Cenni di programmazione ricorsiva. Appunti per gli studenti di Programmazione I e Laboratorio (corsi A-B) Cenni di programmazione ricorsiva Appunti per gli studenti di Programmazione I e Laboratorio (corsi A-B) Corso di Laurea in Informatica Università di Pisa A.A. 2009/10 R. Barbuti, P. Mancarella Indice

Dettagli

COMPLESSITÀ COMPUTAZIONALE DEGLI ALGORITMI

COMPLESSITÀ COMPUTAZIONALE DEGLI ALGORITMI COMPLESSITÀ COMPUTAZIONALE DEGLI ALGORITMI Fondamenti di Informatica a.a.200.2005/06 Prof. V.L. Plantamura Dott.ssa A. Angelini Confronto di algoritmi Uno stesso problema può essere risolto in modi diversi,

Dettagli

Soluzione dei problemi di Programmazione Lineare Intera

Soluzione dei problemi di Programmazione Lineare Intera Fondamenti di Ricerca Operativa T-A a.a. 2014-2015 Soluzione dei problemi di Programmazione Lineare Intera Andrea Lodi, Enrico Malaguti, Daniele Vigo rev. 1.1.a ottobre 2014 Fondamenti di Ricerca Operativa

Dettagli

Triangolo rettangolo

Triangolo rettangolo Dato il triangolo rettangolo Possiamo perciò utilizzare angoli). Progetto Matematica in Rete Triangolo rettangolo OPA sappiamo che: PA cateto sen OP cos tg OA cateto OP PA cateto OA cateto opposto ad ipotenusa

Dettagli

Forme indeterminate e limiti notevoli

Forme indeterminate e limiti notevoli Forme indeterminate e iti notevoli Limiti e continuità Forme indeterminate e iti notevoli Forme indeterminate Teorema di sostituzione Limiti notevoli Altre forme indeterminate 2 2006 Politecnico di Torino

Dettagli

Equivalentemente, le colonne di A sono linearmente indipendenti se e solo se

Equivalentemente, le colonne di A sono linearmente indipendenti se e solo se Lezioni di Algebra Lineare. Versione novembre 2008 VI. Il determinante Il determinante det A di una matrice A, reale e quadrata, è un numero reale associato ad A. Dunque det è una funzione dall insieme

Dettagli

Esercizi Capitolo 10 - Code con priorità e insiemi disgiunti

Esercizi Capitolo 10 - Code con priorità e insiemi disgiunti Esercizi Capitolo 10 - Code con priorità e insiemi disgiunti Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente,

Dettagli

Metodi iterativi per equazioni nonlineari.

Metodi iterativi per equazioni nonlineari. Metodi iterativi per equazioni nonlineari. Alvise Sommariva Università degli Studi di Padova Dipartimento di Matematica 9 aprile 2016 Alvise Sommariva Introduzione 1/ 14 Introduzione Si supponga sia f

Dettagli

Ordinamento per inserzione e per fusione

Ordinamento per inserzione e per fusione Ordinamento per inserzione e per fusione Alessio Orlandi 15 marzo 2010 Fusione: problema Problema Siano A e B due array di n A e n B interi rispettivamente. Si supponga che A e B siano ordinati in modo

Dettagli

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0.

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0. . Rette in R ; circonferenze. In questo paragrafo studiamo le rette e le circonferenze in R. Ci sono due modi per descrivere una retta in R : mediante una equazione cartesiana oppure mediante una equazione

Dettagli