STUDIO DI FUNZIONI pag. 1

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "STUDIO DI FUNZIONI pag. 1"

Transcript

1 STUDIO DI FUNZIONI pag. Dominio e ricerca asintoti REGOLA GENERALE. Individuare il dominio della unzione, cioè l insieme dei valori reali per cui () è ancora un valore reale.. Studiare i iti della unzione assegnata per 0 con 0 estremo di dom () e per ± individuando, ove presenti, i seguenti casi: a. 0 estremo di dom () se () ±, si ha in 0 un asintoto verticale da sinistra; 0 se () ±, si ha in 0 un asintoto verticale da destra. 0 b. () k k R ± In questo caso y k rappresenta un asintoto orizzontale di () per ± c. [ () ( m q) ] 0 m R \ {} 0 ± In questo caso la retta y m q è un asintoto obliquo di () ; per individuare m coeiciente angolare e q intercetta sull asse delle ordinate procedere come segue: () m q [ () m] ± ± È importante sottolineare che se e solo se entrambi questi due iti esistono initi () ammette per ± asintoto obliquo y m q.

2 STUDIO DI FUNZIONI pag. ESEMPI. () 5 5 dom () R \ 5 (), () ; dunque è un asintoto verticale per (). () 5 e. () e dom () R 5 ; () 5 ; la retta y è un asintoto orizzontale per ±. e e () e e (applicando la regola di de L Hopital) e quindi y asintoto orizzontale per ; e () e quindi y asintoto orizzontale per. e. () 5 e dom () R () 5 e ; () 5 e. Come si può acilmente notare per la unzione decresce con ordine di ininito : () 5 e 5 e m

3 STUDIO DI FUNZIONI pag. m rappresenterebbe il coeiciente angolare della retta a cui la unzione tende per ; l intercetta si può ricavare calcolando il seguente ite: 5 e [ () m] 5 e 5. Risultando deiniti e initi entrambi i iti, si può aermare che y 5 è un asintoto obliquo di () per ; per non ci sono invece asintoti in quanto () 5 e.. () () [ ; ) dom () La unzione ha ordine di ininito pari a ; inatti: () La unzione può quindi presentare per un asintoto obliquo y m q con m ; l intercetta sull asse delle ordinate dovrebbe risultare dal calcolo di questo ite: [ () m] [ ]. Poiché quest ultimo ite, pur essendo deinito, non assume valore inito si deve concludere che () per non presenta alcun asintoto.

4 STUDIO DI FUNZIONI pag. Studio di punti di discontinuità REGOLA GENERALE a. Se esiste un punto R per cui 0 () l, () l 0 0 con l l allora si dice che 0 è un punto di discontinuità di prima specie o salto. b. Se esiste un punto R per cui () l, con l ( ) allora si dice che 0 è un punto di discontinuità einabile o artiiciale. c. Se in 0 almeno uno dei iti laterali o non esiste o è ininito, allora si dice che 0 è un punto di discontinuità di seconda specie. ESEMPI. caso a. () sgn 0 > 0 0 < 0 si ha (), () 0 0 dunque 0 0 è un punto di discontinuità di prima specie.. caso b. 0 () sgn 0 0 si ha 0 (), () 0 0 dunque 0 è un punto di discontinuità einabile. 0

5 . caso c. () STUDIO DI FUNZIONI pag. 5 si ha (), () dunque 0 è un punto di discontinuità di seconda specie Studio di punti critici e intervalli di monotonia REGOLA GENERALE Calcolare la derivata prima della unzione assegnata e studiarne il segno e gli zeri sul suo dominio. ESEMPI. (), dom R '() 0 '() 0 : 0 se, '() > 0 : > 0 se < < La unzione è monotona decrescente negli intervalli ( ; ) e ( ; ), mentre è crescente nell intervallo ( ;) punto è di minimo, il punto è invece di massimo.. () tg, dom π R \ kπ : k Z '() cos cos '() 0 : 0 0 cos cos cos kπ, k Z '() > 0 : > 0 < cos cos cos > condizione mai veriicata La unzione è decrescente; gli zeri della derivata prima rappresento lessi a tangente orizzontale; conseguentemente non ci sono massimi o minimi. ; il

6 . () log, dom R \ {} 0 log '() log log '() 0 : 0 I attore: 0 condizione mai veriicata log II attore: 0 log log '() > 0 : > 0 I attore: > 0 condizione sempre veriicata log II attore: > 0 log > e > e La unzione è monotona decrescente nell intervallo ( 0; e ) - e monotona crescente in ( e ; ) e rappresenta quindi un minimo assoluto. STUDIO DI FUNZIONI pag. 6 - ; il punto Studio di punti di non derivabilità REGOLA GENERALE Se esistono dei punti 0 dom () per i quali non è possibile applicare le regole di derivazione, studiare la derivata prima della unzione assegnata esaminando in particolare queste possibilità: ' l l ' dom () ; l l R a. () () b. '() ± e/o '() ± 0 0, 0 dom ()

7 ESEMPI STUDIO DI FUNZIONI pag. 7. caso a. () 9, dom () R è conveniente arontare lo studio di unzioni contenenti valori assoluti riscrivendo le unzioni in una orma che non presenti tali operatori; ciò può essere atto spezzando la unzione in blocchi di segno costante: 9 0 ( 9) 0 I attore: 0 II attore: 9 0 e 9 0 e () 9 ( 9) < e 0 < < Poiché la unzione è pari, come si veriica acilmente sostituendo a nella espressione originaria, lo studio dei punti di non derivabilità può essere arontato per le sole 0 estendendo poi i risultati ottenuti alle < 0. Questo studio va condotto analizzando separatamente il comportamento della derivata prima per i punti interni agli intervalli di deinizione e per gli estremi di tali intervalli. ( 0, ) In questo intervallo () 9 e dunque '() 9 ; la derivata prima è deinita per ogni punto dell intervallo. (, ) In questo intervallo () 9 e dunque '() 9 ; la derivata prima è deinita per ogni punto dell intervallo. 0, Lo studio della derivata prima va ora condotto calcolando separatamente i iti destro e sinistro: ' 9 ; '() ( 9 ) 9 0 ' () ( ) 9 0 () ( 9 ) 8 0 ' 0 () ( 9) 8 In entrambi i casi i iti destro e sinistro sono initi ma dierenti; per 0, non è dunque deinita la derivata prima di () e tali punti corrispondono quindi a punti angolosi. In conclusione si può aermare che () è ovunque derivabile tranne che nei punti, 0, che sono punti angolosi.

8 . caso b. () STUDIO DI FUNZIONI pag. 8, dom () R '() 0 La derivata prima non è deinita per 0 dove entrambi i iti destro e sinistro sono ininiti: '() ± In questo caso, essendo i iti destro e sinistro entrambi ininiti di segno concorde, si ha per 0 un lesso a tangente verticale.. caso b. (), dom () R '() 0 Anche in questo caso la derivata prima non è deinita per 0 : '() '() Dato che i iti destro e sinistro sono ininiti ma di segno discorde, il punto 0 corrisponde a una cuspide. 5 Studio di concavità, convessità e lessi REGOLA GENERALE Calcolare la derivata seconda della unzione e studiarne in particolare il segno e gli zeri. ESEMPI. (), dom () R ' () ''() 6

9 ''() 0 : ( ) 0 ''() > 0 : 6 > 0 6 ( ) > 0 I attore: > 0 II attore: > 0 > 0, STUDIO DI FUNZIONI pag. 9 La derivata seconda è positiva per < 0 e per > ed in questi intervalli () è dunque convessa; per 0 < < la unzione è invece concava. Da queste considerazioni si deduce che 0 e rappresentano punti di lesso.. () e, dom () R '() e ''() e e e [ ] '' () 0 : e [ ] 0 () > 0 : e [ ] > 0 condizione mai veriicata '' condizione sempre veriicata La derivata seconda è sempre strettamente positiva e quindi la unzione è sempre convessa. 6 Graici REGOLA GENERALE Eettuare lo studio degli elementi (dominio, segno, monotonia, ) discussi nei punti precedenti, dedurre da questi l andamento della unzione e disegnarne il graico in maniera qualitativa. ESEMPI. () Dominio La unzione è deinita sull intero asse reale ad eccezione dei punti per i quali si annulla il denominatore: 0 dom () R \ {} Simmetrie e periodicità

10 STUDIO DI FUNZIONI pag. 0 La unzione non presenta né simmetrie né periodicità. Segno e zeri () > 0 : > 0 numeratore: > 0 ( ) > 0 condizione veriicata per < e > 0 denominatore: > 0 <, 0,. La unzione è positiva negli intervalli ( ) e ( ) () 0 : 0 ( ) 0 0, La unzione si annulla per 0 e. Comportamento per ± (asintoti orizzontali, obliqui o semplice divergenza) ( ) L ordine di ininito per è, inatti: () ( ) ( ) ( ) La unzione potrebbe quindi presentare per un asintoto obliquo di cui m rappresenterebbe il coeiciente angolare; l intercetta sull asse delle ordinate sarebbe: q [ () m] Essendo i due iti deiniti e initi si può concludere che () ha un asintoto obliquo per di equazione y. ( ) Anche in questo caso l ordine di ininito è :

11 () ( ) ( ) STUDIO DI FUNZIONI pag. ( ) La unzione potrebbe presentare un asintoto obliquo anche per ; trovato il coeiciente angolare m, resta da calcolare l intercetta: q [ () m] Anche per () presenta un asintoto obliquo, esso ha equazione y. Asintoti verticali Asintoto verticale. Intervalli di monotonia e punti stazionari () ( )( ) ( )( ) ' '() > 0 : > 0 ( ) ( ) ( ) numeratore: > 0 < < > denominatore: ( ) 0 La unzione è crescente negli intervalli (,) () ( ) condizione sempre veriicata e (, ) 0 : 0 0, ' La unzione presenta in un minimo relativo e in un massimo relativo. Concavità, convessità e lessi () ( )( ) ( )( ) 6 '' ( ) ( ) 6 ''() > 0 : 0 > ( )

12 numeratore: 6 > 0 condizione sempre veriicata denominatore: ( ) > 0 < La unzione è convessa per <, concava per > ; non ci sono punti di lesso. Punti di non derivabilità La unzione non presenta punti di non derivabilità. Valori della unzione in alcuni punti particolari 6 ( ) ( ) 7. 6 () 0 0 STUDIO DI FUNZIONI pag.. () e Dominio dom () R Simmetrie e periodicità La unzione non presenta né simmetrie né periodicità. Segno e zeri () > 0 : e > 0 I attore: > 0 condizione veriicata per 0 II attore: e > 0 condizione sempre veriicata La unzione è sempre positiva ad eccezione del punto 0 dove si annulla, inatti: () 0 : e 0 0 Comportamento per ± (asintoti orizzontali, obliqui o semplice divergenza) e 0 La unzione ha y 0 come asintoto orizzontale per.

13 e L ordine di ininito per Asintoti verticali La unzione non presenta asintoti verticali. Intervalli di monotonia e punti stazionari () e ( ) e ( ) e () > 0 : ( ) e > 0 maggiore di esclude la possibilità di asintoti obliqui. ' ' I attore: > 0 ( ) < 0 0 < < II attore: e > 0 condizione sempre veriicata La unzione è crescente per 0 < <. '() 0 : ( ) e 0 I attore: 0 0, II attore: e 0 condizione mai veriicata La unzione ha in 0 un punto di minimo assoluto e in un punto di massimo relativo. Concavità, convessità e lessi ''() ( ) e ( )( ) e ( ) e ''() > 0 : ( ) e > 0 I attore: > 0 <, > II attore: e > 0 condizione sempre veriicata La unzione è convessa per < e per >, concava per < <. ''() 0 : ( ) e 0 I attore: 0, II attore: e 0 condizione mai veriicata La unzione presenta in e in punti di lesso. Punti di non derivabilità La unzione non presenta punti di non derivabilità. Valori della unzione in alcuni punti particolari STUDIO DI FUNZIONI pag.

14 () 0 0 (). 7 e 0. ( ) 59 ( ). 0 STUDIO DI FUNZIONI pag.. () sin cos Dominio dom () R Simmetrie e periodicità La unzione è pari, inatti: sin cos () ( ) sin ( ) cos( ) sin cos sin cos La unzione è inoltre periodica di periodo π : π sin π cos π sin cos. ( ) ( ) ( ) Data la parità e la periodicità della unzione, lo studio verrà arontato per [ 0,π ] agli intervalli adiacenti. Segno e zeri sin cos sin 0 cioè 0 π () sin cos sin < 0 cioè π < < π La unzione può essere ulteriormente riscritta in questa orma: sin cos sin π () > 0 : sin > 0 0 < estendendo poi i risultati

15 STUDIO DI FUNZIONI pag. 5 π () 0 : sin 0 π π π La unzione è positiva per 0 <, negativa per < π, nulla per. Asintoti verticali La unzione non presenta asintoti verticali. Intervalli di monotonia e punti stazionari '() cos π '() > 0 : cos > 0 0 < < π '() 0 : cos 0 π π π La unzione è crescente per 0 < <, decrescente per < < π ; è punto di massimo. Concavità, convessità e lessi ''() sin π ''() > 0 : sin > 0 < < π π ''() 0 : sin 0 π π π La unzione è convessa per < < π, concava per 0 < < e presenta un lesso in. Punti di non derivabilità La unzione non è derivabile per 0 e per π : '() sin '() cos

16 '() cos ' sin π π π π 0 e π sono dunque due punti angolosi. Valori della unzione in alcuni punti particolari ( π ) 0 () () STUDIO DI FUNZIONI pag. 6

17 STUDIO DI FUNZIONI pag. 7 7 Schema riassuntivo di studio di unzioni Classiichiamo () come: - pari (se () ( ) ) - dispari (se () ( ) ) - né pari né dispari - periodica (se esiste T tale che ( T ) ( ) ) Nel primo caso, si studia () solo per 0, e si tiene conto che il graico di () è simmetrico rispetto all asse y. Nel secondo caso, si studia () solo per 0, e si tiene conto che il graico di () è simmetrico rispetto all origine. Nel quarto caso, si studia () solo per 0 0 T (con un opportuno 0 ) e poi si ripete il graico in intervalli adiacenti. Studio del dominio di () Comportamento di () agli estremi del dominio (eventuali asintoti orizzontali o verticali) () Ricerca di eventuali asintoti obliqui destri y m q : (vedere se esiste inito e diverso da zero m e, in caso aermativo, q ( () m) (lo stesso si ripete per, per cercare eventuali asintoti sinistri) Zeri di () (eventualmente il segno di () ) Studio di '() : zeri e segno di '() monotonia e punti a tangente orizzontale; punti in cui '() diventa ininita punti a tangente verticale; punti in cui () ' ha discontinuità di prima specie (cioè '() '() 0 Eventuale studio di ''() (se richiesto, o se di acile calcolo): zeri, segno concavità, eventuali lessi. Disegno del graico 0 ) punti angolosi.

18 ESEMPI Studiare le seguenti unzioni e tracciarne un graico qualitativo:. () ln ln Veriichiamo innanzitutto se la unzione è pari o dispari: () ln ln ( ) ln ln da cui ( ) ± ( ) : non è né pari né dispari. Inoltre () non è periodica (poiché la unzione logaritmo non è periodica in campo reale) Dominio di () : D (, ) (,) (, ) () () () () () ln ( ) ( ) ln ± ± ± STUDIO DI FUNZIONI pag. 8 Dunque e sono asintoti verticali (sinistri e destri) Non ci sono asintoti orizzontali. Cerchiamo eventuali asintoti obliqui: ( ) ln () m 0 (poiché l ordine di ininito del numeratore è ineriore all ordine di ininito del denominatore essendo di tipo logaritmico; oppure applicando il teorema di de l Hopital m 0 ). '() (Lo stesso vale per ) Dunque non ci sono asintoti obliqui. () ( ) ( ) 0 : ln 0 se < : ( ) 0 0

19 se > : ( ) 0 Nessuna soluzione reale. Dunque () taglia l asse delle solo in 0 e in. () ln ln Ricordando che D () Dln( () ) '() () ln, si ha: () ( ) ( ) ' ( )( ) dom '() dom () R \ { ± } '() 0 per Segno di '() : STUDIO DI FUNZIONI pag. 9 () è decrescente in (,) e in (, ) ed () è crescente in (,) relativo a tangente orizzontale con () log log log log8 > ''() 6 ( ) () 0 : '' Segno di ''() : ; è con- è concava verso il basso in (, -), in (, ) e in (, ) vessa (,) e in (, ) ; e sono punti di lesso. e in (, ) ; in () ha un minimo

20 STUDIO DI FUNZIONI pag. 0. () ( ) Poiché ( ) ( ) ±, () non è né pari né dispari. Non è periodica perché somma di unzioni non periodiche. Dominio di () :, 0 quindi ( ] [ ),, D ( ), ( ) () () Dunque non ci sono asintoti né orizzontali né verticali. Cerco eventuali asintoti obliqui a destra: () m () ( ) q Si deduce che y è asintoto obliquo destro. Cerchiamo ora eventuali asintoti obliqui a sinistra: () m

21 q Dunque () () ( ) ( ) y è asintoto obliquo sinistro. STUDIO DI FUNZIONI pag. 0 nota bene: deve essere < , 0,9 Poiché le due soluzioni appartengono al dominio e sono negative, sono entrambi valori accettabili. Dunque la unzione taglia l asse delle in e. Segno di '() : '() () 0 ' > se > cioè se < D mai veriicata Dunque se, '() > 0, mentre se < Pertanto in (, ) () dom '() (, ) (, ) ' ' () () ' <., () 0 è decrescente, mentre in (, ) () 0 > 0 ovvero > 0 > 9 è crescente. cioè e sono punti a tangente verticale (punti di non derivabilità)

22 '() ' non è necessario STUDIO DI FUNZIONI pag.

SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7

SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7 SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7 Esercizio. Funzione da studiare: log( 3).. Dominio: dobbiamo richiedere che il denominatore non si annulli e che il logaritmo sia ben definito. Quindi le condizioni

Dettagli

Soluzioni degli Esercizi per il Corso di Istituzioni di Matematica. x2 1 x x + 7 ; d) f (x) =

Soluzioni degli Esercizi per il Corso di Istituzioni di Matematica. x2 1 x x + 7 ; d) f (x) = Soluzioni degli Esercizi per il Corso di Istituzioni di Matematica 1 La retta tangente al grafico di f nel punto ( 0, f( 0 ha equazione y = f( 0 + f ( 0 ( 0. a y = 2; b y = log 2 (e( 1; c y = 1 2 + 1 4

Dettagli

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno. 1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre

Dettagli

STUDIO DI FUNZIONI pag. 1

STUDIO DI FUNZIONI pag. 1 STUDIO DI FUNZIONI pag. Dominio e ricerca asintoti.0. f () = 6 +.0. f () =.0.3 f () = 3.0. () = log( 5 6) + [ dom () = R \ { ±} [ dom () = R \ {, 3} f ; asintoti verticali in = e = 3; asintoto orizzontale

Dettagli

Matematica per l Economia (A-K) e Matematica Generale 09 febbraio 2018 (prof. Bisceglia) Traccia F

Matematica per l Economia (A-K) e Matematica Generale 09 febbraio 2018 (prof. Bisceglia) Traccia F Matematica per l Economia (A-K) e Matematica Generale 9 ebbraio 8 (pro Bisceglia) Traccia F Determinare se possibile un punto di approssimazione con un errore 8 dell equazione 5 arcsen nell intervallo

Dettagli

Dominio di f ed eventuali simmetrie: Il dominio di f è definito dall insieme degli x R che verificano le condizioni:

Dominio di f ed eventuali simmetrie: Il dominio di f è definito dall insieme degli x R che verificano le condizioni: Studi di funzione 5) Studiare la funzione definita da f() = arcsin ( ) + 3 2 +. Dominio di f ed eventuali simmetrie: Il dominio di f è definito dall insieme degli R che verificano le condizioni: () : +,

Dettagli

f(x) = 1 x 2 Per determinare il dominio di f(x) dobbiamo imporre che il determinante sia diverso da zero

f(x) = 1 x 2 Per determinare il dominio di f(x) dobbiamo imporre che il determinante sia diverso da zero . Data la funzione approssimarne il grafico. f() = 2 Per determinare il dominio di f() dobbiamo imporre che il determinante sia diverso da zero 2 0 = 2 = ± perciò il dominio ` D = R \ {, } =], [ ], [ ],

Dettagli

CONTINUITA E DERIVABILITA

CONTINUITA E DERIVABILITA CONTINUITA E DERIVABILITA La continuità e la derivabilità di una unzione sono proprietà dierenti. TEOREMA: CONTINUITA DELLE FUNZIONI DERIVABILI Se è una unzione derivabile in un punto, allora è continua

Dettagli

Capitolo 5. Calcolo infinitesimale

Capitolo 5. Calcolo infinitesimale Capitolo 5 Calcolo ininitesimale 5 Derivazione a b R ed ] a, Siano ( :(, DEFINIZINE Diremo che ( è derivabile nel punto se esiste inito il seguente ite ( ( e porremo per deinizione ( ( ( La unzione : (

Dettagli

DERIVATA di una funzione

DERIVATA di una funzione DERIVATA di una unzione Sia e * A punto di accumulazione di A : A R * è il RAPPORTO INCREMENTALE * Il rapporto incrementale di calcolato in * rappresenta il coeiciente angolare della secante passante per

Dettagli

Istituzioni di Matematica I

Istituzioni di Matematica I Istituzioni di Matematica I Le soluzioni proposte costituiscono solo una traccia di possibili soluzioni (lo studente deve giustificare i vari risultati), possono esserci altri modi, altrettanto corretti,

Dettagli

I TEOREMI DEL CALCOLO DIFFERENZIALE

I TEOREMI DEL CALCOLO DIFFERENZIALE I TEOREMI DEL CALCOLO DIFFERENZIALE 1. DEFINIZIONI. TEOREMI DEL CALCOLO DIFFERENZIALE.1 TEOREMA DELL ESTREMANTE LOCALE. TEOREMI DI ROLLE, CAUCHY, LAGRANGE.3 TEOREMI CONSEGUENTI AL T. DI LAGRANGE 3. DETERMINAZIONE

Dettagli

Esercizi proposti. x b) f(x) = 2. Determinare i punti di non derivabilità delle funzioni

Esercizi proposti. x b) f(x) = 2. Determinare i punti di non derivabilità delle funzioni Esercizi proposti 1. Calcolare la derivata prima f () per le seguenti funzioni: a) f() = c) f() = ( 1 + 1 b) f() = 1 arctan ) d) f() = cos ( ( + ) 5) e) f() = 1 + sin 1 f) f() = arcsin 1. Determinare i

Dettagli

Analisi Matematica per Informatici Esercitazione 10 a.a

Analisi Matematica per Informatici Esercitazione 10 a.a Analisi Matematica per Informatici Esercitazione a.a. 6-7 Dott. Simone Zuccher 7 Febbraio 7 Nota. Queste pagine potrebbero contenere degli errori: chi li trova è pregato di segnalarli all autore (zuccher@sci.univr.it).

Dettagli

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio. Esercizi svolti 1. Sia sin(x ) f(x) = x ( 1 + x 1 ) se x > 0 a x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.. Scrivere l equazione della retta tangente nel punto di ascissa

Dettagli

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 19 Dicembre Studio di Funzione.

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 19 Dicembre Studio di Funzione. Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 19 icembre 2016 Studio di Funzione 1. Si consideri la funzione f : R R così definita f(x) 1 2 log x x 2. (a) eterminare il

Dettagli

Analisi Matematica 1 - a.a. 2017/ Quarto appello

Analisi Matematica 1 - a.a. 2017/ Quarto appello Analisi Matematica - a.a. 07/08 - Quarto appello Soluzione del test Test A E C B B C A D C C D Test B C B C E B A E E D B Test C A A D B E C A C D D Test D D B A A B E A E B D Soluzione della parte di

Dettagli

Corso di Analisi Matematica 1 - professore Alberto Valli

Corso di Analisi Matematica 1 - professore Alberto Valli Università di Trento - Corso di Laurea in Ingegneria Civile e Ingegneria per l Ambiente e il Territorio - 07/8 Corso di Analisi Matematica - professore Alberto Valli 7 foglio di esercizi - 8 novembre 07

Dettagli

Tema 1: esercizi. 1. Studiare la funzione seguente e tracciarne un grafico qualitativo. + = Soluzione 1) Dominio x ( ) { }

Tema 1: esercizi. 1. Studiare la funzione seguente e tracciarne un grafico qualitativo. + = Soluzione 1) Dominio x ( ) { } Tema : esercizi. Studiare la funzione seguente e tracciarne un grafico qualitativo. ) Dominio ( ) { } R \ f Dom ) Intersezione con gli assi impossibile per il dominio ± e si ottiene ancora ( ) ; e ( )

Dettagli

ANALISI MATEMATICA I (Versione A) - 24 Novembre 2000 RISOLUZIONE. = 4x 2 + 8x 3 + o(x 3 )

ANALISI MATEMATICA I (Versione A) - 24 Novembre 2000 RISOLUZIONE. = 4x 2 + 8x 3 + o(x 3 ) ANALISI MATEMATICA I (Versione A) - 4 Novembre 000 RISOLUZIONE ESERCIZIO 1. Data la funzione = (e x 1) log(1 + 4x ) : 1. Calcolare lo sviluppo di ordine 3 di MacLaurin di. Scriviamo gli sviluppi di ordine

Dettagli

dato da { x i }; le rette verticali passanti per

dato da { x i }; le rette verticali passanti per Schema riepilogativo per lo studio di una funzione reale di una var. reale. Studio grafico-analitico delle funzioni reali di variabile reale y = f ( Sequenza dei passi utili allo studio di una funzione

Dettagli

Matematica A Corso di Laurea in Chimica. Prova scritta del Tema A

Matematica A Corso di Laurea in Chimica. Prova scritta del Tema A Matematica A Corso di Laurea in Chimica Prova scritta del 7..6 Tema A P) Data la funzione f(x) = ex+ x determinarne (a) campo di esistenza; (b) zeri e segno; (c) iti agli estremi del campo di esistenza

Dettagli

SOLUZIONI 3. f (x) = (x 2 1) 2/3 e x. (x 2 1) 2/3 e x 0 x R. x 4/3 e x = e 4/3 log x e x

SOLUZIONI 3. f (x) = (x 2 1) 2/3 e x. (x 2 1) 2/3 e x 0 x R. x 4/3 e x = e 4/3 log x e x Domanda Si consideri la funzione SOLUZIONI f x = x 2 2/ e x. Determinare il campo di esistenza, il segno, i iti alla frontiera e gli eventuali asintoti. Classificare gli eventuali punti di discontinuità

Dettagli

6 - Grafici di funzioni

6 - Grafici di funzioni 6 - Grafici di funzioni Dato una funzione reale di variabile reale f, si richiede di dare una rappresentazione (approssimata) del grafico di f, vale a dire delle coppie di punti di R 2 della forma (x,

Dettagli

Studio di funzione appunti

Studio di funzione appunti Studio di unzioni algebriche ratte Studio di unzione appunti 1. Ricerca del dominio (C.E.);. Intersezioni con gli assi cartesiani; 3. Ricerca degli intervalli di positività (Studio del segno S.D.S.); 4.

Dettagli

Mauro Saita Grafici qualitativi di funzioni reali di variabile reale

Mauro Saita Grafici qualitativi di funzioni reali di variabile reale Mauro Saita Grafici qualitativi di funzioni reali di variabile reale Per commenti o segnalazioni di errori scrivere, per favore, a: maurosaita@tiscalinet.it Ottobre 2017 1 Indice 1 Qual è il grafico della

Dettagli

Per cominciare, osserviamo che f si ottiene traslando di 2, nella direzione negativa dell asse x, la funzione. g(x) = x e x

Per cominciare, osserviamo che f si ottiene traslando di 2, nella direzione negativa dell asse x, la funzione. g(x) = x e x Studi di funzione 1) Studiare la funzione definita da f(x) = x + e (x+). Per cominciare, osserviamo che f si ottiene traslando di, nella direzione negativa dell asse x, la funzione g(x) = x e x cioè abbiamo

Dettagli

Corso di Analisi Matematica 1 - professore Alberto Valli

Corso di Analisi Matematica 1 - professore Alberto Valli Università di Trento - Corso di Laurea in Ingegneria Civile e Ingegneria per l Ambiente e il Territorio - 08/9 Corso di Analisi Matematica - professore Alberto Valli 7 foglio di esercizi - 7 novembre 08

Dettagli

STUDIO DEL GRAFICO DI UNA FUNZIONE

STUDIO DEL GRAFICO DI UNA FUNZIONE STUDIO DEL GRAFICO DI UNA FUNZIONE 1 Richiami Teorema 1 (Test di monotonia). Sia f : (a, b) R una funzione derivabile. Allora f è monotona crescente (risp. decrescente) in (a, b) se e solo se f () 0 (risp.

Dettagli

G5. Studio di funzione - Esercizi

G5. Studio di funzione - Esercizi G5 Studio di funzione - Esercizi Tracciare il grafico delle seguenti funzioni I grafici delle seguenti funzioni sono al termine degli esercizi Per gli esercizi con l asterisco non è richiesta, date le

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

STUDIO DI UNA FUNZIONE INTEGRALE. Z x. ln t ln t 2 2 dt. f(x) =

STUDIO DI UNA FUNZIONE INTEGRALE. Z x. ln t ln t 2 2 dt. f(x) = STUDIO DI UNA FUNZIONE INTEGRALE Studiamo la funzione f di una variabile reale, a valori in R, definitada. Il dominio di f. f() = Z Denotiamo con g la funzione integranda. Allora g(t) = numeri reali tali

Dettagli

Vicenza, 12 settembre 2016 Si consideri la funzione. sinh 2x sinh 2x 1 3x. f(x) =

Vicenza, 12 settembre 2016 Si consideri la funzione. sinh 2x sinh 2x 1 3x. f(x) = ANALISI MATEMATICA - Traccia di soluzioni Commissione F. Albertini, L. Caravenna e V. Casarino Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza Esercizio, Tema [9 punti] Vicenza, settembre 06 Si

Dettagli

Studio del segno delle derivate. Lezione 11 del 6/12/2018

Studio del segno delle derivate. Lezione 11 del 6/12/2018 Studio del segno delle derivate Lezione 11 del 6/12/2018 Segno della derivata prima Data una funzione f(x) derivabile in un intervallo I, allora se f x > 0 x I allora la funzione f(x) è strettamente crescente

Dettagli

ESERCITAZIONE 6: STUDIO DI FUNZIONI

ESERCITAZIONE 6: STUDIO DI FUNZIONI ESERCITAZIONE 6: STUDIO DI FUNZIONI Tiziana Raparelli 31/03/009 1 ESERCIZI ESERCIZIO 1 Studiare le seguenti funzioni, discuterne l uniforme continuità e tracciarne un grafico qualitativo. (a) f() = log(

Dettagli

Esame di Matematica Generale 7 Febbraio Soluzione Traccia E

Esame di Matematica Generale 7 Febbraio Soluzione Traccia E Esame di Matematica Generale 7 Febbraio 013 - Soluzione Traccia E ESERCIZIO 1. Si consideri la funzione f : R R f(x) = x + 1 x. (a) Determinare il dominio di f ed eventuali simmetrie (3 punti). Dominio.

Dettagli

Per cominciare, osserviamo che f si ottiene traslando di 2, nella direzione negativa dell asse x, la funzione. g(x) = x e x

Per cominciare, osserviamo che f si ottiene traslando di 2, nella direzione negativa dell asse x, la funzione. g(x) = x e x Studi di funzione 1) Studiare la funzione definita da f(x) = x + 2 e (x+2). Per cominciare, osserviamo che f si ottiene traslando di 2, nella direzione negativa dell asse x, la funzione g(x) = x e x cioè

Dettagli

Analisi Matematica I Primo Appello ( ) - Fila 1

Analisi Matematica I Primo Appello ( ) - Fila 1 Analisi Matematica I Primo Appello (4-11-003) - Fila 1 1. Determinare la retta tangente alla funzione f() = (1 + ) 1+ in = 0. R. f(0) = 1, mentre la derivata è f () = ( e (1+) log(1+)) ( ) = e (1+) log(1+)

Dettagli

Esonero di Analisi Matematica I (A)

Esonero di Analisi Matematica I (A) Esonero di Analisi Matematica I A) Ingegneria Edile, 7 novembre 00 Michele Campiti) 1. Studiare il seguente ite: x π/ cos x 1 sin x) tan 3 x π ).. Calcolare le seguenti radici quarte: 3i 4 1 + i). Esonero

Dettagli

Concavità verso il basso (funzione concava) Si dice che in x0 il grafico della funzione f(x) abbia la concavità rivolta verso il basso, se esiste

Concavità verso il basso (funzione concava) Si dice che in x0 il grafico della funzione f(x) abbia la concavità rivolta verso il basso, se esiste CONCAVITA E CONVESSITA DI UNA FUNZIONE. FLESSI. SCHEMA GENERALE PER LO STUDIO DI FUNZIONE. FUNZIONI RAZIONALI E IRRAZIONALI INTERE E FRATTE. TEOREMA DI DE L HOSPITAL CON APPLICAZIONI AI LIMITI. 1 Concavit{

Dettagli

STUDIO di FUNZIONE. c Paola Gervasio - Analisi Matematica 1 - A.A. 2018/19 Studio di funzione cap6b.pdf 1

STUDIO di FUNZIONE. c Paola Gervasio - Analisi Matematica 1 - A.A. 2018/19 Studio di funzione cap6b.pdf 1 STUDIO di FUNZIONE c Paola Gervasio - Analisi Matematica 1 - A.A. 2018/19 Studio di funzione cap6b.pdf 1 Punti di estremo: punto di massimo assoluto Def. Sia 0 dom(f) = D. Si dice che 0 è un punto di massimo

Dettagli

Corso di Analisi Matematica 1 - professore Alberto Valli

Corso di Analisi Matematica 1 - professore Alberto Valli Università di Trento - Corso di Laurea in Ingegneria Civile e Ingegneria per l Ambiente e il Territorio - 07/8 Corso di Analisi Matematica - professore Alberto Valli 6 foglio di esercizi - 5 ottobre 07

Dettagli

Lo studio di funzione. 18 febbraio 2013

Lo studio di funzione. 18 febbraio 2013 Lo studio di funzione 18 febbraio 2013 1 Indice 1 Lo studio di funzione 3 1.1 Dominio di funzioni......................... 3 1.1.1 Domini di funzioni elementari............... 3 1.1.2 Funzioni composte,

Dettagli

LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI

LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI Autore: Enrico Manfucci - 6/05/0 LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI PREMESSA Per Studio di funzione si intende disegnare il grafico di una funzione data la sua espressione analitica. Questo significa

Dettagli

I teoremi del calcolo differenziale

I teoremi del calcolo differenziale I teoremi del calcolo dierenziale Ora che le regole di derivazione e il concetto di derivata sono stati arontati è possibile passare ad analizzare alcuni risultati importanti. Deinizione: data una unzione

Dettagli

STUDIO DEL GRAFICO DI UNA FUNZIONE

STUDIO DEL GRAFICO DI UNA FUNZIONE STUDIO DEL GRAFICO DI UNA FUNZIONE PROF.SSA ROSSELLA PISCOPO 2 di 35 Indice 1 SCHEMA PER LO STUDIO DEL GRAFICO DI FUNZIONE... 4 2 ESEMPI... 11 2.1 2.2 2.3 2.4 2.5 2.6 FUNZIONE ESPONENZIALE... 11 FUNZIONE

Dettagli

Argomento 7. Studio di funzione

Argomento 7. Studio di funzione Argomento 7 Studio di funzione Studiare una funzione significa ottenere, mediante strumenti analitici (iti, derivate, ecc.) informazioni utili a disegnare un grafico qualitativo della funzione data. I

Dettagli

Liceo Classico D. Alighieri A.S Studio di Funzione. Prof. A. Pisani. Esempio

Liceo Classico D. Alighieri A.S Studio di Funzione. Prof. A. Pisani. Esempio Liceo Classico D. Alighieri A.S. 0-3 y Data la funzione: Studio di Funzione tracciatene il grafico nel piano cartesiano. Prof. A. Pisani Esempio ) Tipo e grado della funzione La funzione è analitica, data

Dettagli

Temid esamesvolti-1. Analisi delle funzioni

Temid esamesvolti-1. Analisi delle funzioni Temi d esame svolti - 1 1 Temid esamesvolti-1 Analisi delle funzioni (91003) 1 Si consideri la funzione definita a tratti su tutto R: ½ + sin 1 f() =, 6= 0 k, =0 (a) Per quale valore di k la funzione è

Dettagli

Soluzioni del Foglio 7

Soluzioni del Foglio 7 7.1. Esercizio. Assegnate le funzioni ANALISI Soluzioni del Foglio 7 18 novembre 2009 e e sin(), dire quali possono essere prolungate per continuitá in = 0, studiare, per le funzioni che risultino prolungabili

Dettagli

CAP. VII FUNZIONI DERIVABILI

CAP. VII FUNZIONI DERIVABILI C Boccaccio Appunti di Analisi Matematica CAP VII CAP VII FUNZIONI DERIVABILI In molti problemi di varia natura (isica, economica, matematica, ecc ) si ha a che are con unzioni, delle quali importa determinare

Dettagli

Istituzioni di matematica

Istituzioni di matematica Istituzioni di matematica TUTORATO 1 - Soluzioni Mercoledì 1 novembre 018 Esercizio 1. Studiare la seguente funzione e tracciarne il graco f(x) = x + 1 + 5 x D = {x R : x 0} = R \ {0} - La funzione non

Dettagli

Analisi 1 - Foglio di esercizi VII - Soluzioni

Analisi 1 - Foglio di esercizi VII - Soluzioni Analisi 1 - Foglio di esercizi VII - Soluzioni /11/018 1. f x log x D =, 1 1,,, +. Conviene eettuare la sostituzione z = x per ritrovarsi con la funzione dispari gz = z log z, di dominio D =, 1 1, 0 0,

Dettagli

Funzioni continue. quando. se è continua x I.

Funzioni continue. quando. se è continua x I. Funzioni continue Definizione: f() si dice continua in 0 D f quando (*) 0 f () f ( 0 ) Definizione: f() si dice continua in I D f se è continua I. Avevamo già dato questa definizione parlando del f ().

Dettagli

STUDIO di FUNZIONE. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 1

STUDIO di FUNZIONE. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 1 STUDIO di FUNZIONE c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 1 Punti di estremo: punto di massimo assoluto Def. Sia 0 dom(f) = D. Si dice che 0 è un punto di massimo

Dettagli

FUNZIONI REALI DI UNA VARIABILE REALE

FUNZIONI REALI DI UNA VARIABILE REALE FUNZIONI REALI DI UNA VARIABILE REALE INTERVALLI Per definire il campo di esistenza (o dominio) di una funzione reale di variabile reale y=f()si devono indicare talvolta insiemi di numeri reali che su

Dettagli

Analisi e Geometria 1 Politecnico di Milano Ingegneria

Analisi e Geometria 1 Politecnico di Milano Ingegneria Analisi e Geometria Politecnico di Milano Ingegneria Esercizi Funzioni. Calcolare la derivata delle funzioni: (a f( = ln tg cos sin (b f( = + ln( + +. Dimostrare che la funzione è costante a tratti. 3.

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea in Fisica a.a.2001/02

TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea in Fisica a.a.2001/02 I seguenti quesiti ed il relativo svolgimento sono coperti dal diritto d autore, pertanto essi non possono essere sfruttati a fini commerciali o di pubblicazione editoriale senza autorizzazione esplicita

Dettagli

Esame di Stato di Liceo Scientifico Corso di Ordinamento. Soluzione dei Temi di Matematica proposti nella Sessione Ordinaria 2009.

Esame di Stato di Liceo Scientifico Corso di Ordinamento. Soluzione dei Temi di Matematica proposti nella Sessione Ordinaria 2009. Corso di Ordinamento Soluzione dei Temi di Matematica proposti nella Sessione Ordinaria 9 Sommario Problema 3 Punto 3 Punto 3 Punto 3 5 Punto 4 6 Problema 7 Punto 7 Punto 7 Punto 3 8 Punto 4 8 Questionario

Dettagli

Esercizi di Matematica per le Scienze Studio di funzione

Esercizi di Matematica per le Scienze Studio di funzione Esercizi di Matematica per le Scienze Studio di funzione A.M. Bigatti e G. Tamone Esercizi Studio di funzione Esercizio 1. Disegnare il grafico di una funzione continua f che soddisfi tutte le seguenti

Dettagli

ISTITUZIONI DI ANALISI MATEMATICA Commissione P. Mannucci, A. Sommariva, a.a Corsi di laurea in Scienze Statistiche

ISTITUZIONI DI ANALISI MATEMATICA Commissione P. Mannucci, A. Sommariva, a.a Corsi di laurea in Scienze Statistiche ISTITUZIONI DI ANALISI MATEMATICA Commissione P. Mannucci, A. Sommariva, a.a. 4- Corsi di laurea in Scienze Statistiche 4 febbraio TEMA Esercizio 8 punti) Si consideri la funzione ) e f) = arctan e a)

Dettagli

ESAME DI MATEMATICA PER LE APPLICAZIONI ECONOMICHE 14 GIUGNO 2016 FILA A

ESAME DI MATEMATICA PER LE APPLICAZIONI ECONOMICHE 14 GIUGNO 2016 FILA A ESAME DI MATEMATICA PER LE APPLICAZIONI ECONOMICHE 4 GIUGNO 206 FILA A Durata della prova: 2 ore e mezza. NOTA: Spiegare con molta cura le risposte. NOTAZIONE: log = ln = log e. Esercizio 5 punti) Sia

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f è crescente nell intervallo (a, b) se

Dettagli

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA PRIMA PARTE Intervallo limitato di numeri reali Dati due numeri reali a e b, con a

Dettagli

14. Studio grafico completo di funzioni

14. Studio grafico completo di funzioni 14. Studio grafico completo di funzioni Davide Catania davide.catania@unibs.it Esercitazioni di Analisi Matematica 1 Studio elementare di funzioni (1) Trova il dominio. data f (x) (2) Studia la simmetria

Dettagli

(1;1) y=2x-1. Fig. G4.1 Retta tangente a y=x 2 nel suo punto (1;1).

(1;1) y=2x-1. Fig. G4.1 Retta tangente a y=x 2 nel suo punto (1;1). G4 Derivate G4 Significato geometrico di derivata La derivata di una funzione in un suo punto è il coefficiente angolare della sua retta tangente Esempio G4: La funzione = e la sua retta tangente per il

Dettagli

Liceo Scientifico Paritario R. Bruni Padova, loc. Ponte di Brenta, 15/01/2019. Verifica scritta di Matematica Classe V

Liceo Scientifico Paritario R. Bruni Padova, loc. Ponte di Brenta, 15/01/2019. Verifica scritta di Matematica Classe V Liceo Scientifico Paritario R. Bruni Padova, loc. Ponte di Brenta, 15/01/2019 Verifica scritta di Matematica Classe V Soluzione Risolvi 4 degli 8 quesiti proposti. Ogni quesito vale 25 p.ti. 1. Un corpo

Dettagli

Esercizi di Analisi Matematica 1, utili per la preparazione all esame scritto - Seconda parte SOLUZIONI

Esercizi di Analisi Matematica 1, utili per la preparazione all esame scritto - Seconda parte SOLUZIONI Esercizi di Analisi Matematica Esercizi di Analisi Matematica, utili per la preparazione all esame scritto - Seconda parte SOLUZIONI Es. Per ognuna delle seguenti figure, dire se la curva nel piano cartesiano

Dettagli

Calcolo differenziale Test di autovalutazione

Calcolo differenziale Test di autovalutazione Test di autovalutazione 1. Sia f : R R una funzione derivabile in 0 tale che f(0) = f (0) = 0. Si consideri la funzione g(x) = f(x). Allora, necessariamente sin x (a) lim g(x) = 0 (b) lim g(x) = 1 (c)

Dettagli

Argomento 6 Derivate

Argomento 6 Derivate Argomento 6 Derivate Derivata in un punto Definizione 6. Data una funzione f definita su un intervallo I e 0 incrementale di f in 0 di incremento h = 0 = il rapporto I, si chiama rapporto per = 0 + h =

Dettagli

Esercizio 1. f (x) = e 8x x2 14 ***

Esercizio 1. f (x) = e 8x x2 14 *** Esercizio Studiare la funzione f () = e 8 () *** Soluzione Insieme di definizione La funzione è definita in X = (, + ) Intersezioni con gli assi essendo γ il grafico della funzione. Inoltre: X, f () >

Dettagli

CONTINUITÀ E DERIVABILITÀ Esercizi risolti

CONTINUITÀ E DERIVABILITÀ Esercizi risolti CONTINUITÀ E DERIVABILITÀ Esercizi risolti. Determinare [cos x] x kπ/ al variare di k in Z. Ove tale ite non esista, discutere l esistenza dei iti laterali. Identificare i punti di discontinuità della

Dettagli

Continuità e derivabilità. Calcola la derivata delle seguenti funzioni

Continuità e derivabilità. Calcola la derivata delle seguenti funzioni ESERCIZI SUL CALCOLO DIFFERENZIALE Continuità e derivabilità Si studi la continuità e la derivabilità delle seguenti funzioni nel punto indicato a fianco { Si trovi, se possibile, a e b in modo che le

Dettagli

E := 2. a k := 2(2n 1) (2n 1) + 1 ( 1)n+1 = ( 1) n+1( 2 1 ) 1 2m 1 ;

E := 2. a k := 2(2n 1) (2n 1) + 1 ( 1)n+1 = ( 1) n+1( 2 1 ) 1 2m 1 ; Ingegneria Elettronica e Informatica Analisi Matematica a Foschi) Compito dell 8..08. Determina tutti i punti di accumulazione dell insieme { k E := k + k sin π ) } : k N. Soluzione: L insieme E è formato

Dettagli

Regole di derivazione Ulteriori concetti Teorema di Fermat Monotonia e punti di estremo Convessità e punti di flesso Teorema di de l Hôpital

Regole di derivazione Ulteriori concetti Teorema di Fermat Monotonia e punti di estremo Convessità e punti di flesso Teorema di de l Hôpital Calcolo dierenziale Regole di derivazione Ulteriori concetti Teorema di Fermat Monotonia e punti di estremo Convessità e punti di lesso Teorema di de l Hôpital 2 2006 Politecnico di Torino 1 Calcolo dierenziale

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

Esercitazioni di Matematica

Esercitazioni di Matematica Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +

Dettagli

Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04/11/ 13

Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04/11/ 13 Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04// 3 Esercizio. Si consideri la funzione ) se 0 f) e se 0. e si verifichi che non è continua in 0. Che tipo di discontinuità presenta in

Dettagli

Scheda elaborata dalla prof.ssa Biondina Galdi Docente di Matematica

Scheda elaborata dalla prof.ssa Biondina Galdi Docente di Matematica Tutorial - Studio di una funzione reale di variabile reale f : x R y = f (x) R Una funzione può essere: - 1 - algebrica ( razionale o irrazionale, intera o fratta) Classificare la trascendentale ( esponenziale,

Dettagli

Derivate e studio di funzioni di una variabile

Derivate e studio di funzioni di una variabile Derivate e studio di funzioni di una variabile Paolo Montanari Appunti di Matematica Derivate e studio di funzioni 1 Rapporto incrementale e derivata Sia f(x) una funzione definita in un intervallo X R

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f é crescente nell intervallo (a, b) se

Dettagli

Seconda prova in itinere di Analisi Matematica 1 Ingegneria Elettronica. Politecnico di Milano. A.A. 2015/2016. Prof. M. Bramanti.

Seconda prova in itinere di Analisi Matematica 1 Ingegneria Elettronica. Politecnico di Milano. A.A. 2015/2016. Prof. M. Bramanti. Seconda prova in itinere di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 5/6. Prof. M. Bramanti Tema n 3 5 6 Tot. Cognome e nome (in stampatello) codice persona (o n

Dettagli

TEORIA SULLE DERIVATE SECONDA. La condizione di continuità di una funzione è condizione necessaria ma non sufficiente per la sua derivabilità.

TEORIA SULLE DERIVATE SECONDA. La condizione di continuità di una funzione è condizione necessaria ma non sufficiente per la sua derivabilità. PROF.SSA MAIOLINO D. TEORIA SULLE DERIVATE SECONDA CONTINUITA DELLE FUNZIONI DERIVABILI Se una unzione y( è derivabile in un punto 0, allora è continua in 0. La condizione di continuità di una unzione

Dettagli

Esercizio 1. lnx (1) f (x) > 0 ln2 x. t = ln x (3)

Esercizio 1. lnx (1) f (x) > 0 ln2 x. t = ln x (3) Esercizio Studio della funzione: f () = ln Soluzione Insieme di definizione La funzione è definita in X = (0, + ). Intersezioni con gli assi ln () f () = 0 ln ln = 0 () Per risolvere tale equazione poniamo:

Dettagli

SCRITTO 02/07/18 - ANALISI MATEMATICA I

SCRITTO 02/07/18 - ANALISI MATEMATICA I SCRITTO 02/07/18 - ANALISI MATEMATICA I Esercizio 1. Determinare tutte le coppie z, w) C C tali che { zw = z 3 w 2 zw = 1 Soluzione: Dalla seconda equazione otteniamo che sia z che w non sono zero. Quindi

Dettagli

Corso di Laurea in Informatica Applicata Esame di Analisi Matematica Prova scritta del 10 gennaio 2007

Corso di Laurea in Informatica Applicata Esame di Analisi Matematica Prova scritta del 10 gennaio 2007 Corso di Laurea in Informatica Applicata Esame di Analisi Matematica Prova scritta del 0 gennaio 007 Primo esercizio. È assegnato il numero complesso z = + i. (a) Posto z = + i, determinare la forma trigonometrica

Dettagli

LA DERIVATA DI UNA FUNZIONE. Prof Giovanni Ianne

LA DERIVATA DI UNA FUNZIONE. Prof Giovanni Ianne LA ERIVATA I UNA FUNZIONE Pro. Giovanni Ianne /22 Come si determina la retta tangente a una curva in un punto P? Per una circonerenza, la tangente è la retta che interseca la curva solo in P. IL PROBLEMA

Dettagli

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 25 Gennaio Studio di Funzione

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 25 Gennaio Studio di Funzione Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 25 Gennaio 2017 Studio di Funzione 1. Si consideri la funzione reale di variabile reale così definita f() = 2 + 4. (a) Determinare

Dettagli

x x ' La funzione f si dice continua in x 0 se (e solo se) 0

x x ' La funzione f si dice continua in x 0 se (e solo se) 0 : A R R A ' Funzioni Continue La unzione si dice continua in ( ( se (e solo se A Ne seguono tre proprietà ainché ( sia continua in :. Devono esistere initi il ite destro e sinistro di ( in. Tali iti devono

Dettagli

( ) ( ) DERIVATE. $ ed è finito lim

( ) ( ) DERIVATE. $ ed è finito lim DERIVATE La derivata di una unzione in un punto c, quando esiste, rappresenta il coeiciente angolare della retta tangente al graico della unzione nel suo punto di ascissa c: ( c) = D ( c) = m tg = tanα,

Dettagli

Modulo di Matematica

Modulo di Matematica Università degli Studi di Udine Anno Accademico 205/206 Corso di Laurea in Biotecnologie Modulo di Matematica Esame del 20/07/206 N.B.: scrivere nome, cognome e numero di matricola su ogni foglio consegnato.

Dettagli

Istituto d Istruzione Superiore A. Tilgher Ercolano (Na)

Istituto d Istruzione Superiore A. Tilgher Ercolano (Na) LO STUDIO DI FUNZIONE Lo studio di funzione è una delle parti più interessanti dell analisi perché permette di utilizzare le numerose conoscenze acquisite nel corso degli anni in un unico elaborato. Se

Dettagli

Limiti e continuità. Limiti di funzioni

Limiti e continuità. Limiti di funzioni Limiti e continuità Limite all ininito di una unzione Limite al inito di una unzione Continuità di una unzione Limite ininito al inito di una unzione Limiti laterali di una unzione Punti di discontinuità

Dettagli

Analisi Matematica 1

Analisi Matematica 1 Università degli Studi di Genova Facoltà di Ingegneria - Polo di Savona via Cadorna 7-700 Savona Tel. +39 09 64555 - Fax +39 09 64558 Analisi Matematica Testi d esame e Prove parziali a prova - Ottobre

Dettagli

Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2

Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2 Matematica ed Informatica+Fisica ESERCIZI Modulo di Matematica ed Informatica Corso di Laurea in CTF - anno acc. 2013/2014 docente: Giulia Giantesio, gntgli@unife.it Esercizi 8: Studio di funzioni Studio

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f é crescente nell intervallo (a, b) se

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f é crescente nell intervallo (a, b) se

Dettagli

MATEMATICA MATURITA LINGUISTICA. Istituto Paritario A.Ruiz Istituto Paritario A.Ruiz

MATEMATICA MATURITA LINGUISTICA. Istituto Paritario A.Ruiz Istituto Paritario A.Ruiz MATEMATICA MATURITA LINGUISTICA Istituto Paritario A.Ruiz Istituto Paritario A.Ruiz 1 MATEMATICA MATURITA LINGUISTICA 1. CLASSIFICAZIONE FUNZIONI FUNZIONI ALGEBRICHE (in cui compaiono le quattro operazioni):

Dettagli

Esercizio 1. Per quali valori di h e k le seguenti funzione sono derivabili? x 3 sin 1 x 0. 0 x = 0. x cos 1 x > 0

Esercizio 1. Per quali valori di h e k le seguenti funzione sono derivabili? x 3 sin 1 x 0. 0 x = 0. x cos 1 x > 0 Sapienza Università di Roma - Facoltà I3S Corso di Laurea in Statistica Economia Finanza e Assicurazioni Corso di Laurea in Statistica Economia e Società Corso di Laurea in Statistica gestionale Matematica

Dettagli