PARTE SECONDA I LIMITI

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "PARTE SECONDA I LIMITI"

Transcript

1 PARTE SECONDA I LIMITI INTRODUZIONE INTUITIVA AL CONCETTO DI LIMITE Consideriamo la funzione f: ² il cui grafico ti è certamente noto: Possiamo anche determinare il valore della funzione in alcuni punti 0 ±1 ± ±1000 ± Per determinare sul grafico il punto di coordinate ( 10 6, 10 1 ) avvresti bisogno di un foglio enorme o dovresti scegliere unità di misura così microscopiche da non poter individuare altri punti. Dal grafico e dalla tabella numerica si intuisce che, al crescere, in valore assoluto, dei valori della valori corrispondenti della crescono indefinitamente. In matematica si sintetizzano frasi di questo tipo con la scrittura ( si legge: il ite per che tende a più infinito di ² è uguale a più infinito) Il simbolo " " [- ] non è un numero reale, ma traduce l idea che la funzione assume valori sempre più grandi (positivi o negativi).

2 Costruiamo per punti, approssimativamente, il grafico di 1 ² : ±0,1 ±0,01 ±0, ±0, ² 100² 1000² ² Si intuisce che, quando i valori della tendono a zero, sia per valori approssimanti per eccesso ( da destra, oppure 0 ) che per difetto (da sinistra, oppure 0 - ) i valori della diventano indefinitamente molto molto grandi. Brevemente Si può costruire il grafico approssimativo della funzione Consideriamo il seguente grafico e proviamo ad interpretarlo utilizzando la nuova "stenografia" introdotta: Possiamo tradurre le seguenti situazioni: a) f( ) b) f( ) c) f( ) 1 d) f( ) 1 In genere utilizziamo queste "scritture" per evidenziare il comportamento della funzione nelle "vicinanze" degli estremi degli intervalli che ne determinano il campo di esistenza. 1

3 Nota in particolare che relativamente al caso c si ha anche f(1). ESERCIZI 19) Utilizzando il grafico seguente dedurne i iti richiesti: a) f( )... d) f( )... 3 b) f( )... 0 c) f( )... 0 e) f( )... 3 f) f( )... 0) Ripetere l'esercizio precedente: a) f( )... d) f( )... 4 b) f( )... 0 c) f ( )... 0 e) f( )... 4 f) f( )... 1)Come sopra

4 a) f( )... 3 b) f( )... 0 c) f( )... 4 d) f( )... 0 )Come sopra a) f( )... d) f( )... 7 b) f( )... 0 c) f( )... 0 e) f( )... 7 f) f( )... 3)Come sopra a) f( )... d) f( )... 1 b) f( )... c) f( )... 1 e) f( )... 6 f) f( )... Avrebbero senso le scritture 3

5 f( )... e f( )...? perchè? 6 4) Interpreta utilizzando i iti i seguenti grafici: a) b) c) d) e) f) 5) Quali delle seguenti scritture sono corrette per ciascun grafico assegnato? 4

6 1) f( ) ) f( ) 3) f( ) 4) f( ) 6) f( ) 1 7) f( ) 8) f( ) 9) f( ) 5) f( ) 1 10) f( ) 6) Considera le seguenti funzioni e determinane il dominio. Con l'uso della calcolatrice e del grafico deducine il comportamento agli estremi degli intervalli che ne determinano il campo di esistenza. a) log ½ b) 3 c) 3 - d) ² e) 4-² f) 3 1 g) 1- h) tg con -p/<<p/ i) cotg con 0<<p l) sen m) cos n) arctg o) arccotg p) log 3 q) log 1/3 r) s) 1-² t) 1² u) v) 7)Noto il grafico della funzione f : f() dedurre: dominio e insieme delle immagini, intersezione con gli assi, positività e negatività, crescenza e decrescenza, massimi e minimi, concavità. Dedurne, inoltre, il comportamento agli estremi degli intervalli che ne determinano il campo di esistenza. a) b) c) 5

7 d) e) f) g) h) i) 8) Dedurre il grafico della funzione f : f() noto che: a) è definita su tutto R interseca gli assi nel punto (0,0) è positiva per 0 cresce per 0<< decrese per <0 > è concava verso l'alto per < - > e verso il basso per - < < ha un massimo relativo in M(,1) e un minimo assoluto in m(0,0) valgono f( ) e f( ) 0 b) è definita per ±1 ed è dispari interseca gli assi coordinati nel punto (0,0) è positiva per -1< <0 >1 è negativa per <-1 0 < <1 decresce per ogni D non ha nè massimi nè minimi è concava verso il basso per <-1 0 < <1 è concava verso l'alto per -1< <0 >1 valgono f( ) 0 f( ) f( ) 1 f( ) 1 6

8 f( ) 1 f( ) 1 c) è definita per <1 v > interseca gli assi coordinati nei punti A(-,0), B(0,-4), C(3,0) è positiva per <- v >3 è negativa per -<<1 v <<3 cresce per > e decresce per <1 non ha nè massimi nè minimi ed è sempre concava verso il basso valgono f( ) 1 f( ) f( ) 1 f( ) d) è definita per ogni R ed è pari interseca gli assi nel punto (0,0) è positiva per 0 cresce per < 3 0<< 3 decresce per 3<<0 > 3 ha massimi nei punti ( 3,3) e ( 3,3), minimo in (0,0) è concava verso l'alto per <-4 >4 e verso il basso per -4<<4 valgono f( ) 0 f( ) 0 CONFRONTO FRA INFINITI E INFINITESIMI Costruiamo per punti, in uno stesso R.C.O. Monometrico i grafici delle seguenti funzioni, ristrette all'intervallo [0, ). 7

9 ,189 1,316 1,7783 5, ,599 1,44 3, ,414 1,73 3,163 31,

10 Osserviamo che: I iti di tutte le funzioni considerate per che tende a, sono uguali a, ma, dai grafici, si intuisce che alcune raggiungono valori "molto grandi" più rapidamente di altre. Possiamo quindi stilare una specie di "graduatoria" di infiniti. In generale, considerata n con n Q e tendente a, al crescere di n ci troviamo in presenza di infiniti "più rapidi": n è detto ordine di infinito. Conosci però altre funzioni che tendono all'infinito per tendente a e precisamente log a e a con a>1. Studiamo in particolare ln e proviamo a confrontarla ad esempio con 7 Costruiamo in uno stesso R.C.O.M. i relativi grafici dopo aver completato le seguenti tabelle: ln ,3 4,6 6,9 13,31 3, , ,

11 1 1,58 1,93,68 7,19 6,8 Si vede chiaramente che ln è un infinito più debole di e, ma si intuisce anche, dalla tabella, che è più debole di 7 in quanto, per valori molto molto grandi,la funzione 7 assume valori superiori a ln. Si può dimostrare che ln è un infinito più debole di qualunque potenza di ; in simboli ln 0 n Questo sintetizza il fatto che pes ogni n Q il denominatore, per tendente a, "vince" il confronto con il numeratore. La stessa cosa si può dimostrare per log a con a>1, per cui in generale si dice che il logaritmo (con base maggiore di 1), ha ordine di infinito minore di ciascuna potenza razionale positiva di. Formalmente ln a 0 con a>1 e n Q. n Procediamo in modo analogo per la funzione esponenziale e , ,47 5,18*10 1,69* ,39* ,3*

12 ,77* ,77*10 1 1,0*10 3 Si puo' notare che la funzione esponenziale e' un infinito di ordine superiore a qualunque potenza di, in simboli e n n Q Si dimostra che, in generale, a n n Q con a > 1 Confronti analoghi a prima si possono fare quando si hanno funzioni tali che 4 f( ) 0 0 0,1 0,01 0,001 0,0001 0,5634 0,3163 0, ,1 0,1 0,01 0,001 0,

13 0,3163 0,1 0,0316 0,01 0,1 0,01 0,001 0,0001 0,1 0,01 0,001 0,0001 0,1 0,01 0,001 0,0001 0,01 0, ,1 0,01 0,001 0,0001 0,001 0, Stavolta nelle tabelle prendiamo in considerazione valori prossimi a 0. Si intuisce che al crescere di n, cresce la "velocita'" di avvicinamento a 0; n si dice ordine di infinitesimo. Consideriamo ora la funzione sin, che per 0 e' un infinitesimo. sin 0,1 0,01 0,001 0,0001 0,0998 0, ,001 0,0001 0,1 0,01 0,001 0,0001 0,1 0,01 0,001 0,0001 Si puo' notare che sin e hanno nelle immediate vicinanze do 0 lo stesso comportamento, in simboli In modo analogo si ha sin 1 0 tg 1 0 Si dice che le funzioni sin e tg sono infinitesimi del 1 ordine, o in altre parole che, nelle vicinanze dell'origine, si possono approssimare con la funzione Consideriamo ora la funzione sin tg in un intorno di (0) e 1 che per 0 e' un infinitesimo. 3

14 e 1 0,1 0,01 0,001 0,0001 0,105 0, ,001 0,0001 0,1 0,01 0,001 0,0001 0,1 0,01 0,001 0,0001 Si puo' notare che e 1 e hanno lo stesso comportamento, nelle immediate vicinanze dello 0, per cui si pio' concludere che anche e 1 e' un infinitesimo del 1 ordine. In generale, si dice che una funzione f() e' un infinito per a, quando f( ) ± ed e' un infinitesimo per a quando f( ) 0 a Anche in tal caso si puo' stabilirne l'ordine di infinito o infinitesimo confrontandole rispettivamente con 1 n n e ( a) ( a) a 33

Studio Qualitativo di Funzione

Studio Qualitativo di Funzione Studio Qualitativo di Funzione Reperire un certo numero di informazioni per descrivere a livello qualitativo l andamento del grafico di una funzione f 1. campo di esistenza (cioè, l insieme di definizione)

Dettagli

Studio qualitativo del grafico di una funzione

Studio qualitativo del grafico di una funzione Studio qualitativo del grafico di una funzione Obiettivo: ottenere informazioni per descrivere qualitativamente l andamento del grafico di una funzione f campo di esistenza (cioè, l insieme di definizione)

Dettagli

Funzioni continue. quando. se è continua x I.

Funzioni continue. quando. se è continua x I. Funzioni continue Definizione: f() si dice continua in 0 D f quando (*) 0 f () f ( 0 ) Definizione: f() si dice continua in I D f se è continua I. Avevamo già dato questa definizione parlando del f ().

Dettagli

Istituzioni di Matematica I

Istituzioni di Matematica I Istituzioni di Matematica I Le soluzioni proposte costituiscono solo una traccia di possibili soluzioni (lo studente deve giustificare i vari risultati), possono esserci altri modi, altrettanto corretti,

Dettagli

Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 2005/2006

Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 2005/2006 Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 005/006 Antonella Ballabene SOLUZIONI -14 marzo 006- SCHEMA per lo STUDIO di FUNZIONI 1. Dominio della funzione f)..

Dettagli

Infinitesimi e loro proprietà fondamentali

Infinitesimi e loro proprietà fondamentali 6 Infinitesimi e loro proprietà fondamentali Definizione Sia f () una funzione definita in un intorno del punto 0, tranne eventualmente nel punto 0 Si dice che f() è un infinitesimo per 0 se f ( ) 0 0

Dettagli

Infinitesimi e loro proprietà fondamentali. Molto spesso il calcolo dei limiti conduce allo studio di forme indeterminate. lim f(x) = 0.

Infinitesimi e loro proprietà fondamentali. Molto spesso il calcolo dei limiti conduce allo studio di forme indeterminate. lim f(x) = 0. Infinitesimi e infiniti - B. Di Bella Infinitesimi e loro proprietà fondamentali Molto spesso il calcolo dei iti conduce allo studio di forme indeterminate del tipo 0 0,. Occorre quindi studiare i modi

Dettagli

Analisi Matematica 1 Soluzioni prova scritta n. 1

Analisi Matematica 1 Soluzioni prova scritta n. 1 Analisi Matematica Soluzioni prova scritta n Corso di laurea in Matematica, aa 008-009 5 giugno 009 Sia a n la successione definita per ricorrenza: a n+ 3 a n a 3 n, a 3 a n+ 3 a n a 3 n, a 3 a n+ 3 a

Dettagli

4.3 Teoremi sulle funzioni derivabili

4.3 Teoremi sulle funzioni derivabili 4.3 Teoremi sulle funzioni derivabili Teorema (di Fermat) Sia : [, ] ℝ una funzione derivabile in (, ) e si un punto di massimo o minimo (relativo o assoluto) per. Allora 0 si dice anche che è un punto

Dettagli

Studio Qualitativo di Funzione

Studio Qualitativo di Funzione Studio Qualitativo di Funzione Reperire un certo numero di informazioni, per descrivere a livello qualitativo l andamento di una funzione y = f() : 1. campo di esistenza ( insieme di definizione ) 2. segno:

Dettagli

Lezione 6. 1 Ottobre ore (continua dalla lezione precedente limiti di funzione... )

Lezione 6. 1 Ottobre ore (continua dalla lezione precedente limiti di funzione... ) Laurea in Scienze e Tecnologie Biomolecolari, anno accademico 2014/15 Corso di Matematica e Statistica I Lezione 6. 1 Ottobre 2014 2 ore continua dalla lezione precedente iti di funzione... Il calcolo

Dettagli

Esercitazioni di Matematica

Esercitazioni di Matematica Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +

Dettagli

PARTE PRIMA DAI GRAFICI ALLE FUNZIONI

PARTE PRIMA DAI GRAFICI ALLE FUNZIONI PARTE PRIMA DAI GRAFICI ALLE FUNZIONI PREREQUISITI : concetti di insieme, relazione, intervallo, intorno, quantificatori, Riferimento Cartesiano Ortogonale (RCO), le coniche, funzioni, operazioni e composizioni

Dettagli

SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7

SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7 SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7 Esercizio. Funzione da studiare: log( 3).. Dominio: dobbiamo richiedere che il denominatore non si annulli e che il logaritmo sia ben definito. Quindi le condizioni

Dettagli

Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA 1. Prova scritta del 14 gennaio 2017 Fila 1.

Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA 1. Prova scritta del 14 gennaio 2017 Fila 1. Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA Prova scritta del gennaio 207 Fila. Esporre il procedimento di risoluzione degli esercizi in maniera completa e leggibile.. (Punti 6) Determinare

Dettagli

Limiti di funzioni 1 / 39

Limiti di funzioni 1 / 39 Limiti di funzioni 1 / 39 Comportamento agli estremi: operazione di ite 2 / 39 Sia f (x) una funzione definita su R e supponiamo di voler studiare l andamento della funzione agli estremi del dominio: x

Dettagli

Temid esamesvolti-1. Analisi delle funzioni

Temid esamesvolti-1. Analisi delle funzioni Temi d esame svolti - 1 1 Temid esamesvolti-1 Analisi delle funzioni (91003) 1 Si consideri la funzione definita a tratti su tutto R: ½ + sin 1 f() =, 6= 0 k, =0 (a) Per quale valore di k la funzione è

Dettagli

Istituzioni di Matematiche terza parte

Istituzioni di Matematiche terza parte Istituzioni di Matematiche terza parte anno acc. 2013/2014 Univ. degli Studi di Milano D.Bambusi, C.Turrini (Univ. degli Studi di Milano) Istituzioni di Matematiche 1 / 45 index Il concetto di ite 1 Il

Dettagli

Limiti di funzioni 1 / 41

Limiti di funzioni 1 / 41 Limiti di funzioni 1 / 41 Comportamento agli estremi: operazione di ite 2 / 41 Sia f (x) una funzione definita su R e supponiamo di voler studiare l andamento della funzione agli estremi del dominio: x

Dettagli

Esercitazione 2 - Soluzioni

Esercitazione 2 - Soluzioni Esercitazione - Soluzioni Francesco Davì ottobre 0 Esercizio (a) Si deve avere + x 0 x, che è verificato x R, in quanto il valore del modulo di un espressione non è mai negativo. L espressione al numeratore

Dettagli

Correzione del compitino del giorno 13 Dicembre 2012

Correzione del compitino del giorno 13 Dicembre 2012 Correzione del compitino del giorno 3 Dicembre 0 Davide Boscaini Questa è una soluzione del compitino del giorno 8 febbraio 0. Invito chi trovasse eventuali errori a segnalarli presso davide.boscaini@studenti.univr.it.

Dettagli

Lo studio di funzione. 18 febbraio 2013

Lo studio di funzione. 18 febbraio 2013 Lo studio di funzione 18 febbraio 2013 1 Indice 1 Lo studio di funzione 3 1.1 Dominio di funzioni......................... 3 1.1.1 Domini di funzioni elementari............... 3 1.1.2 Funzioni composte,

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA III Parziale - Compito C 6/5/5 A. A. 4 5 ) Studiare la seguente funzione polinomiale:

Dettagli

Continuità e derivabilità. Calcola la derivata delle seguenti funzioni

Continuità e derivabilità. Calcola la derivata delle seguenti funzioni ESERCIZI SUL CALCOLO DIFFERENZIALE Continuità e derivabilità Si studi la continuità e la derivabilità delle seguenti funzioni nel punto indicato a fianco { Si trovi, se possibile, a e b in modo che le

Dettagli

Studio di funzioni ( )

Studio di funzioni ( ) Studio di funzioni Effettuare uno studio qualitativo e tracciare un grafico approssimativo delle seguenti funzioni. Si studi in particolare anche la concavità delle funzioni e si indichino esplicitamente

Dettagli

QUINTO APPELLO DEL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 2017/18 23 LUGLIO 2018 CORREZIONE. x 4 f(x) = x 2 + x 2

QUINTO APPELLO DEL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 2017/18 23 LUGLIO 2018 CORREZIONE. x 4 f(x) = x 2 + x 2 QUINTO APPELLO DEL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 27/8 23 LUGLIO 28 CORREZIONE Esercizio ) Considerate la funzione f definita da f(x) = x 2 + x 2. Trovatene il dominio

Dettagli

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 2 Dicembre Dominio di Funzioni

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 2 Dicembre Dominio di Funzioni Esercitazioni di Matematica Generale A.A. 06/07 Pietro Pastore Lezione del Dicembre 06 Dominio di Funzioni Determinare il dominio delle seguenti funzioni ) x +3x. fx) =. Il dominio si trova considerando

Dettagli

Potenze reali, esponenziali e logaritmi

Potenze reali, esponenziali e logaritmi Potenze reali, esponenziali e logaritmi Lezione per Studenti di Agraria Università di Bologna (Università di Bologna) Potenze reali, esponenziali e logaritmi 1 / 14 Potenza ad esponente intero positivo

Dettagli

Esercizi sui limiti. lim. lim. lim. lim. log(x 4) + 5x = + + = + 6) x2 4 = 2 =

Esercizi sui limiti. lim. lim. lim. lim. log(x 4) + 5x = + + = + 6) x2 4 = 2 = Limiti e continuità Risoluzione di forme indeterminate con polinomi Ordine di infinito e confronto di infiniti Alcuni iti notevoli Funzioni continue Esercizi sui iti ( 3 + 3) = (10 + 3 32 ) = 57 ( + 2

Dettagli

MATEMATICA MATEMATICA FINANZIARIA

MATEMATICA MATEMATICA FINANZIARIA MATEMATICA e MATEMATICA FINANZIARIA a.a. 7-8 Corso di laurea in Economia Aziendale Fascicolo n. Limite di funzioni e applicazioni. Limite di una funzione Funzioni continue Calcolo dei iti Asintoti Prof.ssa

Dettagli

D Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica)

D Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) COGNOME NOME Matr. D Firma dello studente Tempo: ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni è corretta. Indicatela con una croce. È consentita una sola correzione

Dettagli

Corso di Analisi Matematica 1 - professore Alberto Valli

Corso di Analisi Matematica 1 - professore Alberto Valli Università di Trento - Corso di Laurea in Ingegneria Civile e Ingegneria per l Ambiente e il Territorio - 07/8 Corso di Analisi Matematica - professore Alberto Valli 7 foglio di esercizi - 8 novembre 07

Dettagli

Concetto intuitivo di limite di una funzione

Concetto intuitivo di limite di una funzione Concetto intuitivo di limite di una funzione I limiti di funzioni sono valori a cui le funzioni si avvicinano in certi punti particolari, ossia in punti in cui non è possibile definire le funzioni stesse

Dettagli

Laurea triennale in Informatica - Corso B (M-Z) Esame di Analisi Matematica Esercizi

Laurea triennale in Informatica - Corso B (M-Z) Esame di Analisi Matematica Esercizi 7 giugno 207 Esame di Analisi Matematica f (x) = x 3 e x+ (d) si studi la convessità e la concavità di f e si determinino eventuali punti di (e) si tracci un grafico approssimativo di f ; (f) dal grafico

Dettagli

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno. 1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre

Dettagli

ESERCIZI E COMPLEMENTI DI ANALISI MATEMATICA: quinto foglio. A. Figà Talamanca

ESERCIZI E COMPLEMENTI DI ANALISI MATEMATICA: quinto foglio. A. Figà Talamanca ESERCIZI E COMPLEMENTI DI ANALISI MATEMATICA: quinto foglio A. Figà Talamanca 14 ottobre 2010 2 0.1 Ancora limiti di funzioni di variabile reale Esercizio 1 Sia f(x) = [sin x] definita nell insieme [0,

Dettagli

SECONDO APPELLO DEL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 2017/18 20 FEBBRAIO 2018 CORREZIONE

SECONDO APPELLO DEL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 2017/18 20 FEBBRAIO 2018 CORREZIONE SECONDO APPELLO DEL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 207/8 20 FEBBRAIO 208 CORREZIONE Esercizio Considerate la funzione f(x = log + x. Tracciate un grafico approssimativo

Dettagli

Analisi matematica 1 - Ingegneria civile, ambientale, edile. Secondo compitino (16 aprile 2019) x 4 y 2 x 2 + y 4 se (x, y) (0, 0)

Analisi matematica 1 - Ingegneria civile, ambientale, edile. Secondo compitino (16 aprile 2019) x 4 y 2 x 2 + y 4 se (x, y) (0, 0) Analisi matematica 1 - Ingegneria civile, ambientale, edile Secondo compitino (16 aprile 2019) Esercizio 1 Calcolare, se esiste, il ite seguente: tan 2 2x sin 2 2x ln(1 + x 2 ) e 3x2 + 1 + 4x 2. Esercizio

Dettagli

Corso di Analisi Matematica 1 - professore Alberto Valli

Corso di Analisi Matematica 1 - professore Alberto Valli Università di Trento - Corso di Laurea in Ingegneria Civile e Ingegneria per l Ambiente e il Territorio - 08/9 Corso di Analisi Matematica - professore Alberto Valli 7 foglio di esercizi - 7 novembre 08

Dettagli

tele limite è unico. Ciò significa che se non può accadere che una funzione abbia limiti diversi per x. Se per assurdo si avesse che lim f ( x)

tele limite è unico. Ciò significa che se non può accadere che una funzione abbia limiti diversi per x. Se per assurdo si avesse che lim f ( x) Calcolo dei iti (C. DIMAURO) Per il calcolo dei iti ci serviamo di alcuni teoremi. Tali teoremi visti nel caso in cui, valgono anche quando Teorema dell unicità del ite: se una funzione ammette ite per

Dettagli

Seconda prova in itinere di Analisi Matematica 1 Ingegneria Elettronica. Politecnico di Milano. A.A. 2015/2016. Prof. M. Bramanti.

Seconda prova in itinere di Analisi Matematica 1 Ingegneria Elettronica. Politecnico di Milano. A.A. 2015/2016. Prof. M. Bramanti. Seconda prova in itinere di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 5/6. Prof. M. Bramanti Tema n 3 5 6 Tot. Cognome e nome (in stampatello) codice persona (o n

Dettagli

3. (Punti 8) Si consideri l integrale improprio. x n dx, n N.

3. (Punti 8) Si consideri l integrale improprio. x n dx, n N. Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA Prova scritta del 4 febbraio 27 Fila. Esporre il procedimento di risoluzione degli esercizi in maniera completa e leggibile.. (Punti 9) Data l

Dettagli

Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2

Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2 Matematica ed Informatica+Fisica ESERCIZI Modulo di Matematica ed Informatica Corso di Laurea in CTF - anno acc. 2013/2014 docente: Giulia Giantesio, gntgli@unife.it Esercizi 8: Studio di funzioni Studio

Dettagli

Derivate e studio di funzioni di una variabile

Derivate e studio di funzioni di una variabile Derivate e studio di funzioni di una variabile Paolo Montanari Appunti di Matematica Derivate e studio di funzioni 1 Rapporto incrementale e derivata Sia f(x) una funzione definita in un intervallo X R

Dettagli

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 20/202. Esercizi: lezione 2 dicembre 20 Studio di funzioni. Studiare la seguente funzione FINO alla derivata seconda, con

Dettagli

ISTITUZIONI DI ANALISI MATEMATICA Commissione P. Mannucci, A. Sommariva, a.a Corsi di laurea in Scienze Statistiche

ISTITUZIONI DI ANALISI MATEMATICA Commissione P. Mannucci, A. Sommariva, a.a Corsi di laurea in Scienze Statistiche ISTITUZIONI DI ANALISI MATEMATICA Commissione P. Mannucci, A. Sommariva, a.a. 4- Corsi di laurea in Scienze Statistiche 4 febbraio TEMA Esercizio 8 punti) Si consideri la funzione ) e f) = arctan e a)

Dettagli

= f orma di indecisione

= f orma di indecisione Matematica- Esercizi per Prova parziale - Traccia di risoluzione Di seguito riportiamo una risoluzione per ciascuno degli esercizi dati come indicativi di quelli della prova parziale. Talvolta verranno

Dettagli

Esercitazione di AM120

Esercitazione di AM120 Università degli Studi Roma Tre - Corso di Laurea in Matematica Esercitazione di M0.. 07 08 - Esercitatore: Luca Battaglia Soluzioni dell sercitazione 3 4 del 4 Marzo 08 rgomento: Derivate, Massimi e minimi,

Dettagli

Metodi Matematici per l Economia A-K Corso di Laurea in Economia - anno acc. 2012/2013 docente: Elena Polastri,

Metodi Matematici per l Economia A-K Corso di Laurea in Economia - anno acc. 2012/2013 docente: Elena Polastri, Metodi Matematici per l Economia A-K Corso di Laurea in Economia - anno acc. 202/203 docente: Elena Polastri, plslne@unife.it Studio di funzione con indicazione degli asintoti e grafico probabile Studiare

Dettagli

Una funzione è continua in un intervallo chiuso e limitato [a,b] se e solo se è continua in ogni punto dell intervallo.

Una funzione è continua in un intervallo chiuso e limitato [a,b] se e solo se è continua in ogni punto dell intervallo. FUNZIONI CONTINUE. PUNTI DI DISCONTINUITA. OPERAZIONI SUI LIMITI. CALCOLO DI LIMITI CHE SI PRESENTANO IN FORMA INDETERMINATA LIMITI NOTEVOLI E APPLICAZIONI Angela Donatiello DEF. di Funzione Continua in

Dettagli

lim f(x) lim In questo caso, lim Una funzione è continua in un punto x 0 se valgono le seguenti condizioni:

lim f(x) lim In questo caso, lim Una funzione è continua in un punto x 0 se valgono le seguenti condizioni: Definizioni fondamentali Un intorno di un punto = 0 è un intervallo I che contiene 0. Un intorno destro per semplicità lo chiamiamo + 0 ) di 0 è un intervallo in cui l estremo sinistro è 0 : tutti i punti

Dettagli

Esonero di Analisi Matematica I (A)

Esonero di Analisi Matematica I (A) Esonero di Analisi Matematica I (A) Ingegneria Edile, 19 dicembre 2000 () 1. Studiare il seguente ite: x 0 log 2 (cos x) ( 3 1 x 1 ) e (x3 ) 1. 2. Dire per quali numeri complessi entrambe le radici quadrate

Dettagli

1 - CONFRONTO LOCALE: I SIMBOLI DI LANDAU

1 - CONFRONTO LOCALE: I SIMBOLI DI LANDAU - CONFRONTO LOCALE: I SIMBOLI DI LANDAU Nello studio del comportamento di una funzione vicino ad un punto x 0, dopo aver visto se la funzione ammette ite (finito, nullo o infinito), per x x 0, può interessare

Dettagli

Università degli Studi di Siena Correzione Prova intermedia di Matematica Generale (A.A ) 11 novembre 2017

Università degli Studi di Siena Correzione Prova intermedia di Matematica Generale (A.A ) 11 novembre 2017 Università degli Studi di Siena Correzione Prova intermedia di Matematica Generale (A.A. 17-18) 11 novembre 2017 Compito 1 ). ) ; ; se se se ; se ) La prima cifra del numero non può essere nulla, pertanto

Dettagli

I LIMITI. non è definita per valori della x uguali a + 5 e 5. In questo caso l insieme di variabilità della variabile x, che si chiama dominio, è

I LIMITI. non è definita per valori della x uguali a + 5 e 5. In questo caso l insieme di variabilità della variabile x, che si chiama dominio, è I LIMITI LIMITE INFINITO DI UNA FUNZIONE PER X CHE TENDE A UN VALORE FINITO. Tra i tanti obiettivi che l analisi matematica si prefigge vi è quello di tracciare i grafici delle funzioni nel piano cartesiano

Dettagli

Esame di Matematica Generale 7 Febbraio Soluzione Traccia E

Esame di Matematica Generale 7 Febbraio Soluzione Traccia E Esame di Matematica Generale 7 Febbraio 013 - Soluzione Traccia E ESERCIZIO 1. Si consideri la funzione f : R R f(x) = x + 1 x. (a) Determinare il dominio di f ed eventuali simmetrie (3 punti). Dominio.

Dettagli

Correzione Quarto scritto di Matematica per Biologi, corso B, 2010

Correzione Quarto scritto di Matematica per Biologi, corso B, 2010 Correzione Quarto scritto di Matematica per Biologi, corso B, 010 31 gennaio 011 1 Parte 1 Esercizio 1.1. Per risolvere questo esercizio bisogna ricordarsi (formula.5 pag. 66 del vostro libro) che per

Dettagli

LEZIONE 5. Esercizio 5.1. Calcolare il limite per x ± delle seguenti funzioni. lim. lim. lim. lim. lim. e x ) x. per x. lim

LEZIONE 5. Esercizio 5.1. Calcolare il limite per x ± delle seguenti funzioni. lim. lim. lim. lim. lim. e x ) x. per x. lim 5 LEZIONE 5 Esercizio 5.1. Calcolare il ite per x ± delle seguenti funzioni. 2x3 3x 2 = x3 (2 3/x) =±. x2 sin x 2 x 4 = x4 (sin x 2 /x 2 1) =. ex x = ex (1 x/e x )=. sin 1 x cos x2 =0, infatti all infinito

Dettagli

MATEMATICA. a.a. 2014/15

MATEMATICA. a.a. 2014/15 MATEMATICA a.a. 2014/15 3. DERIVATE E STUDIO DI FUNZIONE (II parte): Massimi, minimi e derivata prima. Flessi e derivata seconda. Schema per lo studio qualitativo completo di una funzione y=f(x) Crescenza

Dettagli

Esercizi di Matematica per le Scienze Studio di funzione

Esercizi di Matematica per le Scienze Studio di funzione Esercizi di Matematica per le Scienze Studio di funzione A.M. Bigatti e G. Tamone Esercizi Studio di funzione Esercizio 1. Disegnare il grafico di una funzione continua f che soddisfi tutte le seguenti

Dettagli

MATEMATICA. a.a. 2014/ LIMITI (I parte): Definizione, proprietà e calcolo. Limiti di funzioni, continuità e asintoti.

MATEMATICA. a.a. 2014/ LIMITI (I parte): Definizione, proprietà e calcolo. Limiti di funzioni, continuità e asintoti. MATEMATICA a.a. 2014/15 2. LIMITI (I parte): Definizione, proprietà e calcolo. Limiti di funzioni, continuità e asintoti. Definizione Il campo di esistenza è l insieme di tutti i punti nei quali la funzione

Dettagli

Esercizi 3. cos x ln(sin x), ln(e x 1 x ), ln( x 2 1), x sin x + x cos x + x, x 3 2x + 1. x 2 x + 2, x cos ex, x 2 e x.

Esercizi 3. cos x ln(sin x), ln(e x 1 x ), ln( x 2 1), x sin x + x cos x + x, x 3 2x + 1. x 2 x + 2, x cos ex, x 2 e x. I seguenti quesiti ed il relativo svolgimento sono coperti dal diritto d autore, pertanto essi non possono essere sfruttati a fini commerciali o di pubblicazione editoriale senza autorizzazione esplicita

Dettagli

Esercizi sul dominio di funzioni e limiti

Esercizi sul dominio di funzioni e limiti Esercizi sul dominio di funzioni e iti Esercizio 1. Determinare il dominio D, studiare il segno e calcolare il ite ai suoi estremi delle seguenti funzioni: (a) y = e ; (b) y = 4 2 + 9; (c) y = 16 4 ; 2

Dettagli

Funzioni Continue. se (e solo se) 0

Funzioni Continue. se (e solo se) 0 f : A R R A ' Funzioni Continue La funzione f si dice continua in f ( f ( se (e solo se A Ne seguono tre proprietà affinché f( sia continua in :. Devono esistere finiti il ite destro e sinistro di f( in.

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Dispense di Matematica classe quinta - Lo studio di funzione Questa opera è distribuita con: Licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia Ing. Alessandro Pochì

Dettagli

y = x 3 infinitesimo per x 3 lim = l 0 allora f(x) è dello stesso ordine di g(x), ossia tendono a DEF. Una funzione y = f(x) si dice infinitesimo per

y = x 3 infinitesimo per x 3 lim = l 0 allora f(x) è dello stesso ordine di g(x), ossia tendono a DEF. Una funzione y = f(x) si dice infinitesimo per INFINITI ED INFINITESIMI. ASINTOTI DI UNA FUNZIONE. GRAFICO PROBABILE DI UNA FUNZIONE. TEOREMI SULLE FUNZIONI CONTINUE ESERCIZI SULLA CONTINUITA E SULLA CLASSIFICAZIONE DELLE DISCONTINUITA DI UNA FUNZIONE

Dettagli

Studio Qualitativo di Funzione

Studio Qualitativo di Funzione Studio Qualitativo di Funzione Reperire un certo numero di informazioni per descrivere a livello qualitativo l andamento del grafico di una funzione f 1. campo di esistenza (cioè, l insieme di definizione)

Dettagli

LIMITI DI FUNZIONI. arbitrariamente vicino a L, scegliendo x sufficientemente vicino a x 0, con x x 0.

LIMITI DI FUNZIONI. arbitrariamente vicino a L, scegliendo x sufficientemente vicino a x 0, con x x 0. 55. Limiti al finito (ossia per ) LIMITI DI FUNZIONI Limite finito per f ( ) L R Il ite di f () per tendente a è L se è possibile rendere il valore di f () vicino a L, scegliendo sufficientemente vicino

Dettagli

APPUNTI DI MATEMATICA: I limiti e la continuità Le derivate. Prof. ssa Prenol R.

APPUNTI DI MATEMATICA: I limiti e la continuità Le derivate. Prof. ssa Prenol R. APPUNTI DI MATEMATICA: I iti e la continuità Le derivate Prof. ssa Prenol R. INTERVALLI e INTORNI Definizione di intervallo: è un sottoinsieme di numeri reali e può essere - ilitato: graficamente viene

Dettagli

LA DEFINIZIONE DI LIMITE FINITO IN UN PUNTO

LA DEFINIZIONE DI LIMITE FINITO IN UN PUNTO LA DI LIMITE FINITO IN UN PUNTO 1 LA Quando x si avvicina a x 0, f(x) si avvicina a f(x 0 ) o a un altro valore reale l? Quando x si avvicina a x 0, f(x) si avvicina a un valore l che è proprio f(x 0 )

Dettagli

Esercizio 1. f (x) = e 8x x2 14 ***

Esercizio 1. f (x) = e 8x x2 14 *** Esercizio Studiare la funzione f () = e 8 () *** Soluzione Insieme di definizione La funzione è definita in X = (, + ) Intersezioni con gli assi essendo γ il grafico della funzione. Inoltre: X, f () >

Dettagli

la velocità degli uccelli è di circa (264:60= 4.4) m/s)

la velocità degli uccelli è di circa (264:60= 4.4) m/s) QUESTIONARIO 1. Si sa che certi uccelli, durante la migrazione, volano ad un altezza media di 260 metri. Un ornitologa osserva uno stormo di questi volatili, mentre si allontana da lei in linea retta,

Dettagli

LIMITI SIMULAZIONI GEOGEBRA PER I LIMITI (LINK) LIMITI pagina 1

LIMITI SIMULAZIONI GEOGEBRA PER I LIMITI (LINK) LIMITI pagina 1 LIMITI SIMULAZIONI GEOGEBRA PER I LIMITI (LINK) LIMITI pagina 1 DEFINIZIONE 1 LIMITE FINITO PER x CHE TENDE A UN VALORE FINITO Sia y = f(x) una funzione definita in un intorno completo I del punto x 0,

Dettagli

SCIENTIFICO COMUNICAZIONE OPZIONE SPORTIVA PROBLEMA 1. = lim

SCIENTIFICO COMUNICAZIONE OPZIONE SPORTIVA PROBLEMA 1. = lim www.matefilia.it SCIENTIFICO COMUNICAZIONE OPZIONE SPORTIVA 216 - PROBLEMA 1 La funzione f: R R è così definita: sen() f() = { per 1 = 1) Prova che f è una funzione pari e che essa è derivabile in =. Dimostra

Dettagli

Università degli Studi di Verona

Università degli Studi di Verona Tipologia A 1.1 Si enunci il teorema di derivazione della funzione inversa e lo si applichi al calcolo della derivata della funzione log x. 1.2 Il ite vale 0; x + sin x 1 + xe x non esiste; vale + ; vale

Dettagli

francesca fattori speranza - versione febbraio 2018 { y > 0 4) DETERMINAZIONE DEL TIPO DI FUNZIONE (PARI, DISPARI, PERIODICA)

francesca fattori speranza - versione febbraio 2018 { y > 0 4) DETERMINAZIONE DEL TIPO DI FUNZIONE (PARI, DISPARI, PERIODICA) STUDIO DI FUNZIONE francesca fattori speranza - versione febbraio 2018 1) DOMINIO O CONDIZIONE DI ESISTENZA 2) INTERSEZIONE CON GLI ASSI y f (x) intersezione asse x : { y 0 y f (x) intersezione asse y

Dettagli

3. CALCOLO DIFFERENZIALE PER FUNZIONI DI UNA VARIABILE REALE.

3. CALCOLO DIFFERENZIALE PER FUNZIONI DI UNA VARIABILE REALE. 3. CALCOLO DIFFERENZIALE PER FUNZIONI DI UNA VARIABILE REALE. Molto spesso y = f(x) rappresenta l evoluzione di un fenomeno al passare del tempo x.se siamo interessati a sapere con che rapidità il fenomeno

Dettagli

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 25 Gennaio Studio di Funzione

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 25 Gennaio Studio di Funzione Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 25 Gennaio 2017 Studio di Funzione 1. Si consideri la funzione reale di variabile reale così definita f() = 2 + 4. (a) Determinare

Dettagli

LOGARITMI. log = = con >0, 1; >0 = >0, 1, >0. log =1 >0, 1. notebookitalia.altervista.org

LOGARITMI. log = = con >0, 1; >0 = >0, 1, >0. log =1 >0, 1. notebookitalia.altervista.org LOGARITMI Sia un numero reale positivo ed un numero reale, positivo, diverso da 1; si dice logaritmo di in base il valore da attribuire come esponente alla base per ottenere una potenza uguale all argomento.

Dettagli

ANALISI MATEMATICA I-A. Prova scritta del 1/9/2009 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE

ANALISI MATEMATICA I-A. Prova scritta del 1/9/2009 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE ANALISI MATEMATICA I-A CORSO DI LAUREA IN FISICA Prova scritta del /9/009 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE ESERCIZIO. Punti 8 Risolvere la seguente equazione nel campo complesso w 6 w 64 = 64 3

Dettagli

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 18 luglio 2017 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.

Dettagli

Capitolo 7. Studio di funzione

Capitolo 7. Studio di funzione Capitolo 7 Studio di funzione Consideriamo una funzione f : (a, b) R R. Abbiamo che 0 (a, b) è un punto di minimo relativo se esiste un intorno I( 0 ) (a, b) tale che f() f( 0 ) per ogni I( 0 ). massimo

Dettagli

Calcolare un limite significa determinare quale sia il suo valore quando al posto dell incognita si sostituisce il valore cui essa tende.

Calcolare un limite significa determinare quale sia il suo valore quando al posto dell incognita si sostituisce il valore cui essa tende. Infiniti, infinitesimi e forme indeterminate Calcolare un ite significa determinare quale sia il suo valore quando al posto dell incognita si sostituisce il valore cui essa tende. Cioè calcolare 5 4 significa

Dettagli

1 Polinomio di Taylor 1. 2 Formula di Taylor 2. 3 Alcuni sviluppi notevoli 2. 4 Uso della formula di Taylor nel calcolo dei limiti 4

1 Polinomio di Taylor 1. 2 Formula di Taylor 2. 3 Alcuni sviluppi notevoli 2. 4 Uso della formula di Taylor nel calcolo dei limiti 4 1 POLINOMIO DI TAYLOR 1 Formula di Taylor Indice 1 Polinomio di Taylor 1 Formula di Taylor 3 Alcuni sviluppi notevoli 4 Uso della formula di Taylor nel calcolo dei iti 4 5 Soluzioni degli esercizi 6 La

Dettagli

Università degli Studi di Siena Correzione Prova intermedia di Matematica Generale (A.A ) 12 novembre 2016 Compito 1

Università degli Studi di Siena Correzione Prova intermedia di Matematica Generale (A.A ) 12 novembre 2016 Compito 1 Università degli Studi di Siena Correzione Prova intermedia di Matematica Generale (A.A. 7) novembre Compito ) ) L'espressione è equivalente a quindi sse ovvero, ma non può essere un numero negativo e

Dettagli

Limiti di funzioni di una variabile

Limiti di funzioni di una variabile Capitolo 6 Limiti di funzioni di una variabile 6.1 Limiti all infinito La definizione di ite data per le successioni si può immediatamente trasportare al caso di una funzione definita in un qualunque insieme

Dettagli

DEFINIZIONE DI LIMITE

DEFINIZIONE DI LIMITE DEFINIZIONE DI LIMITE LIMITE FINITO PER x CHE TENDE A UN VALORE FINITO Sia y = f(x) una funzione definita in un intorno completo I del punto x 0, escluso al più il punto x 0 (x 0 è un punto di accumulazione)

Dettagli

ANALISI MATEMATICA I per Ingegneria Aerospaziale - A.A Diario delle lezioni. Mercoledì 2 ottobre 2013 (2 ore)

ANALISI MATEMATICA I per Ingegneria Aerospaziale - A.A Diario delle lezioni. Mercoledì 2 ottobre 2013 (2 ore) c Andrea Dall Aglio - Analisi Matematica: Diario delle lezioni - 8 novembre 0 ANALISI MATEMATICA I per Ingegneria Aerospaziale - A.A. 0-04 Diario delle lezioni Questo è un indice degli argomenti trattati

Dettagli

Risoluzione dei problemi

Risoluzione dei problemi Risoluzione dei problemi Il dominio della generica funzione è:! a a) Scriviamo l espressione della funzione in forma di equazione raccogliendo separatamente i termini contenenti il parametro a e quelli

Dettagli

STUDIO DI FUNZIONI pag. 1

STUDIO DI FUNZIONI pag. 1 STUDIO DI FUNZIONI pag. Dominio e ricerca asintoti REGOLA GENERALE. Individuare il dominio della unzione, cioè l insieme dei valori reali per cui () è ancora un valore reale.. Studiare i iti della unzione

Dettagli

Soluzioni delle Esercitazioni V 15-19/10/ x 1 = = /x + = 0. 1+e x = 1. lnx 1+1/x = = = +.

Soluzioni delle Esercitazioni V 15-19/10/ x 1 = = /x + = 0. 1+e x = 1. lnx 1+1/x = = = +. Soluzioni delle Esercitazioni V 5-9/0/208 A. Limiti I iti che seguono si possono calcolare con l algebra dei iti. 2 3 4 5 6 7 8 9 0 +2 3 = +2 3 = 3 2. e = ) e = e. / + = 0 + = 0 + = 0. +e = +0 = = 0. +/

Dettagli

Istituzioni di Matematiche seconda parte

Istituzioni di Matematiche seconda parte Istituzioni di Matematiche seconda parte anno acc. 2010/2011 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano) Istituzioni di Matematiche 1 / 26 index 1 2 Continuità Cristina Turrini

Dettagli

Corso di Analisi Matematica Limiti di funzioni

Corso di Analisi Matematica Limiti di funzioni Corso di Analisi Matematica Limiti di funzioni Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 39 1 Definizione di ite 2 Il calcolo dei

Dettagli

Verifica di Matematica Classe Quinta

Verifica di Matematica Classe Quinta Verifica di Matematica Classe Quinta Valutazione Conoscenze. Fornisci la definizione di funzione continua in un punto x del dominio. Una funzione f(x) è continua in x 0 D se i iti destro e sinistro in

Dettagli

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 1. Esercizi: lezione 2 novembre 2011 Studio di funzioni Studiare le seguenti funzioni FINO alla derivata prima,

Dettagli

INFINITESIMI ed INFINITI a cura di Angelica Malaspina Università degli Studi della Basilicata

INFINITESIMI ed INFINITI a cura di Angelica Malaspina Università degli Studi della Basilicata INFINITESIMI ed INFINITI a cura di Angelica Malaspina Università degli Studi della Basilicata In queste pagine utilizzeremo il simbolo R = [, + ]. Se x 0 R, con la scrittura x x 0 intenderemo che x x 0

Dettagli

Scheda elaborata dalla prof.ssa Biondina Galdi Docente di Matematica

Scheda elaborata dalla prof.ssa Biondina Galdi Docente di Matematica Tutorial - Studio di una funzione reale di variabile reale f : x R y = f (x) R Una funzione può essere: - 1 - algebrica ( razionale o irrazionale, intera o fratta) Classificare la trascendentale ( esponenziale,

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

Istituzioni di Matematiche terza parte

Istituzioni di Matematiche terza parte Istituzioni di Matematiche terza parte anno acc. 2011/2012 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano) Istituzioni di Matematiche 1 / 35 index Il concetto di limite 1 Il

Dettagli