9. Lezione 9/10/2017. = a 3 a a

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "9. Lezione 9/10/2017. = a 3 a a"

Transcript

1 9. Lezione 9/10/ Funzioni esponenziali. Scelta una base positiva a possiamo considerare le potenze a n per ogni n N. Valgono le proprietà: a 0 = 1 1 n 1 a = 1 a 1/ = a a a 4/3 = a 3 a a 0.5 = 1 a che consentono di considerare potenze a r per ogni razionale r. L ipotesi che la base a debba essere positiva è evidente pensando semplicemente a a 1/ = a. La possibilità di approssimare ogni numero reale x con razionali suggerisce di definire a x per x reale tramite i valori a r relativi ai razionali r che approssimano x. In altri termini, ad esempio, a è, per definizione, il numero al quale si avvicinano sempre più le potenze ad esponenti razionali 1 a 1.4, a 1.41, a 1.414,... DEFINIZIONE 9.1. Scelto a > 0 la funzione x R : si chiama funzione esponenziale di base a. x a x 9.. Proprietà della funzione esponenziale. Conviene, per semplicità, elencare le proprietà della a x pensando che x sia un intero. La relazione fondamentale è la seguente a n+m = a n.a m Tutte le altre, di seguito elencate, sono una conseguenza di tale relazione fondamentale: x R : a x > 0 se a = 1 allora x R : a x 1, x 1,x R : a x 1+x = a x 1 a x, 1 < a implica che a x : è crescente: x 1 < x a x 1 < a x 1... che tali potenze si avvicinino veramente a un certo numero reale e non si spargano in modo disordinato è tutto da dimostrare!

2 FIGURA 1. x, ( 1 3) x positivo grande se x è positivo grande, positivo vicino a zero se x è negativo grande, 0 < a < 1 implica che a x è decrescente: x 1 < x a x 1 > a x positivo grande se x è negativo grande, positivo vicino a zero se x è positivo grande, Le proprietà elencate si possono riassumere nella proposizione seguente PROPOSIZIONE 9.. Per ogni a 1 si definisce la funzione esponenziale a x che ha dominio R, è monotona, ha immagine l insieme dei numeri reali maggiori di zero. ESEMPIO 9.3. Sia a =, base maggiore di 1, a 7 = 1 7 = 1 18, a7 = 18, a 100 = Sia invece a = 0.1, base minore di 1, a 7 = 10 7 = , a 7 1 = ,... OSSERVAZIONE 9.4. La radice quadrata di è il più noto numero irrazionale: con la notazione degli esponenti frazionari si indica = 1/ che fa pensare, ragionevolmente, che siano proprio gli esponenti non interi la principale causa di irrazionalità. Una questione interessante può essere la seguente: se a e b sono tutti e due irrazionali sarà irrazionale anche la potenza a b?

3 9. LEZIONE 9/10/017 3 NO: la terribile potenza a b può, in qualche caso, essere razionale. Infatti prendiamo a =, b = e ragioniamo sulla potenza c =. Non abbiamo la minima idea di quanto sia c ma possiamo ragionare sui due casi possibili: (1) c sia razionale, e allora avremmo trovato l esempio di una potenza di base ed esponenti irrazionali che risulta razionale, () c non sia razionale, considerata allora ( ) c = = = = abbiamo l esempio di una potenza con base e esponente irrazionali che vale addirittura un numero naturale La funzione e x. La funzione esponenziale di base la costante e di Nepero gode di una particolare celebrità: FIGURA. e x, e x/, e x/3 nella maggioranza dei casi la locuzione funzione esponenziale si riferisce appunto alla e x, sulle calcolatrici tascabili il tasto EXP si riferisce alla e x,

4 4 i valori della e x, nonostante la terribile base e si calcolano con relativa facilità tenuto presente che (come riconosceremo più avanti) e x = 1 + x + 1! x + 1 3! x FIGURA 3. e x, e 3x La funzione composta e x, come pure tutte quelle ad essa associate Ae λ x hanno un ruolo molto importante nella distribuzione dei possibili errori casuali delle attività sperimentale. I loro grafici a forma di campana vengono detti appunto campane di Gauss. Consideriamo, data b, l equazione 10. I logaritmi (1) 10 x = b nell incognita x. In altri termini cerchiamo il valore x in corrispondenza del quale la funzione esponenziale 10 x produce il valore b. La Figura 4 è riferita a un piano cartesiano non monometrico: l unità di misura sull asse y è un decimo di quella sull asse x. Il motivo è rendere meno rapida, e quindi più leggibile, la crescita dell esponenziale 10 x.

5 10. I LOGARITMI 5 FIGURA x, log 10 (b) ESEMPIO x = 100 x =, 10 x = 0.1 x = 1 10 x = 1000 x = 3 10 x = 10 x = 1 Tenuto presente che l esponenziale 10 x produce sempre valori positivi è chiaro che l equazione proposta non ha soluzione se b 0 x R : 10 x = 5 È altrettanto chiaro che, tenuto conto che la funzione esponenziale 10 x produce valori sia vicini a zero che positivi molto grandi, per ogni b > 0 ci sarà un valore x che soddisfi l equazione. 10 x = x = 1, 10 x = x = 1 È anche chiaro che non ce ne possono essere due x 1 < x perchè 10 x è crescente e quindi x 1 < x 10 x 1 < 10 x e quindi se uno dei due valori 10 x 1 e 10 x vale b non può valere b anche l altro. DEFINIZIONE 10.. La soluzione dell equazione 10 x = b prende il nome di log 10 (b) che si legge logaritmo in base 10 di b o più brevemente anche logaritmo di b. ESEMPIO Consideriamo l equazione 10 x = b: 10 x = 1 log 10 (1) = 0 10 x = 10 log 10 (10) = 1 10 x = 100 log 10 (100) = 10 x = 0.1 log 10 (0.1) = 1 10 x = log 10 (0.1) = 3

6 6 FIGURA 5. log 10 (b), sistema non monometrico. I valori log 10 (b) crescono al crescere di b, ma crescono assai lentamente: come visto precedentemente per arrivare a 3 bisogna che b sia 1000, per arrivare a 4 bisogna che b sia 10000,... per arrivare a 10 bisogna che b arrivi a un miliardo! ESEMPIO Ogni numero positivo a può essere rappresentato come potenza di 10, ovviamente con esponente non sempre intero...! Si noti come 3 = 10 x x = log(3) 0, ,4771 0, , ,5 = ,167 Si tenga presente che, quasi sempre, la notazione log 10 viene semplificata scrivendo semplicemente log, tralasciando cioè la specifica Le funziioni inverse. Assegnata una funzione f : x f (x) di dominio D si può considerare l equazione () f (x) = b nella quale, assegnato b, si cerca x D tale che f (x) = b. L equazione () è una generalizzazione della (1). detta I l immagine di f l equazione () ha soluzione se e solo se b I, se f è monotona è di conseguenza iniettiva, ovvero l equazione () ha per ogni b I una sola soluzione x D. In altri termini se f è monotona da D a I allora risolvere l equazione () determina una funzione da I a D che prende il nome di funzione inversa di f e si denomina in genere con f 1. Detta f la funzione esponenziale 10 x la funzione log 10 (b) ne rappresenta l inversa.

7 10. I LOGARITMI 7 ESERCIZIO Sia f (x) = 3x +5, funzione di dominio R e immagine ancora R: La funzione inversa è pertanto f (x) = b 3x + 5 = b x = 1 (b 5) 3 f 1 : b 1 (b 5) 3 Si noti, in particolare che f : 7 6 f 1 : x : 100 log 10 (x) : 100 ESERCIZIO Non si può parlare della funzione inversa della q(x) = x perchè essa non è monotona. L equazione x = 4 ha due soluzioni: e. Se ci fosse la funzione inversa di q quale sarebbe il suo valore q 1 (4)? DEFINIZIONE La funzione inversa della funzione f di dominio D e immagine I è, per definizione, la funzione f 1 di dominio I di immagine D che fa corrispondere ad ogni b I la soluzione x D dell equazione f (x) = b Proprietà dei logaritmi. Le proprietà dei logaritmi discendono dall unica relazione k > 0 : 10 log 10 (k) = k a > 0, r Q : log(a r ) = r log(a) a > 0, x R : log(a x ) = x log(a) a > 0, b > 0 : log(a b) = log(a) + log(b) a > 0, b > 0 : log( a b ) = log(a) log(b) ESEMPIO Determinare la soluzione x dell equazione Trascriviamo l equazione nella forma Posto x + 3 x x = 3 x 4 x + 6 x = 9 x t = ( ) x ( ) x + = ( ) x 3

8 8 l equazione si riduce a Poichè ( 3) x è positivo si ha t +t 1 = 0 t = ( ) x = ( 1 + ) 5 log x = log ( ) Logaritmi in basi diverse. Abbiamo incontrato i logaritmi in base log 10 (b) cercando la soluzione dell equazione 10 x = b: a fianco di tale equazione se ne possono considserare tante altre analoghe: ad esempio (3) 3 x = b, x = b, 0.1 x = b,... Quella che non si può considerare è 1 x = b: se b 1 ovviamente non avrebbe soluzioni, mentre se b = 1 tutti i reali x sarebbero soluzione! DEFINIZIONE Fissato a > 0 e a 1 si dice logaritmo in base a di b la soluzione dell equazione a x = b ad essa si da il nome di log a (b). La sorpresa è che chi conosce i logaritmi in base 10 conosce, forse senza saperlo, anche quelli in base 3. Consideriamo infatti l equazione 3 x = 5: la soluzione è, per definizione x = log 3 (5): trascriviamo i due numeri 3 e 5 come potenze di 10 { 3 = 10 log 10 (3) 5 = 10 log 10 (5) 3 x = 5 10 x log 10 (3) = 10 log 10 (5) Da cui Si ha pertanto x log 10 (3) = log 10 (5) x = log 10 (5) log 10 (3) log 3 (5) = log 10 (5) log 10 (3) Naturalmente quanto fatto a partire dalla base 3 si fa, analogamente, per ogni altra base a, riconoscendo quindi che log a (b) = log 10 (b) log 10 (a) Tra le infinite basi possibili una è particolarmente importante nel Calcolo: la costante e di Nepero che abbiamo incontrato a pagina??. Addirittura i logaritmi riferiti alla base e hanno l ambizioso nome di logaritmi naturali

9 10. I LOGARITMI 9 e si denotano spesso con la notazione ln(b). La tabellina seguente confronta i logaritmi in base 10 e quelli in base e per alcuni valori di b: si osservi che i logaritmi naturali valgono poco più del doppio di quelli decimali. b Log 10 (b) ln(b)

1 PRELIMINARI 1.1 NOTAZIONI. denota l insieme vuoto. a A si legge a appartiene a A oppure a è elemento di A.

1 PRELIMINARI 1.1 NOTAZIONI. denota l insieme vuoto. a A si legge a appartiene a A oppure a è elemento di A. 1 PRELIMINARI 1.1 NOTAZIONI denota l insieme vuoto. a A si legge a appartiene a A oppure a è elemento di A. B A si legge B è un sottoinsieme di A e significa che ogni elemento di B è anche elemento di

Dettagli

Matematica di base. Lezioni in Aula D5 ogni Venerdi alle 14:30 BLOG: matematicadibase.wordpress.com

Matematica di base. Lezioni in Aula D5 ogni Venerdi alle 14:30 BLOG: matematicadibase.wordpress.com Matematica di base Lezioni in Aula D5 ogni Venerdi alle 14:30 BLOG: matematicadibase.wordpress.com Calendario 21 Ottobre Aritmetica ed algebra elementare 28 Ottobre Geometria elementare 4 Novembre Insiemi

Dettagli

1 Funzioni reali di una variabile reale

1 Funzioni reali di una variabile reale 1 Funzioni reali di una variabile reale Qualche definizione e qualche esempio che risulteranno utili più avanti Durante tutto questo corso studieremo funzioni reali di una variabile reale, cioè Si ha f

Dettagli

Funzioni reali di una variabile reale

Funzioni reali di una variabile reale Lezione 7, Analisi, 27.09.2017 Funzioni reali di una variabile reale Funzioni monotone Proprietà dell ordine Abbiamo visto che la relazione d ordine fra i numeri reali è compatibile con le operazioni,

Dettagli

ESERCITAZIONE: ESPONENZIALI E LOGARITMI

ESERCITAZIONE: ESPONENZIALI E LOGARITMI ESERCITAZIONE: ESPONENZIALI E LOGARITMI e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Esercizio 1 In una coltura batterica, il numero di batteri triplica ogni ora. Se all inizio dell osservazione

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al più un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

Potenze reali, esponenziali e logaritmi

Potenze reali, esponenziali e logaritmi Potenze reali, esponenziali e logaritmi Lezione per Studenti di Agraria Università di Bologna (Università di Bologna) Potenze reali, esponenziali e logaritmi 1 / 14 Potenza ad esponente intero positivo

Dettagli

ANALISI 1 1 QUARTA LEZIONE

ANALISI 1 1 QUARTA LEZIONE ANALISI 1 1 QUARTA LEZIONE 1 prof. Claudio Saccon, Dipartimento di Matematica Applicata, Via F. Buonarroti 1/C email: saccon@mail.dm.unipi.it web: http://www2.ing.unipi.it/ d6081/index.html Ricevimento:

Dettagli

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y Funzioni. Dati due insiemi A e B (non necessariamente distinti) si chiama funzione da A a B una qualunque corrispondenza (formula, regola) che associa ad ogni elemento di A uno ed un solo elemento di B.

Dettagli

f : A B NOTAZIONE DELLE FUNZIONI x associa A D y è l immagine di x : y = f (x) (variabile dipendente)

f : A B NOTAZIONE DELLE FUNZIONI x associa A D y è l immagine di x : y = f (x) (variabile dipendente) Funzioni Dati due insiemi non vuoti A e B, si chiama funzione da A a B una relazione tra i due insiemi che a ogni elemento di A fa corrispondere uno e un solo elemento di B. A B NOTAZIONE DELLE FUNZIONI

Dettagli

Limiti di successioni

Limiti di successioni Capitolo 5 Limiti di successioni 5.1 Successioni Quando l insieme di definizione di una funzione coincide con l insieme N costituito dagli infiniti numeri naturali 1, 2, 3,... talvolta si considera anche

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi

Dettagli

1.3. Logaritmi ed esponenziali

1.3. Logaritmi ed esponenziali 1.3. Logaritmi ed esponenziali 1. Rappresentazione sugli assi cartesiani 2. Relazione 3. Definizione di funzione 4. La funzione esponenziale 5. Il logaritmo 6. La funzione logaritma 1-3 1 Rappresentazione

Dettagli

Funzione esponenziale Equazioni esponenziali RIPASSO SULLE POTENZE

Funzione esponenziale Equazioni esponenziali RIPASSO SULLE POTENZE RIPASSO SULLE POTENZE Proprietà delle potenze La formula a n indica l operazione chiamata potenza, ( a è la base ed n l esponente) che consiste nel moltiplicare la base a per se stessa n volte. Per le

Dettagli

COMPENDIO ESPONENZIALI LOGARITMI

COMPENDIO ESPONENZIALI LOGARITMI TORINO SETTEMBRE 2010 COMPENDIO DI ESPONENZIALI E LOGARITMI di Bart VEGLIA 1 ESPONENZIALi 1 Equazioni esponenziali Un espressione in cui l incognita compare all esponente di una o più potenze si chiama

Dettagli

Equazioni esponenziali e logaritmi

Equazioni esponenziali e logaritmi Copyright c 2008 Pasquale Terrecuso Tutti i diritti sono riservati. Equazioni esponenziali e logaritmi 2 equazioni esponenziali..................................................... 3 casi particolari............................................................

Dettagli

Prof. Emanuele ANDRISANI

Prof. Emanuele ANDRISANI Potenze con esponente razionale Sia a > 0 e a 1. Abbiamo definito a x quando x N. Poniamo a 0 = 1 a x = a m n = n a m se x = m n Q, x > 0, m, n N a x = 1 a x se x Q, x > 0. È così definita la potenza a

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

Matematica con elementi di Informatica

Matematica con elementi di Informatica Funzioni Elementari La forma matematica dei fenomeni naturali Matematica con elementi di Informatica Tiziano Vargiolu Dipartimento di Matematica vargiolu@math.unipd.it Corso di Laurea Magistrale in Chimica

Dettagli

Funzione esponenziale

Funzione esponenziale Paolo Siviglia Funzione esponenziale Consideriamo le seguenti funzioni. e Come si vede, si tratta di potenze con esponente variabile. Espressioni di questo tipo sono denominate funzioni esponenziali. La

Dettagli

POTENZA CON ESPONENTE REALE

POTENZA CON ESPONENTE REALE Facoltà di Medicina e Chirurgia Corso Zero di Matematica Gruppi: MC-MF / PS-MF V Lezione ESPONENZIALI E LOGARITMI Dr. E. Modica erasmo@galois.it POTENZA CON ESPONENTE REALE Definizione: Dati un numero

Dettagli

Matematica con elementi di Informatica

Matematica con elementi di Informatica Funzioni Elementari Matematica con elementi di Informatica Tiziano Vargiolu Dipartimento di Matematica vargiolu@math.unipd.it Corso di Laurea Magistrale in Chimica e Tecnologie Farmaceutiche Anno Accademico

Dettagli

Def. L unico elemento y Y associato ad un elemento x domf si dice immagine. di x attraverso f e si scrive y = f(x) (oppure f : x y = f(x)).

Def. L unico elemento y Y associato ad un elemento x domf si dice immagine. di x attraverso f e si scrive y = f(x) (oppure f : x y = f(x)). FUNZIONI Siano X e due insiemi. Def. Una funzione f definita in X a valori in è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in. Def. L insieme è detto codominio di

Dettagli

LOGARITMI. log = = con >0, 1; >0 = >0, 1, >0. log =1 >0, 1. notebookitalia.altervista.org

LOGARITMI. log = = con >0, 1; >0 = >0, 1, >0. log =1 >0, 1. notebookitalia.altervista.org LOGARITMI Sia un numero reale positivo ed un numero reale, positivo, diverso da 1; si dice logaritmo di in base il valore da attribuire come esponente alla base per ottenere una potenza uguale all argomento.

Dettagli

La funzione esponenziale e logaritmica

La funzione esponenziale e logaritmica La funzione esponenziale e logaritmica Roberto Boggiani Versione 4. 8 aprile 24 Le potenze dei numeri reali. Potenza con esponente intero di un numero reale Diamo la seguente Definizione. Sia a R ed n

Dettagli

Funzioni elementari: funzioni potenza

Funzioni elementari: funzioni potenza Funzioni elementari: funzioni potenza Lezione per Studenti di Agraria Università di Bologna (Università di Bologna) Funzioni elementari: funzioni potenza 1 / 36 Funzioni lineari Come abbiamo già visto,

Dettagli

Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x. (ad un numero reale associo. il suo inverso). 2 2/3... e... 0.

Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x. (ad un numero reale associo. il suo inverso). 2 2/3... e... 0. FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in Y. PSfrag replacements X Y Def. L

Dettagli

10.1 Successioni. Definizione. Notazione

10.1 Successioni. Definizione. Notazione 10.1 Successioni. Definizione Una funzione f : N! A, di dominio l insieme N dei numeri naturali o l insieme N dei naturali positivi si chiama successione. In particolare, una successione di numeri reali

Dettagli

LOGARITMI. Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA. L uguaglianza: a x = b

LOGARITMI. Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA. L uguaglianza: a x = b Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA LOGARITMI L uguaglianza: a x = b nella quale a e b rappresentano due numeri reali noti ed x un incognita, è un equazione

Dettagli

IPSSART Aversa - Prof Nunzio ZARIGNO - Anno scolastico I LOGARITMI. Definizione di logaritmo

IPSSART Aversa - Prof Nunzio ZARIGNO - Anno scolastico I LOGARITMI. Definizione di logaritmo IPSSART Aversa Prof Nunzio ZARIGNO Anno scolastico 200910 I LOGARITMI Definizione di logaritmo Definizione Si dice LOGARITMO in base a, con, di un numero reale positivo b, e si scrive log a b, l'esponente

Dettagli

RICHIAMI di MATEMATICA ESERCIZI: equazioni e disequazioni esponenziali e logaritmiche

RICHIAMI di MATEMATICA ESERCIZI: equazioni e disequazioni esponenziali e logaritmiche RICHIAMI di MATEMATICA ESERCIZI: equazioni e disequazioni esponenziali e logaritmiche Linguaggio e notazioni: a x esponenziale di base a, a > 0, e di esponente x R. log a x logaritmo in base a, a > 0 e

Dettagli

Funzioni esponenziali e logaritmiche Indice

Funzioni esponenziali e logaritmiche Indice Funzioni esponenziali e logaritmiche Indice Funzioni esponenziali...1 Funzioni logaritmiche...3 Funzioni esponenziali Definizione: Si definisce funzione esponenziale di base a > 0 la funzione reale y =

Dettagli

Concentriamo la nostra attenzione sull insieme dei numeri razionali Q. In Q sono definite

Concentriamo la nostra attenzione sull insieme dei numeri razionali Q. In Q sono definite Lezioni del 22 e 24 settembre. Numeri razionali. 1. Operazioni, ordinamento. Indichiamo con N, Z, Q gli insiemi dei numeri naturali, interi relativi, e razionali: N = {0, 1, 2,...} Z = {0, ±1, ±2,...}

Dettagli

Le proprietà che seguono valgono x, y > 0, a > 0 a 1, e b qualsiasi. Da queste si possono anche dedurre le seguenti uguaglianze log a 1 = 0

Le proprietà che seguono valgono x, y > 0, a > 0 a 1, e b qualsiasi. Da queste si possono anche dedurre le seguenti uguaglianze log a 1 = 0 Corso di Potenziamento a.a. 009/00 I Logaritmi Fissiamo un numero a > 0, a. Dato un numero positivo t, l equazione a x = t ammette un unica soluzione x che si chiama logaritmo in base a di t e si scrive

Dettagli

Funzioni Esponenziale e Logaritmica. Prof. Simone Sbaraglia

Funzioni Esponenziale e Logaritmica. Prof. Simone Sbaraglia Funzioni Esponenziale e Logaritmica Prof. Simone Sbaraglia Funzione Esponenziale Vogliamo definire propriamente le funzioni esponenziali e logaritmiche che abbiamo introdotto in precedenza. Qual e` il

Dettagli

Matematica I, Funzione inversa. Funzioni elementari (II).

Matematica I, Funzione inversa. Funzioni elementari (II). Matematica I, 02.10.2012 Funzione inversa. Funzioni elementari (II). 1. Sia f : A B una funzione reale di variabile reale (A, B R); se f e biiettiva, allora la posizione f 1 (b) = unico elemento a A tale

Dettagli

Analisi Matematica. Alcune funzioni elementari

Analisi Matematica. Alcune funzioni elementari a.a. 2014/2015 Laurea triennale in Informatica Analisi Matematica Alcune funzioni elementari Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli studenti.

Dettagli

Derivate di ordine superiore

Derivate di ordine superiore Derivate di ordine superiore Derivate di ordine superiore Il processo che porta alla definizione di derivabilta e di derivata di una funzione in un punto si puo iterare per dare per ogni intero positivo

Dettagli

Appunti di matematica per le Scienze Sociali Parte 1

Appunti di matematica per le Scienze Sociali Parte 1 Appunti di matematica per le Scienze Sociali Parte 1 1 Equazioni 1.1 Definizioni preliminari 1.1.1 Monomi Si definisce monomio ogni prodotto indicato di fattori qualsiasi, cioè uguali o diseguali, numerici

Dettagli

Funzione Composta. Il campo di esistenza della funzione composta è costituito dai soli valori di x per i quali la composizione funzionale ha senso.

Funzione Composta. Il campo di esistenza della funzione composta è costituito dai soli valori di x per i quali la composizione funzionale ha senso. Funzione Composta Date due funzioni g : A B e f : B C si può definire la funzione composta: f g : A C g() f(g()) notazione funzionale (f g)() = f(g()) La composizione ha senso se il valore g() appartiene

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi

Dettagli

Funzioni Reali di Variabile Reale

Funzioni Reali di Variabile Reale Funzioni Reali di Variabile Reale Lezione 2 Prof. Rocco Romano 1 1 Dipartimento di Farmacia Università degli Studi di Salerno Corso di Matematica, 2017/2018 Prof. Rocco Romano (Università Studi Salerno)

Dettagli

Funzioni esponenziali e logaritmiche

Funzioni esponenziali e logaritmiche Funzioni esponenziali e logaritmiche Definizione: Si definisce funzione esponenziale di base a > 0 la funzione reale y = exp a (x) che fa corrispondere ad ogni x R il numero reale positivo a x. Proprietà

Dettagli

Esempi di insiemi infiniti. Un numero p 1 si dice primo se è divisibile solo per 1 e per se stesso.

Esempi di insiemi infiniti. Un numero p 1 si dice primo se è divisibile solo per 1 e per se stesso. Lezione 2 1 Esempi di insiemi infiniti L insieme dei numeri pari P = {p N p = 2n, n N} L insieme dei numeri primi P = {p N p è primo} Un numero p 1 si dice primo se è divisibile solo per 1 e per se stesso.

Dettagli

FUNZIONI E INSIEMI DI DEFINIZIONE

FUNZIONI E INSIEMI DI DEFINIZIONE FUNZIONI E INSIEMI DI DEFINIZIONE In matematica, una funzione f da X in Y consiste in: ) un insieme X detto insieme di definizione I.d.D. (o dominio) di f 2) un insieme Y detto codominio di f 3) una legge

Dettagli

Funzioni elementari: potenze e esponenziali 1 / 1

Funzioni elementari: potenze e esponenziali 1 / 1 Funzioni elementari: potenze e esponenziali 1 / 1 Potenze e proprietá: esponente naturale 2 / 1 La funzione potenza con esponente naturale é definita come g: R R x x n dove per ogni x R si ha n N e n 1.

Dettagli

04 - Numeri Complessi

04 - Numeri Complessi Università degli Studi di Palermo Facoltà di Economia CdS Statistica per l Analisi dei Dati Appunti del corso di Matematica 04 - Numeri Complessi Anno Accademico 2013/2014 M. Tumminello, V. Lacagnina e

Dettagli

DEFINIZIONE PROVVISORIA DI LOGARITMO ED ESPONENZIALE

DEFINIZIONE PROVVISORIA DI LOGARITMO ED ESPONENZIALE DEFINIZIONE PROVVISORIA DI LOGARITMO ED ESPONENZIALE 0 novemre 20 Come dice il titolo, in questi appunti vogliamo dare una definizione rigorosa, ma provvisoria, dei logaritmi e degli esponenziali. Si tratta

Dettagli

Anno 3. Funzioni esponenziali e logaritmi: le 4 operazioni

Anno 3. Funzioni esponenziali e logaritmi: le 4 operazioni Anno 3 Funzioni esponenziali e logaritmi: le 4 operazioni 1 Introduzione In questa lezione impareremo a conoscere le funzioni esponenziali e i logaritmi; ne descriveremo le principali caratteristiche e

Dettagli

Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Successioni e loro limiti

Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Successioni e loro limiti Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Successioni e loro limiti Docente: Anna Valeria Germinario Università di Bari A.V.Germinario (Università di

Dettagli

PreCorso di Matematica - PCM Corso A

PreCorso di Matematica - PCM Corso A PreCorso di Matematica - PCM Corso A DOCENTE: M. Auteri Numeri positi e negativi..... 6 5 4 3 2 1 0 1 2 3 4 5 6..... 0 2, 4, 5 2.14, 3.76, 21.9351-2, -4, -5-2.43, -12.54, -17.9136 Docente: Auteri, PreCorso

Dettagli

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che.

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che. Esercitazioni di Analisi Matematica Prof.ssa Chiara Broggi Materiale disponibile su www.istitutodefilippi.it/claro Lezione 2: Funzioni reali e loro proprietà Definizione: Siano e due sottoinsiemi non vuoti

Dettagli

MATEMATICA. a.a. 2014/15. 1a. Funzioni (II parte):

MATEMATICA. a.a. 2014/15. 1a. Funzioni (II parte): MATEMATICA a.a. 014/15 1a. Funzioni (II parte): Funzioni iniettive, suriettive, bigettive. Funzioni reali. Campo di esistenza. Funzioni pari e dispari Funzione iniettiva y=f() 1 3 X 4 y 6 Y y y 1 y 3 y

Dettagli

Funzioni reali di variabile reale

Funzioni reali di variabile reale Funzioni reali di variabile reale Equazioni e disequazioni. In questa parte ricordiamo per completezza le prime nozioni e i primi principi sulle equazioni e disequazioni: sono le stesse nozioni e principi

Dettagli

FUNZIONI ELEMENTARI Funzione retta

FUNZIONI ELEMENTARI Funzione retta 1 FUNZIONI ELEMENTARI Funzione retta L equazione generale della funzione retta è y = a x + b dove a, b sono numeri reali fissati. Il termine b si chiama termine noto e dà l ordinata dell intersezione tra

Dettagli

Corso di Analisi Matematica Successioni e loro limiti

Corso di Analisi Matematica Successioni e loro limiti Corso di Analisi Matematica Successioni e loro limiti Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 30 1 Definizione di successione

Dettagli

Potenze, esponenziali e logaritmi 1 / 34

Potenze, esponenziali e logaritmi 1 / 34 Potenze, esponenziali e logaritmi / 34 Grafico della funzione x 2 e x 2 / 34 y f(x)=x 2 y=x f (x)= x x Le funzioni potenza 3 / 34 Più in generale, si può considerare, per n N, n>0, n pari, la funzione

Dettagli

CENNI SUL CONCETTO DI FUNZIONE

CENNI SUL CONCETTO DI FUNZIONE CENNI SUL CONCETTO DI FUNZIONE Dati due insiemi A e B, una funzione f è una relazione tra gli elementi dell insieme A e gli elementi dell insieme B tale che ad ogni elemento di A corrisponde uno ed un

Dettagli

Matematica Lezione 2

Matematica Lezione 2 Università di Cagliari Corso di Laurea in Farmacia Matematica Lezione 2 Sonia Cannas 12/10/2018 Avviso Le lezioni di martedì dalle 9:00 alle 11:00 sono spostate in aula DELTA. Insieme complementare Definizione

Dettagli

FUNZIONI TRA INSIEMI. Indice

FUNZIONI TRA INSIEMI. Indice FUNZIONI TRA INSIEMI LORENZO BRASCO Indice. Definizioni e risultati.. Introduzione.. Iniettività e suriettività.3. Composizione di funzioni 4.4. Funzioni inverse 5. Esercizi 5.. Esercizi svolti 5.. Altri

Dettagli

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 CAPITOLO 8. LE FUNZIONI. 1. Generalità sulle funzioni.. Le rappresentazioni di una funzione. 3. Le funzioni reali di variabile reale. 4. L espressione

Dettagli

Istituzioni di Matematiche seconda parte

Istituzioni di Matematiche seconda parte Istituzioni di Matematiche seconda parte anno acc. 2012/2013 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano) Istituzioni di Matematiche 1 / 31 index Proprietà elementari dei

Dettagli

2.1 Numeri naturali, interi relativi, razionali

2.1 Numeri naturali, interi relativi, razionali 2.1 Numeri naturali, interi relativi, razionali Definizione L insieme N = {0, 1, 2, 3,...} costituito dallo 0 e dai numeri interi positivi è l insieme dei numeri naturali. Se a, b 2 N, allora mentre non

Dettagli

Le Funzioni. Modulo Esponenziali Logaritmiche. Prof.ssa Maddalena Dominijanni

Le Funzioni. Modulo Esponenziali Logaritmiche. Prof.ssa Maddalena Dominijanni Le Funzioni Modulo Esponenziali Logaritmiche Definizione di modulo o valore assoluto Se x è un generico numero reale, il suo modulo o valore assoluto è: x = x se x 0 -x se x

Dettagli

1 Linguaggio degli insiemi

1 Linguaggio degli insiemi Lezione 1, Analisi, 18.09.2017 1 Linguaggio degli insiemi Ricordiamo di seguito in modo informale le prime notazioni e nozioni sugli insiemi. Il discorso sugli insiemi si sviluppa a partire dai termini

Dettagli

Matematica. Funzioni. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica

Matematica. Funzioni. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica Matematica Funzioni Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica Le Funzioni e loro caratteristiche Introduzione L analisi di diversi fenomeni della natura o la risoluzione di problemi

Dettagli

Potenze: alcune semplici equazioni

Potenze: alcune semplici equazioni Potenze: alcune semplici equazioni Fissiamo ora un numero reale a ed un numero intero positivo n. Vogliamo risolvere l equazione x n = a definizione: Le eventuali soluzioni prendono il nome di radici n-esime

Dettagli

LAUREA IN SCIENZE NATURALI MATEMATICA CON ELEMENTI DI STATISTICA

LAUREA IN SCIENZE NATURALI MATEMATICA CON ELEMENTI DI STATISTICA LAUREA IN SCIENZE NATURALI MATEMATICA CON ELEMENTI DI STATISTICA I parte: 5 crediti, 40 ore di lezione frontale II parte: 4 crediti, 32 ore di lezione frontale Docente: Marianna Saba Dipartimento di Matematica

Dettagli

Algebra dei limiti. quando l espressione a secondo membro è definita (non si hanno forme indeterminate), si ha. lim. f (x)

Algebra dei limiti. quando l espressione a secondo membro è definita (non si hanno forme indeterminate), si ha. lim. f (x) Algebra dei limiti Teorema. Se lim f () = l R e lim g() = m R, allora, 0 0 quando l espressione a secondo membro è definita (non si hanno forme indeterminate), si ha lim (f () + g()) = lim f () + lim g()

Dettagli

Numeri reali. Funzioni reali di variabile reale

Numeri reali. Funzioni reali di variabile reale Numeri reali. Funzioni reali di variabile reale Composizione di funzioni. Per semplicita, da ora in poi fino ad avviso contrario, useremo la seguente nozione di composizione di funzioni (che assume una

Dettagli

LOGARITMI ED ESPONENZIALI

LOGARITMI ED ESPONENZIALI 1 LOGARITMI ED ESPONENZIALI 1. (Da Veterinaria 2013) Riscrivendo 9 3x+2 nel formato 3 y, quale sarà il valore di y? a) 3x b) 3x + 4 c) 6x + 2 d) 6x + 4 e) 9x + 6 2. (Da Odontoiatria 2009) Qual è la soluzione

Dettagli

Funzioni e grafici. prof. Andres Manzini

Funzioni e grafici. prof. Andres Manzini Università degli studi di Modena e Reggio Emilia Dipartimento di Scienze e Metodi dell Ingegneria Corso MOOC Iscriversi a Ingegneria Reggio Emilia Introduzione Definizione Si dice funzione (o applicazione)

Dettagli

Esercitazione 2 - Soluzioni

Esercitazione 2 - Soluzioni Esercitazione - Soluzioni Francesco Davì ottobre 0 Esercizio (a) Si deve avere + x 0 x, che è verificato x R, in quanto il valore del modulo di un espressione non è mai negativo. L espressione al numeratore

Dettagli

PARTE SECONDA I LIMITI

PARTE SECONDA I LIMITI PARTE SECONDA I LIMITI INTRODUZIONE INTUITIVA AL CONCETTO DI LIMITE Consideriamo la funzione f: ² il cui grafico ti è certamente noto: Possiamo anche determinare il valore della funzione in alcuni punti

Dettagli

ESPONENZIALI E LOGARITMI. chiameremo logaritmica (e si legge il logaritmo in base a di c è uguale a b ).

ESPONENZIALI E LOGARITMI. chiameremo logaritmica (e si legge il logaritmo in base a di c è uguale a b ). ESPONENZIALI E LOGARITMI Data una espressione del tipo a b = c, che chiameremo notazione esponenziale (e dove a>0), stabiliamo di scriverla anche in un modo diverso: log a c = b che chiameremo logaritmica

Dettagli

Similitudine (ortogonale) e congruenza (ortogonale) di matrici.

Similitudine (ortogonale) e congruenza (ortogonale) di matrici. Lezione del 4 giugno. Il riferimento principale di questa lezione e costituito da parti di: 2 Forme bilineari, quadratiche e matrici simmetriche associate, 3 Congruenza di matrici simmetriche, 5 Forme

Dettagli

Argomento 2 IIparte Funzioni elementari e disequazioni

Argomento 2 IIparte Funzioni elementari e disequazioni Argomento IIparte Funzioni elementari e disequazioni Applicazioni alla risoluzione di disequazioni Disequazioni di I grado Per la risoluzione delle disequazioni di primo grado per via algebrica, si veda

Dettagli

0 + = + 3 x lim 1 + (log 2 x)100 = 0

0 + = + 3 x lim 1 + (log 2 x)100 = 0 (log a ) γ = 0, a, b > γ R. (log a ) γ = (log a ) γ a = +, a > β R. β a β = = β a 0 + = +. = 0 0 = 0 β = +, (log a ) γ a > β > 0, γ R. β (log a ) γ = (log a) γ = 0 + = +. β = +, a, b > γ R. (log a ) γ

Dettagli

La funzione logaritmo

La funzione logaritmo La funzione logaritmo 1 In generale non é possibile esprimere mediante operazioni algebriche la soluzione della generica equzione esponenziale, ad esempio 5 z = 18 e quindi diamo un nome a quei numeri

Dettagli

Potenze, radici, esponenziali e logaritmi

Potenze, radici, esponenziali e logaritmi Potenze, radici, esponenziali e logaritmi Paolo Montanari Appunti di Matematica Esponenziali e logaritmi 1 Potenze con esponente pari o dispari = 3 = Caso n pari: = biiettiva nell intervallo [0, [ Caso

Dettagli

2.3. Esercizio. Disegnare il grafico delle seguenti funzioni f(x) = x x, g(x) = max(0, cos(x)), h(x) = min(0, sin(x))

2.3. Esercizio. Disegnare il grafico delle seguenti funzioni f(x) = x x, g(x) = max(0, cos(x)), h(x) = min(0, sin(x)) ANALISI Soluzione esercizi 4 ottobre 0.. Esercizio. Disegnare il grafico delle funzioni f(x) = x 4, g(x) = x 3, r(x) = min(0, x 3 ), s(x) = 3 x Esistono software che disegnano i grafici di moltissime funzioni

Dettagli

Funzioni continue. quando. se è continua x I.

Funzioni continue. quando. se è continua x I. Funzioni continue Definizione: f() si dice continua in 0 D f quando (*) 0 f () f ( 0 ) Definizione: f() si dice continua in I D f se è continua I. Avevamo già dato questa definizione parlando del f ().

Dettagli

n! n n. n=1 an = L [0, + ] Se L = 1 il criterio non dà una risposta e la serie potrebbe sia convergere che divergere. 2 n2. n 1

n! n n. n=1 an = L [0, + ] Se L = 1 il criterio non dà una risposta e la serie potrebbe sia convergere che divergere. 2 n2. n 1 46 Roberto Tauraso - Analisi 2 Esempio 3.6 Determinare il carattere della serie Applichiamo il criterio del rapporto: n n. a n+ a n (n +! nn (n + nn (n + n+ (n + n n n+ (n + ( n + n e. n Dato che e

Dettagli

2. I numeri reali e le funzioni di variabile reale

2. I numeri reali e le funzioni di variabile reale . I numeri reali e le funzioni di variabile reale Introduzione Il metodo comunemente usato in Matematica consiste nel precisare senza ambiguità i presupposti, da non cambiare durante l elaborazione dei

Dettagli

Esempi di funzione...

Esempi di funzione... Funzioni Dati due insiemi non vuoti A e B, si chiama applicazione o funzione da A a B una relazione tra i due insiemi che a ogni elemento di A fa corrispondere uno e un solo elemento di B. A B Esempi di

Dettagli

EQUAZIONI DISEQUAZIONI

EQUAZIONI DISEQUAZIONI EQUAZIONI DISEQUAZIONI Indice 1 Background 1 1.1 Proprietà delle potenze................................ 1 1.2 Prodotti notevoli................................... 1 2 Equazioni e disequazioni razionali

Dettagli

FUNZIONE LOGARITMO. =log,, >0, 1 : 0,+ log

FUNZIONE LOGARITMO. =log,, >0, 1 : 0,+ log FUNZIONE LOGARITMO =log,,>0, 1 : 0,+ log a è la base della funzione logaritmo ed è una costante positiva fissata e diversa da 1 x è l argomento della funzione logaritmo e varia nel dominio Funzione logaritmo

Dettagli

Matematica Capitolo 1. Funzioni. Ivan Zivko

Matematica Capitolo 1. Funzioni. Ivan Zivko Matematica Capitolo 1 Funzioni Ivan Zivko Introduzione Una unzione è un qualcosa che mette in relazione un valore in entrata ( input ) con un altro in uscita ( output ). Input FUNZIONE Output Matematica

Dettagli

Matematica per le scienze sociali Successioni e funzioni. Francesco Lagona

Matematica per le scienze sociali Successioni e funzioni. Francesco Lagona Matematica per le scienze sociali Successioni e funzioni Francesco Lagona University of Roma Tre F. Lagona (francesco.lagona@uniroma3.it) / 8 Outline Successioni 2 Funzioni 3 Funzioni elementari 4 Limiti

Dettagli

1. conoscere la terminologia e le proprietà dei logaritmi e saperne utilizzare le regole di calcolo

1. conoscere la terminologia e le proprietà dei logaritmi e saperne utilizzare le regole di calcolo Quinto modulo: Funzioni Obiettivi. conoscere la terminologia e le proprietà dei logaritmi e saperne utilizzare le regole di calcolo. saper operare con le funzioni esponenziale e logaritmo per risolvere

Dettagli

Esercizi di Matematica. Studio di Funzioni

Esercizi di Matematica. Studio di Funzioni Esercizi di Matematica Studio di Funzioni CONSIDERAZIONI GENERALI Ad ogni funzione corrisponde un grafico, quindi studiare una funzione significa determinare il suo grafico. Per le conoscenze fin qui acquisite,

Dettagli

ANALISI MATEMATICA I-A. Prova scritta del 1/9/2009 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE

ANALISI MATEMATICA I-A. Prova scritta del 1/9/2009 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE ANALISI MATEMATICA I-A CORSO DI LAUREA IN FISICA Prova scritta del /9/009 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE ESERCIZIO. Punti 8 Risolvere la seguente equazione nel campo complesso w 6 w 64 = 64 3

Dettagli

Argomenti della Lezione

Argomenti della Lezione ANALISI Argomenti della Lezione 5 ottobre 2011 1. I numeri reali 1.1. Naturali, Interi, Razionali. Gli insiemi dei numeri naturali N : 0, 1, 2,..., interi Z : 0, ±1, ±2,..., razionali Q = m/n, m, n Z sono

Dettagli

LICEO delle SCIENZE UMANE B. PASCAL

LICEO delle SCIENZE UMANE B. PASCAL LICEO delle SCIENZE UMANE B. PASCAL Prof. Loredana Mannarino INDICE 1. FUNZIONI ESPONENZIALI 1.1. Richiami sulle potenze...3 1.2. Il grafico della funzione esponenziale.4 1.3. Equazioni esponenziali...6

Dettagli

IST. DI MATEMATICA I [A-E] 14. Lezione. lunedì 14 novembre Il problema della velocità.

IST. DI MATEMATICA I [A-E] 14. Lezione. lunedì 14 novembre Il problema della velocità. IST. DI MATEMATICA I [A-E] lunedì 14 novembre 2016 14. Lezione 14.1. Il problema della velocità. Supponiamo che un automobilista abbia percorso 600 km in 6 ore: la sua velocità media è stata di 100 km

Dettagli

I. Gentilec. 5.1 la funzione potenza

I. Gentilec. 5.1 la funzione potenza 5 S T U D I O D I F U N Z I O N I N OT E V O L I In questo capitolo vedremo delle funzioni numeriche molto importanti in matematica e ne studieremo l andamento, le proprietà e il diagramma; uno studio

Dettagli

12/10/05 (2 ore): Esercizi vari sull ellisse, iperbole, parabola. Disequazioni in due variabili. Equazione dell iperbole equilatera. Esempi.

12/10/05 (2 ore): Esercizi vari sull ellisse, iperbole, parabola. Disequazioni in due variabili. Equazione dell iperbole equilatera. Esempi. Università degli Studi di Trento Facolta di Scienze Cognitive Corso di Laurea in Scienze e Tecniche di Psicologia Cognitiva Applicata Corso di Analisi Matematica - a.a. 2005/06 Docente: Prof. Anneliese

Dettagli

Appunti di Matematica 5 - Funzioni - Funzioni. f : A B, con A e B insiemi non vuoti, è una legge x A uno e un solo elemento y B

Appunti di Matematica 5 - Funzioni - Funzioni. f : A B, con A e B insiemi non vuoti, è una legge x A uno e un solo elemento y B Funzioni Deinizione di unzione : una unzione che associa ad ogni elemento : A B, con A e B insiemi non vuoti, è una legge A uno e un solo elemento y B y = () y viene chiamato immagine di e indicato anche

Dettagli