poiché f(n) max{f(n),g(n)}, e g(n) max{f(n),g(n)}, sommando termine a termine: Quindi possiamo concludere che f(n)+g(n) = Θ(max{f(n),g(n)})

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "poiché f(n) max{f(n),g(n)}, e g(n) max{f(n),g(n)}, sommando termine a termine: Quindi possiamo concludere che f(n)+g(n) = Θ(max{f(n),g(n)})"

Transcript

1 Sol Esercizio 1 Es. Notazione asintotica: 1. Si dimostri che f(n)+g(n) = Θ(max{f(n),g(n)}) sotto l ip. f(n),g(n) >0, a partire da un certo n 0. poiché f(n) max{f(n),g(n)}, e g(n) max{f(n),g(n)}, sommando termine a termine: f(n)+g(n) 2 * max{f(n),g(n)}), per ogni n n 0 e questo vuole dire che f(n)+g(n) = O(max{f(n),g(n)}) poiché f(n)+g(n) max{f(n),g(n)}, per ogni n n 0 e possiamo concludere che f(n)+g(n) = Ω(max{f(n),g(n)}). Quindi possiamo concludere che f(n)+g(n) = Θ(max{f(n),g(n)}) Prof. Prof. E. E. Fachini Fachini - - Intr. Intr. Alg. Alg. 1

2 Sol esercizio 2 Si dimostri che se f(n) = Θ(n k ), per una costante k, cioè f(n) è polinomiale di grado k, allora lg(f(n)) = Θ(lg n), dove lg(x) = log 2 (x). Se f(n) = Θ(n k ), questo vuol dire che esistono c,c e n 0, tali che c n k f(n) c n k, per ogni n n 0. Prendendo la prima disuguaglianza c n k f(n) e applicando il logaritmo a entrambi i membri si ottiene lg(c n k ) lg(f(n)). Visto che il logaritmo è una funzione crescente, si ottiene lg(c ) + klg n lg(f(n)), da cui in definitiva k lg(n) lg(f(n)), per ogni n n 0 e cioè lg(f(n)) = Ω(lg n). Prendendo la seconda disuguaglianza, f(n) c n k, applicando il logaritmo a entrambi i membri si ottiene lg(f(n)) lg (c n k ), come prima applicando le regole del logaritmo si ottiene lg(f(n)) lg (c ) + k lg(n) (lg (c ) + k)lg(n), per ogni n n 0 e cioè lg(f(n)) = O(lg n). Questo dimostra che lg(f(n)) = Θ(lg n) se f(n) = Θ(n k ). Prof. Prof. E. E. Fachini Fachini - - Intr. Intr. Alg. Alg. 2

3 Esercizi notazione asintotica 1 Si definisca O(f(n)). Si confronti nlg n con n 2 : nlg n = O(n 2 ) o n 2 = O(nlgn)? Sol.: nlg n = O(n 2 ) e n 2 O(nlgn) nlg n = O(n 2 ), infatti esistono c ed n0, tali che n lg n cn2, cioè lg n c n per ogni n n0, basta prendere n0 2 e c = 1. n 2 O(nlgn), infatti se n 2 = O(n lg n) allora dovrebbero esistere d ed n 0, tali che n 2 dn lg n, per ogni n n 0, ma per n 0 2, n 2 dn lg n equivale a dire che n d lg n per ogni n n 0, e per un certo d. Ma per ogni scelta di d troviamo un valore di n per cui è falso, per esempio n = 2 d, perché allora dovrebbe essere 2 d 2d, cosa falsa per ogni d 0. Si confronti nlg n con n: nlgn = O(n) o n = O(nlgn)? Sol.: nlg n O(n) mentre n = O(nlgn)

4 Esercizi notazione asintotica 1 É vero che nlg n = O(nlg 2 n)? Sol.: Si deve verificare se nlg n cnlg 2 n, per un certo c 0 e per ogni n n0. Se n 2, possiamo dividere per n lg n e abbiamo 1 c lg n, che è vero per esempio con c = 1 e n 2 É vero che nlg n 5 = O(nlg n)? Sol.: Sì perché nlg n 5 = 5nlg n É vero che loga n = Θ(lg n)? Sol.: Sì perché loga n = lg n loga 2, caso particolare della regola loga n = logb n loga b

5 Esercizi notazione asintotica 2 n 2 + nlgn = O(.. ) Sol.: n 2 + nlgn = O(n 2 ) n + nlgn = O(.. ) Sol.: n + nlgn = O(nlg n) n 2 + lglgn = O(.) n 2 + lglgn = O(n 2 )

6 Es. Not. Asint. e Analisi algoritmi 1 Se un algoritmo ha tempo di esecuzione Θ(n2) nel caso peggiore, posso dedurne che nel caso migliore terminerà in Θ(n2) passi?

7 Es. Not. Asint. e Analisi algoritmi 1 Sol. La risposta è no, perché non è detto che i due casi abbiano la stessa complessità, come nel caso dell insertionsort in cui il caso peggiore è in Θ(n2), ma il caso migliore è in Θ(n).

8 Es. Not. Asint. e Analisi algoritmi 2 Se si dimostra che un algoritmo ha tempo di esecuzione Ω(n2) nel caso migliore, è possibile che in qualche caso l'algoritmo termini in O(n) passi?

9 Es. Not. Asint. e Analisi algoritmi 2 Sol. Se si dimostra che un algoritmo ha tempo di esecuzione Ω(n 2 ) nel caso migliore, è possibile che in qualche caso l'algoritmo termini in O(n) passi? La risposta è no. Se nel caso migliore si è dimostrato che il limite inferiore alla complessità è Ω(n 2 ), ogni altro caso ha questo stesso limite inferiore e quindi non può avere una complessità in O(n). Infatti se f(n) = Ω(n 2 ) allora esistono c ed n 0, tali che f(n) cn 2 per ogni n n 0, se f(n) = O(n) allora esistono d ed n 0, tali che f(n) dn per ogni n n 0, ma dn f(n) cn 2 implica dn cn 2 che é falso per ogni scelta di d e per ogni n > d.

10 Es. Not. Asint. e Analisi algoritmi 3 Se si dimostra che un algoritmo ha tempo di esecuzione Ω(n2) nel caso peggiore, è possibile che in qualche caso l'algoritmo termini in O(n) passi?

11 Es. Not. Asint. e Analisi algoritmi 3 Se si dimostra che un algoritmo ha tempo di esecuzione Ω(n2) nel caso peggiore, è possibile che in qualche caso l'algoritmo termini in O(n) passi? Qui la risposta è sì, perché il limite inferiore per il caso peggiore può non valere per il caso migliore, si può sempre prendere l insertionsort come esempio.

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Analisi Asintotica Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino Un graduale processo di astrazione Passo 1: abbiamo ignorato il costo effettivo

Dettagli

Proprietà delle notazioni asintotiche

Proprietà delle notazioni asintotiche Proprietà delle notazioni asintotiche Punto della situazione Cos è un algoritmo Tempo di esecuzione T(n) Analisi di algoritmi: analisi asintotica di T(n) Notazioni asintotiche Argomento di oggi Proprietà

Dettagli

Notazione asintotica. notazione Ω. notazione O. notazione o notazione ω. Marina Zanella Algoritmi e strutture dati Richiami matematici 1

Notazione asintotica. notazione Ω. notazione O. notazione o notazione ω. Marina Zanella Algoritmi e strutture dati Richiami matematici 1 Notazione asintotica Sebbene si possa talvolta determinare il tempo esatto di esecuzione di un algoritmo, l estrema precisione non giustifica lo sforzo del calcolo; infatti, per input sufficientemente

Dettagli

Esercizi su alberi binari

Esercizi su alberi binari Esercizi su alberi binari Esercizi svolti: Determinazione nodi contenti verifica completezza verifica quasi completezza lunghezza del cammino interno determinazione ultima foglia in un quasi completo verifica

Dettagli

3.2 Notazioni standard e funzioni comuni

3.2 Notazioni standard e funzioni comuni 3.2 Notazioni standard e funzioni comuni 43 Esercizi 3.1-1 Se f(n) e g(n) sono funzioni asintoticamente non negative, usate la definizione di base della notazione Θ per dimostrare che max(f(n), g(n)) =

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Analisi asintotica e Ricorrenze Esercizi Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino A.A. 2006/07 Notazioni O, Ω e Θ Parte I Notazioni

Dettagli

Tecniche Algoritmiche: divide et impera

Tecniche Algoritmiche: divide et impera Tecniche Algoritmiche: divide et impera Una breve presentazione F. Damiani - Alg. & Lab. 04/05 Divide et impera (o Divide and conquer) Per regnare occorre tenere divisi i nemici e trarne vantaggio F. Damiani

Dettagli

Algoritmi e strutture dati. Analisi di algoritmi Funzioni di costo, notazione asintotica

Algoritmi e strutture dati. Analisi di algoritmi Funzioni di costo, notazione asintotica Algoritmi e strutture dati Analisi di algoritmi Funzioni di costo, notazione asintotica Alberto Montresor Università di Trento 2016/09/11 This work is licensed under a Creative Commons Attribution-ShareAlike

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Analisi di algoritmi Maria Rita Di Berardini 2, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino 2 Polo di Scienze Università di Camerino ad Ascoli Piceno Parte I Analisi

Dettagli

COMPLESSITÀ COMPUTAZIONALE DEGLI ALGORITMI

COMPLESSITÀ COMPUTAZIONALE DEGLI ALGORITMI COMPLESSITÀ COMPUTAZIONALE DEGLI ALGORITMI Fondamenti di Informatica a.a.200.2005/06 Prof. V.L. Plantamura Dott.ssa A. Angelini Ω (grande omega) Diciamo che T(n) = Ω (f(n)), - leggiamo T(n) ha complessità

Dettagli

Crescita funzioni. 20 novembre Come possiamo confrontare le funzioni di costo che abbiamo ottenuto finora?

Crescita funzioni. 20 novembre Come possiamo confrontare le funzioni di costo che abbiamo ottenuto finora? Crescita funzioni 20 novembre 2006 1 Funzioni di costo Definizione 1 (Funzione di costo). Utilizziamo il termine funzione di costo per indicare una funzione f : N R dall insieme dei numeri naturali ai

Dettagli

QuickSort (1962, The Computer Journal)

QuickSort (1962, The Computer Journal) QuickSort (1962, The Computer Journal) Charles Antony Richard Hoare (1934 -) Attualmente senior researcher al Microsoft Research Center di Cambridge Hoare ha vinto nel 1980 il Turing Award, il premio più

Dettagli

Elementi di Complessità Computazionale

Elementi di Complessità Computazionale Elementi di Complessità Computazionale Ultima modifica 23.06.2004 Il problema Esiste una misura oggettiva per valutare l'efficienza di un algoritmo? In che relazione sono gli input di un algoritmo con

Dettagli

Algoritmi e Laboratorio a.a Lezioni. prof. Elio Giovannetti. INTERMEZZO 1: una favola araba

Algoritmi e Laboratorio a.a Lezioni. prof. Elio Giovannetti. INTERMEZZO 1: una favola araba Università di Torino Facoltà di Scienze MFN Corso di Studi in Informatica Curriculum SR (Sistemi i e Reti) Algoritmi e Laboratorio a.a. 2009-10 Lezioni prof. Elio Giovannetti Lezione 8 Classificazione

Dettagli

Informatica II. Capitolo 2 Analisi di algoritmi. Valutare la complessità in tempo. Complessità in tempo: cosa serve?

Informatica II. Capitolo 2 Analisi di algoritmi. Valutare la complessità in tempo. Complessità in tempo: cosa serve? Valutare la complessità in tempo Complessità in tempo: cosa serve? Informatica II Capitolo 2 Analisi di algoritmi Per stimare il tempo impiegato da un programma Per stimare il più grande input gestibile

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi Ricorsivi e Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino A.A. 2006/07 I conigli di Fibonacci Ricerca Binaria L isola dei conigli

Dettagli

Appunti lezione Capitolo 2 Analisi delle funzioni di costo

Appunti lezione Capitolo 2 Analisi delle funzioni di costo Appunti lezione Capitolo Analisi delle funzioni di costo Alberto Montresor 0 Settembre, 016 1 Funzioni di costo Definizione 1 (Funzione di costo). Utilizziamo il termine funzione di costo per indicare

Dettagli

Capitolo 8: Teoria della complessitá

Capitolo 8: Teoria della complessitá Capitolo 8: Teoria della complessitá 1 La Teoria della calcolabilitá considera aspetti qualitativi della soluzione di problemi. Distingue il calcolabile dal non calcolabile. La Teoria della complessitá

Dettagli

Ω (grande omega) Esempio 10 COMPLESSITÀ COMPUTAZIONALE DEGLI ALGORITMI

Ω (grande omega) Esempio 10 COMPLESSITÀ COMPUTAZIONALE DEGLI ALGORITMI COMPLESSITÀ COMPUTAZIONALE DEGLI ALGORITMI Fondamenti di Informatica a.a.2006/07 Prof. V.L. Plantamura Dott.ssa A. Angelini Esempio 10 int potenza(int base, int esp); main () { \* Genera le prime potenze

Dettagli

Esercizi Capitolo 2 - Analisi di Algoritmi

Esercizi Capitolo 2 - Analisi di Algoritmi Esercizi Capitolo - Analisi di Algoritmi Alberto Montresor 19 Agosto, 014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile saltare

Dettagli

Tempo e spazio di calcolo

Tempo e spazio di calcolo Tempo e spazio di calcolo Modelli di calcolo e metodologie di analisi F. Damiani - Alg. & Lab. 04/05 (da M. Zacchi - Alg. & Lab. 03/04) In quale modo stimiamo il tempo di calcolo? Possiamo considerare

Dettagli

Valutazione di progressioni geometriche

Valutazione di progressioni geometriche Universitá degli Studi di Salerno Corso di Introduzione agli Algoritmi e Strutture Dati Prof. Ugo Vaccaro Anno Acc. 2015/16 p. 1/22 Valutazione di progressioni geometriche Somme finite: Sia S n = n i=0

Dettagli

Codifica binaria. Rappresentazioni medianti basi diverse

Codifica binaria. Rappresentazioni medianti basi diverse Codifica binaria Rappresentazione di numeri Notazione di tipo posizionale (come la notazione decimale). Ogni numero è rappresentato da una sequenza di simboli Il valore del numero dipende non solo dalla

Dettagli

Rappresentazione di numeri relativi (interi con segno) Rappresentazione di numeri interi relativi (con N bit) Segno e Valore Assoluto

Rappresentazione di numeri relativi (interi con segno) Rappresentazione di numeri interi relativi (con N bit) Segno e Valore Assoluto Rappresentazione di numeri relativi (interi con segno) E possibile estendere in modo naturale la rappresentazione dei numeri naturali ai numeri relativi. I numeri relativi sono numeri naturali preceduti

Dettagli

Richiami di Matematica. 1. Insiemi, relazioni, funzioni. 2. Cardinalitá degli insiemi infiniti e numerabilitá. 3. Notazione asintotica.

Richiami di Matematica. 1. Insiemi, relazioni, funzioni. 2. Cardinalitá degli insiemi infiniti e numerabilitá. 3. Notazione asintotica. Richiami di Matematica 1. Insiemi, relazioni, funzioni. 2. Cardinalitá degli insiemi infiniti e numerabilitá. 3. Notazione asintotica. Insiemi Definizioni di base Dato un insieme A: x A: elemento x appartenente

Dettagli

Esercizi di Algoritmi e Strutture Dati

Esercizi di Algoritmi e Strutture Dati Esercizi di Algoritmi e Strutture Dati Moreno Marzolla http://www.moreno.marzolla.name/ Ultima Modifica: 7 ottobre 202 Copyright Portions of this work are Copyright 202, Moreno Marzolla. This work is licensed

Dettagli

LOGARITMI ED ESPONENZIALI

LOGARITMI ED ESPONENZIALI 1 LOGARITMI ED ESPONENZIALI 1. (Da Veterinaria 2013) Riscrivendo 9 3x+2 nel formato 3 y, quale sarà il valore di y? a) 3x b) 3x + 4 c) 6x + 2 d) 6x + 4 e) 9x + 6 2. (Da Odontoiatria 2009) Qual è la soluzione

Dettagli

OSTRUZIONI SUI GRAFI. Alcune ostruzioni per l esistenza di grafi con dato score 1) Vale il seguente lemma

OSTRUZIONI SUI GRAFI. Alcune ostruzioni per l esistenza di grafi con dato score 1) Vale il seguente lemma OSTRUZIONI SUI GRAFI Alcune ostruzioni per l esistenza di grafi con dato score 1) Vale il seguente lemma Lemma 1. Se G = (V, E) è un grafo finito con n vertici allora deg(v) n 1, v V. Dal lemma segue che

Dettagli

Algoritmi e Strutture Dati. Capitolo 4 Ordinamento: Selection e Insertion Sort

Algoritmi e Strutture Dati. Capitolo 4 Ordinamento: Selection e Insertion Sort Algoritmi e Strutture Dati Capitolo 4 Ordinamento: Selection e Insertion Sort Ordinamento Dato un insieme S di n elementi presi da un dominio totalmente ordinato, ordinare S in ordine non crescente o non

Dettagli

ANALISI 1 - Teoremi e dimostrazioni vari

ANALISI 1 - Teoremi e dimostrazioni vari ANALISI 1 - Teoremi e dimostrazioni vari Sommario Proprietà dell estremo superiore per R... 2 Definitivamente... 2 Successioni convergenti... 2 Successioni monotone... 2 Teorema di esistenza del limite

Dettagli

Esercizio 1. E vero che in un AVL il minimo si trova in una foglia o nel penultimo livello? FB = -1. livello 0 FB = -1. livello 1 FB = -1.

Esercizio 1. E vero che in un AVL il minimo si trova in una foglia o nel penultimo livello? FB = -1. livello 0 FB = -1. livello 1 FB = -1. Esercizio 1 E vero che in un AVL il minimo si trova in una foglia o nel penultimo livello? FB = -1 livello 0 FB = -1 FB = -1 livello 1 FB = -1 livello 2 livello 3 L altezza è 3, il minimo si trova nel

Dettagli

5. DIVIDE AND CONQUER I

5. DIVIDE AND CONQUER I Divide-et-Impera (Divide and conquer) 5. DIVIDE AND CONQUER I Mergesort e Relazioni di ricorrenza Esempi di progettazione D&I Moltiplicazione di interi Contare inversioni Divide-et-Impera. Definizione

Dettagli

Esercizi per il corso Matematica clea

Esercizi per il corso Matematica clea Esercizi per il corso Matematica clea Daniele Ritelli anno accademico 008/009 Lezione : Numeri naturali e principio di induzione Esercizi svolti. Provare che + + + n. Provare che + + + n n(n + ) n(n +

Dettagli

Analisi algoritmi ricorsivi e relazioni di ricorrenza

Analisi algoritmi ricorsivi e relazioni di ricorrenza Analisi algoritmi ricorsivi e relazioni di ricorrenza Punto della situazione Finora abbiamo affrontato: il tempo di esecuzione di un algoritmo, l analisi asintotica con le notazioni asintotiche e la tecnica

Dettagli

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti Discutendo graficamente la disequazione x > 3 + x, verificare che l insieme delle soluzioni è un intervallo e trovarne

Dettagli

Aritmetica modulare, numeri primi e crittografia

Aritmetica modulare, numeri primi e crittografia Università di Pavia 14 Giugno 2016 Numeri primi Definizione Un intero n > 1 è un numero primo se non esistono due interi a, b > 1 tali che n = ab. Sono dunque numeri primi: 2, 3, 5, 7, 11, 13, 17, 19,

Dettagli

Cognome e Nome: Numero di Matricola: Spazio riservato alla correzione totale /5 /6 /4 /25 /15 /20 /25 /100

Cognome e Nome: Numero di Matricola: Spazio riservato alla correzione totale /5 /6 /4 /25 /15 /20 /25 /100 Cognome e Nome: Numero di Matricola: Spazio riservato alla correzione 1 2 3 4 5 6 7 totale 1. Indicare quali delle seguenti affermazioni sono vere e quali sono false. a. n 3 +n 2 +4 = Θ (n 3 ) b. n! =

Dettagli

Un esempio di calcolo di complessità: insertion sort

Un esempio di calcolo di complessità: insertion sort Un esempio di calcolo di complessità: insertion sort Vediamo su un esempio come si può calcolare la complessità di un algoritmo... L esempio è un metodo semplice per ordinare arrays: insertion sort, o

Dettagli

Albero di Riscorsione

Albero di Riscorsione Albero di Riscorsione Albero di ricorsione Un albero di ricorsione è un modo di visualizzare cosa accade in un algoritmo divide et impera L etichetta della radice rappresenta il costo non ricorsivo della

Dettagli

1 Funzioni reali di una variabile reale

1 Funzioni reali di una variabile reale 1 Funzioni reali di una variabile reale Qualche definizione e qualche esempio che risulteranno utili più avanti Durante tutto questo corso studieremo funzioni reali di una variabile reale, cioè Si ha f

Dettagli

una possibile funzione unidirezionale

una possibile funzione unidirezionale una possibile funzione unidirezionale moltiplicare due interi a n bit è facile (in O(n 2 ) con l algoritmo usuale) trovare un primo a n bit, e verificare che è primo, è facile (vedremo poi) fattorizzare

Dettagli

Luca Costabile Esercizi di Logica Matematica Dispensa Calcolo Proposizionale 1

Luca Costabile Esercizi di Logica Matematica Dispensa Calcolo Proposizionale 1 Luca Costabile Esercizi di Logica Matematica Dispensa Calcolo Proposizionale 1 Esercizio 1.12 Per dimostrare che per ogni funzione esiste una formula in cui compaiono le variabili tale che la corrispondente

Dettagli

Sviluppi e derivate delle funzioni elementari

Sviluppi e derivate delle funzioni elementari Sviluppi e derivate delle funzioni elementari In queste pagine dimostriamo gli sviluppi del prim ordine e le formule di derivazioni delle principali funzioni elementari. Utilizzeremo le uguaglianze lim

Dettagli

Algoritmi di ricerca. Per ricerca si intende qui il procedimento di localizzare una particolare informazione in un elenco di dati.

Algoritmi di ricerca. Per ricerca si intende qui il procedimento di localizzare una particolare informazione in un elenco di dati. E. Calabrese: Fondamenti di Informatica Algoritmi-1 Algoritmi di ricerca Per ricerca si intende qui il procedimento di localizzare una particolare informazione in un elenco di dati. Per esempio: - cercare

Dettagli

Analisi asintotica della complessità di tempo degli algoritmi

Analisi asintotica della complessità di tempo degli algoritmi Analisi asintotica della complessità di tempo degli algoritmi Due esempi di funzioni di Python: 1. nel primo mettiamo in evidenza l importanza di una buona organizzazione dei dati in memoria, cioè di una

Dettagli

Progettazione di Algoritmi

Progettazione di Algoritmi Corso di laurea in Informatica Prova scritta del: Progettazione di Algoritmi 0/06/06 Prof. De Prisco Inserire i propri dati nell apposito spazio. Non voltare la finché non sarà dato il via. Dal via avrai

Dettagli

Di cosa parliamo oggi?

Di cosa parliamo oggi? Universitá degli Studi di Salerno Corso di Algoritmi Prof. Ugo Vaccaro Anno Acc. 2014/15 p. 1/41 Di cosa parliamo oggi? Oggi parliamo di Analisi di Algoritmi Analisi di Algoritmi = valutazione delle risorse

Dettagli

Esercizi sulle equazioni differenziali a cura di Sisto Baldo, Elisabetta Ossanna e Sandro Innocenti

Esercizi sulle equazioni differenziali a cura di Sisto Baldo, Elisabetta Ossanna e Sandro Innocenti Esercizi sulle equazioni differenziali a cura di Sisto Baldo, Elisabetta Ossanna e Sandro Innocenti 1. Verifica che y(t) = 1 t + e t è una soluzione dell equazione y (t) = y(t) + t.. Scrivi un equazione

Dettagli

Primo allenamento. Olimpiadi Italiane di Informatica - Selezione territoriale

Primo allenamento. Olimpiadi Italiane di Informatica - Selezione territoriale Primo allenamento Olimpiadi Italiane di Informatica - Selezione territoriale Luca Chiodini luca@chiodini.org - l.chiodini@campus.unimib.it 10 marzo 2016 Programma 1. Lettura di un problema tratto dalle

Dettagli

Funzione Composta. Date due funzioni g : A B e f : B C si può definire la funzione composta: notazione funzionale y = f (g(x))

Funzione Composta. Date due funzioni g : A B e f : B C si può definire la funzione composta: notazione funzionale y = f (g(x)) Funzione Composta Date due funzioni g : A B e f : B C si può definire la funzione composta: f g : A C g() f (g()) notazione funzionale = f (g()) La composizione ha senso se il valore g() appartiene al

Dettagli

FUNZIONI LOGARITMICHE

FUNZIONI LOGARITMICHE La funzione f: R R + dove f(x) = b x b>0, b 1, è invertibile. La funzione inversa si chiama logaritmo in base b log b : R + R, essendo la funzione inversa si ha log b (b x ) = x b log b x = x In particolare

Dettagli

Funzione Esponenziale

Funzione Esponenziale Funzione Esponenziale y y O f : R (0,+ ), f(x) = a x con a > a 0 =, a = a a x > 0 x R strettamente crescente: x < x 2 a x < ax 2 se x tende a +, a x tende a + se x tende a, a x tende a 0 x O f : R (0,+

Dettagli

Le proprietà che seguono valgono x, y > 0, a > 0 a 1, e b qualsiasi. Da queste si possono anche dedurre le seguenti uguaglianze log a 1 = 0

Le proprietà che seguono valgono x, y > 0, a > 0 a 1, e b qualsiasi. Da queste si possono anche dedurre le seguenti uguaglianze log a 1 = 0 Corso di Potenziamento a.a. 009/00 I Logaritmi Fissiamo un numero a > 0, a. Dato un numero positivo t, l equazione a x = t ammette un unica soluzione x che si chiama logaritmo in base a di t e si scrive

Dettagli

Massimo limite e minimo limite di una funzione

Massimo limite e minimo limite di una funzione Massimo limite e minimo limite di una funzione Sia f : A R una funzione, e sia p DA). Per ogni r > 0, l insieme ) E f p r) = { fx) x A I r p) \ {p} } è non vuoto; inoltre E f p r ) E f p r ) se 0 < r r.

Dettagli

FUNZIONI ELEMENTARI Test di autovalutazione

FUNZIONI ELEMENTARI Test di autovalutazione FUNZIONI ELEMENTARI Test di autovalutazione 1 E data la funzione f(x) = sin(2x 5) Allora: (a) dom (f) = {x IR : 1 2x 5 1} (b) im (f) = [ 1, 1] (c) f ha periodo T= π 5 (d) f ha periodo T= 2π 5 2 La funzione

Dettagli

IL TEOREMA FONDAMENTALE DELL ARITMETICA: DIMOSTRAZIONE VELOCE.

IL TEOREMA FONDAMENTALE DELL ARITMETICA: DIMOSTRAZIONE VELOCE. IL TEOREMA FONDAMENTALE DELL ARITMETICA: DIMOSTRAZIONE VELOCE. PH. ELLIA Indice Introduzione 1 1. Divisori di un numero. 1 2. Il Teorema Fondamentale dell Aritmetica. 2 3. L insieme dei numeri primi è

Dettagli

Lezione 4. Problemi trattabili e soluzioni sempre più efficienti. Gianluca Rossi

Lezione 4. Problemi trattabili e soluzioni sempre più efficienti. Gianluca Rossi Lezione 4 Problemi trattabili e soluzioni sempre più efficienti Gianluca Rossi Trattabile o intrattabile? Consideriamo ora il problema, ben noto a tutti gli studenti a partire dalla scuola media, di calcolare

Dettagli

Ordinamenti e crescita della complessità

Ordinamenti e crescita della complessità Ordinamenti e crescita della complessità Informatica@SEFA 07/08 - Lezione Massimo Lauria Venerdì, 7 Ottobre 07 Nota bibliografica: Il contenuto di questa e di alcune delle prossime

Dettagli

Introduzione agli Algoritmi ed alle Strutture Dati Anno Accademico 2015/2016 Appello 23/6/2016

Introduzione agli Algoritmi ed alle Strutture Dati Anno Accademico 2015/2016 Appello 23/6/2016 1. Indicare quali delle seguenti affermazioni sono vere e quali sono false. a. n 3 = Θ (n 3log n ) b. n! = Ω(n n ) c. log n = Θ (log( n 2 )) d. n 3 =Ω(n) e. 9 log 3 n = Θ (n) 2. Si dimostri in modo formale

Dettagli

ESAME DI MATEMATICA I parte Vicenza, 05/06/2017. x log 2 x?

ESAME DI MATEMATICA I parte Vicenza, 05/06/2017. x log 2 x? A. Peretti Svolgimento dei temi d esame di Matematica A.A. 6/7 ESAME DI MATEMATICA I parte Vicenza, 5/6/7 log? Domanda. Per quali valori di è definita l espressione L espressione è definita se l argomento

Dettagli

FUNZIONI LOGARITMICHE

FUNZIONI LOGARITMICHE La funzione f: R R + dove f(x) = b x b>0, b 1, è invertibile. La funzione inversa si chiama logaritmo in base b log b : R + R, essendo la funzione inversa si ha log b (b x ) = x b log b x = x In particolare

Dettagli

Analisi ammortizzata (Tarjan in 1985)

Analisi ammortizzata (Tarjan in 1985) In questa lezione Analisi della complessità di una sequenza di operazioni di estrazione e inserimento in una tabella memorizzata su un array, usando l analisi ammortizzata. Analisi ammortizzata (Tarjan

Dettagli

Corso di Analisi Matematica Successioni e loro limiti

Corso di Analisi Matematica Successioni e loro limiti Corso di Analisi Matematica Successioni e loro limiti Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 30 1 Definizione di successione

Dettagli

ANALISI 1 1 QUINTA LEZIONE

ANALISI 1 1 QUINTA LEZIONE ANALISI 1 1 QUINTA LEZIONE 1 prof. Claudio Saccon, Dipartimento di Matematica Applicata, Via F. Buonarroti 1/C email: saccon@mail.dm.unipi.it web: http://www2.ing.unipi.it/ d6081/index.html Ricevimento:

Dettagli

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame COGNOME NOME Matr. A Analisi Matematica (Corso di Laurea in Informatica e Bioinformatica) Firma dello studente Tempo: 3 ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni

Dettagli

ESAME DI MATEMATICA PER LE APPLICAZIONI ECONOMICHE 14 GIUGNO 2016 FILA A

ESAME DI MATEMATICA PER LE APPLICAZIONI ECONOMICHE 14 GIUGNO 2016 FILA A ESAME DI MATEMATICA PER LE APPLICAZIONI ECONOMICHE 4 GIUGNO 206 FILA A Durata della prova: 2 ore e mezza. NOTA: Spiegare con molta cura le risposte. NOTAZIONE: log = ln = log e. Esercizio 5 punti) Sia

Dettagli

Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Successioni e loro limiti

Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Successioni e loro limiti Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Successioni e loro limiti Docente: Anna Valeria Germinario Università di Bari A.V.Germinario (Università di

Dettagli

9. Lezione 9/10/2017. = a 3 a a

9. Lezione 9/10/2017. = a 3 a a 9. Lezione 9/10/017 9.1. Funzioni esponenziali. Scelta una base positiva a possiamo considerare le potenze a n per ogni n N. Valgono le proprietà: a 0 = 1 1 n 1 a = 1 a 1/ = a a a 4/3 = a 3 a a 0.5 = 1

Dettagli

Prof. Emanuele ANDRISANI

Prof. Emanuele ANDRISANI Potenze con esponente razionale Sia a > 0 e a 1. Abbiamo definito a x quando x N. Poniamo a 0 = 1 a x = a m n = n a m se x = m n Q, x > 0, m, n N a x = 1 a x se x Q, x > 0. È così definita la potenza a

Dettagli

Integrale indefinito

Integrale indefinito Integrale indefinito 1 Primitive di funzioni Definizione 1.1 Se f: [a, b] R è una funzione, una sua primitiva è una funzione derivabile g: [a, b] R tale che g () = f(). Ovviamente la primitiva di una funzione,

Dettagli

Pag. 151 Dimostrazioni dei criteri per lo studio della convergenza di serie numeriche

Pag. 151 Dimostrazioni dei criteri per lo studio della convergenza di serie numeriche C.7 Serie Pag. 151 Dimostrazioni dei criteri per lo studio della convergenza di serie numeriche Teorema 5.29 (Criterio del confronto) Siano e due serie numeriche a termini positivi e si abbia 0, per ogni

Dettagli

Calcolo Numerico Laurea di base in Ingegneria Elettronica, Ingegneria delle Comunicazioni

Calcolo Numerico Laurea di base in Ingegneria Elettronica, Ingegneria delle Comunicazioni Calcolo Numerico Laurea di base in Ingegneria Elettronica, Ingegneria delle Comunicazioni Prof.ssa Laura Pezza (A.A. 2016-2017) IV Lezione del 06.03.2017 http://www.dmmm.uniroma1.it/ laura.pezza 1 Equazioni

Dettagli

RICERCA IN UN VETTORE

RICERCA IN UN VETTORE RICERCA IN UN ETTORE La ricerca controlla se gli elementi di un vettore contengono un certo valore dato (detto anche chiave K) e comunica se l'elemento cercato esiste non esiste e nel caso che esista può

Dettagli

Problema del trasporto

Problema del trasporto p. 1/1 Problema del trasporto Supponiamo di avere m depositi in cui è immagazzinato un prodotto e n negozi che richiedono tale prodotto. p. 1/1 Problema del trasporto Supponiamo di avere m depositi in

Dettagli

Algoritmi (9 CFU) (A.A )

Algoritmi (9 CFU) (A.A ) Algoritmi (9 CFU) (A.A. 2009-10) Equazioni di ricorrenza Prof. V. Cutello Algoritmi 1 Overview Definiamo cos è una ricorrenza Introduciamo 3 metodi per risolvere equazioni di ricorrenza Sostituzione e

Dettagli

METODI MATEMATICI PER L INFORMATICA

METODI MATEMATICI PER L INFORMATICA METODI MATEMATICI PER L INFORMATICA Tutorato Lezione 2 17/03/2016 Corso per matricole congrue a 1 Docente: Margherita Napoli Tutor: Amedeo Leo Applicazioni della logica proposizionale La logica ha una

Dettagli

VI a GARA MATEMATICA CITTÀ DI PADOVA 23 MARZO 1991 SOLUZIONI. < 2 0 < 3a + 1 < 4 1 < 3a < < 3a+1. 1 < 1 b < 2 2 < b < 1 1 < b < 2.

VI a GARA MATEMATICA CITTÀ DI PADOVA 23 MARZO 1991 SOLUZIONI. < 2 0 < 3a + 1 < 4 1 < 3a < < 3a+1. 1 < 1 b < 2 2 < b < 1 1 < b < 2. VI a GARA MATEMATICA CITTÀ DI PADOVA 23 MARZO 1991 SOLUZIONI 1.- 0 < 3a+1 < 2 0 < 3a + 1 < 4 1 < 3a < 3 1 2 3 1 < 1 b < 2 2 < b < 1 1 < b < 2. 1 < a < 1 3 1 < b < 2 4 < a + b < 3 e, a fortiori, 4 < a +

Dettagli

1 IL LINGUAGGIO MATEMATICO

1 IL LINGUAGGIO MATEMATICO 1 IL LINGUAGGIO MATEMATICO Il linguaggio matematico moderno è basato su due concetti fondamentali: la teoria degli insiemi e la logica delle proposizioni. La teoria degli insiemi ci assicura che gli oggetti

Dettagli

Esercizi per il corso di Algoritmi, anno accademico 2014/15

Esercizi per il corso di Algoritmi, anno accademico 2014/15 1 Esercizi per il corso di Algoritmi, anno accademico 2014/15 Esercizi sulle Notazioni Asintotiche 1. Esercizio: Provare le seguenti relazioni, esibendo opportune costanti c 1,c 2 ed n 0. Si assuma per

Dettagli

Appunti di informatica. Lezione 7 anno accademico Mario Verdicchio

Appunti di informatica. Lezione 7 anno accademico Mario Verdicchio Appunti di informatica Lezione 7 anno accademico 2016-2017 Mario Verdicchio L algoritmo di Euclide per l MCD Dati due numeri A e B, per trovare il loro MCD procedere nel seguente modo: 1. dividere il maggiore

Dettagli

Funzione Composta. Il campo di esistenza della funzione composta è costituito dai soli valori di x per i quali la composizione funzionale ha senso.

Funzione Composta. Il campo di esistenza della funzione composta è costituito dai soli valori di x per i quali la composizione funzionale ha senso. Funzione Composta Date due funzioni g : A B e f : B C si può definire la funzione composta: f g : A C g() f(g()) notazione funzionale (f g)() = f(g()) La composizione ha senso se il valore g() appartiene

Dettagli

i completi l'esecuzione dell'algoritmo di programmazione dinamica per questo problema restituendo il valore ottimo e una soluzione ottima del problema

i completi l'esecuzione dell'algoritmo di programmazione dinamica per questo problema restituendo il valore ottimo e una soluzione ottima del problema Compito di Ricerca Operativa II Esercizio ( punti). ia dato il problema di flusso massimo sulla rete in figura (le capacit a degli archi sono riportate sopra di essi). 0 8 i consideri il seguente flusso

Dettagli

Teoria della Calcolabilità!

Teoria della Calcolabilità! Teoria della Calcolabilità! Si occupa delle questioni fondamentali circa la potenza e le limitazioni dei sistemi di calcolo.! L'origine risale alla prima metà del ventesimo secolo, quando i logici matematici

Dettagli

AM210 - Analisi Matematica 3: Soluzioni Tutorato 1

AM210 - Analisi Matematica 3: Soluzioni Tutorato 1 AM210 - Analisi Matematica 3: Soluzioni Tutorato 1 Università degli Studi Roma Tre - Dipartimento di Matematica Docente: Luca Biasco Tutori: Patrizio Caddeo, Davide Ciaccia 19 ottobre 2016 1 Se z = (1

Dettagli

NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE

NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE ROBERTO GIAMBÒ 1. DEFINIZIONI E PRIME PROPRIETÀ In queste note saranno presentate alcune proprietà principali delle funzioni convesse di una variabile

Dettagli

FUNZIONE LOGARITMO. =log,, >0, 1 : 0,+ log

FUNZIONE LOGARITMO. =log,, >0, 1 : 0,+ log FUNZIONE LOGARITMO =log,,>0, 1 : 0,+ log a è la base della funzione logaritmo ed è una costante positiva fissata e diversa da 1 x è l argomento della funzione logaritmo e varia nel dominio Funzione logaritmo

Dettagli

LA COMPLESSITA DEGLI ALGORITMI

LA COMPLESSITA DEGLI ALGORITMI LA COMPLESSITA DEGLI ALGORITMI Tra i problemi che ammettono soluzione esistono problemi facili e difficili. Teoria della complessità (anni 70): complessità di un problema; valutazione dell efficienza degli

Dettagli

04 - Logica delle dimostrazioni

04 - Logica delle dimostrazioni Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 04 - Logica delle dimostrazioni Anno Accademico 013/014 D. Provenzano,

Dettagli

Problemi, istanze, soluzioni

Problemi, istanze, soluzioni lgoritmi e Strutture di Dati II 2 Problemi, istanze, soluzioni Un problema specifica una relazione matematica tra dati di ingresso e dati di uscita. Una istanza di un problema è formata dai dati di un

Dettagli

SISTEMI DI NUMERAZIONE

SISTEMI DI NUMERAZIONE Rev.20/10/2014 Pag.n. 1 Indice SISTEMI DI NUMERAZIONE IL SISTEMA DECIMALE SISTEMI POSIZIONALI NUMERAZIONE BINARIA CONVERSIONE BINARIO-DECIMALE (Metodo del polinomio) CONVERSIONE DECIMALE-BINARIO (Metodo

Dettagli

La domanda che ci si deve porre innanzitutto per iniziare a risolvere questa disequazione è la seguente:

La domanda che ci si deve porre innanzitutto per iniziare a risolvere questa disequazione è la seguente: Disequazioni: caso generale Consideriamo ora la risoluzione di disequazioni che presentino al suo interno valori assoluti e radici. Cercheremo di stabilire con degli esempio delle linee guida per la risoluzione

Dettagli

Prova scritta di Matematica Discreta e Logica del giorno 3 luglio 2017 Soluzione degli esercizi FILA D

Prova scritta di Matematica Discreta e Logica del giorno 3 luglio 2017 Soluzione degli esercizi FILA D ˆ ˆ ƒˆ ˆ ƒ ˆ ˆ Œ ˆ.. 2016-2017 Prova scritta di Matematica Discreta e Logica del giorno 3 luglio 2017 Soluzione degli esercizi FILA D Esercizio 1 Nell insieme delle coppie ordinate di numeri naturali,

Dettagli

02 - Logica delle dimostrazioni

02 - Logica delle dimostrazioni Università degli Studi di Palermo Facoltà di Economia Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 0 - Logica delle dimostrazioni Anno Accademico 015/016

Dettagli

Esercizi sulla complessità di frammenti di pseudo-codice

Esercizi sulla complessità di frammenti di pseudo-codice Esercizi sulla complessità di frammenti di pseudo-codice Esercizio 1 Si determini la complessità temporale del seguente frammento di pseudo-codice in funzione di n. Il ciclo contiene solo istruzioni elementari;

Dettagli

L algoritmo AKS. L algoritmo AKS. Seminario per il corso di Elementi di Algebra Computazionale. Oscar Papini. 22 luglio 2013

L algoritmo AKS. L algoritmo AKS. Seminario per il corso di Elementi di Algebra Computazionale. Oscar Papini. 22 luglio 2013 L algoritmo AKS Seminario per il corso di Elementi di Algebra Computazionale Oscar Papini 22 luglio 2013 Test di primalità Come facciamo a sapere se un numero n è primo? Definizione (Test di primalità)

Dettagli

Principali strumenti per lo sviluppo di algoritmi in pascal-like. concetti universali presenti in tutti i linguaggi di programmazione

Principali strumenti per lo sviluppo di algoritmi in pascal-like. concetti universali presenti in tutti i linguaggi di programmazione LABORATORIO DI PROGRAMMAZIONE Corso di laurea in matematica 12 LA COMPLESSITA COMPUTAZIONALE Marco Lapegna Dipartimento di Matematica e Applicazioni Universita degli Studi di Napoli Federico II wpage.unina.it/lapegna

Dettagli

La trasformata Z. (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi. DIMS Università di Trento. anno accademico 2008/2009

La trasformata Z. (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi. DIMS Università di Trento. anno accademico 2008/2009 La trasformata Z (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi DIMS Università di Trento anno accademico 2008/2009 La trasformata Z 1 / 33 Outline 1 La trasformata Z 2 Trasformazioni di

Dettagli

Consorzio Nettuno - Corso di Matematica 1 Schede di lavoro guidato per le esercitazioni

Consorzio Nettuno - Corso di Matematica 1 Schede di lavoro guidato per le esercitazioni Consorzio Nettuno - Corso di Matematica 1 Schede di lavoro guidato per le esercitazioni A cura di Sebastiano Cappuccio SCHEDA N 20 ARGOMENTO: Grafici di funzioni numeriche reali Asintoti orizzontali, verticali,

Dettagli

1 Relazione di congruenza in Z

1 Relazione di congruenza in Z 1 Relazione di congruenza in Z Diamo ora un esempio importante di relazione di equivalenza: la relazione di congruenza modn in Z. Definizione 1 Sia X = Z, a,b Z ed n un intero n > 1. Si dice a congruo

Dettagli

Alcuni Teoremi sulle funzioni continue e uniforme continuità

Alcuni Teoremi sulle funzioni continue e uniforme continuità Alcuni Teoremi sulle funzioni continue e uniforme continuità Teorema 0. Una funzione f(x) è continua in x 0 se e solo se per ogni sucessione {x n } dom(f) con x n x 0 dom(f), risulta f(x n ) f(x 0 ). (Non

Dettagli