Geometria e Topologia I (U1-4) 2006-mag-10 61

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Geometria e Topologia I (U1-4) 2006-mag-10 61"

Transcript

1 Geometria e Topologia I (U1-4) 2006-mag (15.9) Teorema. Consideriamo il piano affine. Se A A 2 (K) è un punto e r una retta che non passa per A, allora esiste unica la retta per A che non interseca r (la parallela a r passante per A). Dimostrazione. Per definizione esistono un punto x 0 e un vettore v 0 per cui r = {x 0 + tv : t K}, e non esiste t K per cui x 0 + tv = A (dato che r non passa per A). La retta r = {A + tv : t K} passa certamente per A. Supponiamo che r r. Allora esistono t 1, t 2 K tali che e quindi A + t 1 v = x 0 + t 2 v r r, A = x 0 + (t 2 t 1 )v = A r che è assurdo. Abbiamo mostrato che esiste una retta che non interseca r. Supponiamo di avere due rette s e s tali che s r = e s r = e passanti per A. Allora si possono scrivere con le equazioni s = {A + tw} e s = {A + tw }. Per la proposizione (15.8) le due rette coincidono se e solo se w e w sono linearmente dipendenti. Analogamente a quanto visto sopra, s r = se e solo se non esistono t 1 e t 2 K tali che A + t 1 w = x 0 + t 2 v, cioè se e solo se l equazione vettoriale (nelle incognite t 1 e t 2 ) t 1 w t 2 v = x 0 A non ha soluzioni, il che avviene se e solo se il vettore x 0 A non appartiene al sottospazio di K 2 generato da w e v. Ora, se v e w sono linearmente indipendenti allora tale sottospazio coincide con K 2, per cui la soluzione c è. Affinché la soluzione non esista è necessario che v e w siano dipendenti. Abbiamo quindi mostrato che w è necessariamente multiplo di v. Dato che lo stesso vale per w, risulta che w e w sono linearmente dipendenti e quindi s = s. Osserviamo che valgono le seguenti proprietà: Se X è un piano affine, allora (i) Per ogni due punti distinti passa una unica retta. (ii) Per ogni retta r e punto A r, esiste una unica retta per A che non interseca r (detta parallela). (iii) Esistono almeno 4 punti che non contengono terne di punti allineate. (15.10) Esempio. Sia GF (p k ) il campo finito di ordine p k (prossimo anno, algebra). Primo p 2. Allora, A 2 (GF (p k )) è un piano affine sul campo GF (p k ). Se Per p = 2, k = 1, A 2 (GF (2)) quanti punti ha? Quante rette? Che legame ha con un tetraedro? (15.11) Nota. Segue che esiste una relazione di equivalenza tra rette (relazione di parallelismo: r s r = s r s = ). In particolare, un piano affine ha una struttura di incidenza, nel senso che si ha un insieme P di punti, un insieme R di rette, e una relazione di appartenenza : P R {0, 1}. D.L. Ferrario 2006-mag-10 61

2 mag-10 Geometria e Topologia I (U1-4) (15.12) Nota. Supponiamo che una retta di un piano affine X abbia un numero finito di punti, n (deve essere n 2) perché... Il piano si dice di ordine n. Dimostriamo che tutte le rette hanno n punti, che per ogni punto passano n + 1 rette, e che in totale ci sono n 2 punti e n 2 + n rette. Dimostrazione. Sia r la retta con n punti e sua P un punto non su r (che esiste per il (iii)). Sia x il numero di rette per P e n il numero di punti di r. Delle x rette, una sola è parallela a r (per (ii)); le x 1 rette hanno intersezione con r e passano per P. Let intersezioni delle rette con r sono necessariamente distinte, per cui x 1 n. D altro canto per ogni punto R di r esiste una unica retta passante per R e per P (e queste rette sono tutte distinte): quindi x 1 n, cioè per ogni punto non sulla retta r passano n + 1 rette distinte. Ora, siano P e Q due punti distinti. Per (iii), esiste sicuramente una retta l che non contenga né P né Q (altrimenti, tutte le rette contengono almeno P oppure Q: tutte le rette intersecano la retta per P e Q: non ci possono essere punti al di fuori di questa retta (per l assioma delle parallele): tutti i punti sono allineati). Il numero di rette per P e Q è uno in più del numero di punti di l, e dunque il numero di rette per P è uguale al numero di rette per Q. Ora, se l è una retta e la retta r ha n punti, allora scegliamo un punto P non su l e non su r (ancora, P deve esistere per (iii), altrimenti tutti i punti sono in l r, e quattro punti distinti necessariamente contengono tre punti allineati... ). Segue che r e l hanno lo stesso numero di punti, e per l arbitrarietà di l la tesi. Ora, se x è il numero totale di punti e y il numero totale di rette, abbiamo: ny = (n + 1)x (15.13) (contando i punti al variare delle rette, alla fine ogni punto è stato contato esattamente n + 1 volte). Ma possiamo contare anche le rette con le coppie di punti distinti: per ognuna delle x(x 1)/2 coppie di punti distinti c è una retta, ed ogni retta è contata n(n 1)/2 volte in questo modo. Dunque x(x 1) = yn(n 1). (15.14) Risolviamo le due equazioni (15.13) e (15.14) otteniamo subito x = n 2 e y = n 2 + n. (15.15) Esempio. Quadrato magico di ordine n: matrice n n con i numeri {1, 2,..., n} in cui ogni riga e ogni colonna contiene ogni numero esattamente una volta. = le somme delle righe e delle colonne sono uguali a n(n + 1)/2, oppure, se si somma k Z ad ogni coefficiente della matrice, n(n + 1)/2 + nk. La tabella di moltiplicazione di un gruppo G di ordine n è un quadrato magico:... Un piano affine di ordine n genera n 1 quadrati magici n n: fissiamo un punto O del piano e due rette x e y distinte per O. Ci sono n = n 1 altre rette per O distinte, n rette parallele a x e n rette parallele a y. Sia z una delle n 1 rette per O diversa da x e y. Allora i fasci di rette parallele saranno x 1,..., x n, y 1,..., y n e z 1,..., z n. Fissato z, appunto, sia A la matrice n n con coefficienti a i,j determinati da a i,j = k x i y j z k. Quindi al variare di z nell insieme delle n 1 rette per O otteniamo n 1 quadrati magici (esercizio (10.19)). C è anche la nozione di quadrati magici ortogonali che risolve alcuni interessanti problemi combinatorici mag-10 D.L. Ferrario

3 Geometria e Topologia I (U1-4) 2006-mag Sottospazi affini (16.1) Definizione. Sia X uno spazio affine e X lo spazio vettoriale su campo K associato. Se P X è un punto fissato di X e W X è un sottospazio vettoriale, allora il sottospazio S = {x X : x p W } di tutti i punti x per cui x P W si dice sottospazio affine passante per P e parallelo a W. Il sottospazio W si dice giacitura di S. La dimensione di S è per definizione la dimensione di W. (16.2) Nota. I sottospazi affini sono le orbite mediante l azione del sottospazio W, che agisce mediante traslazioni sullo spazio affine. Osserviamo anche che, seguendo la definizione (16.1), le rette sono proprio i sottospazi affini di dimensione 1. Inoltre non è difficile vedere che i punti sono i sottospazi affini di dimensione 0. I sottospazi di dimensione dim(x) 1 (codimensione 1 in X) si dicono iperpiani. I sottospazi di dimensione 2 si dicono piani. Se n = 3, piani e iperpiani coincidono. (16.3) Proposizione. Se S X è un sottospazio affine con giacitura W X, allora è uno spazio affine con spazio vettoriale associato S = W X Dimostrazione. Il gruppo additivo X agisce in modo fedele e transitivo su X per definizione, e dunque W X agisce in modo fedele e transitivo sulla sua orbita, che per definizione è S! (16.4) Proposizione. Siano P 1, P 2 X due punti di uno spazio affine X, W 1, W 2 X due sottospazi vettoriali e S 1 = P 1 + W 1, S 2 = P 2 + W 2 i due sottospazi affini passanti per P i con giacitura W i (i = 1, 2). Allora S 1 = S 2 se e solo se W 1 = W 2, P 2 S 1 e P 1 S 2. Cioè, un sottospazio affine è identificato da uno qualsiasi dei suoi punti e dalla giacitura. Dimostrazione. Supponiamo che S 1 = S 2. Allora è ovvio che P 1 S 2 e P 2 S 1. Vogliamo dimostrare che W 1 = W 2. Osserviamo che per definizione W 1 = S 1 P 1 e W 2 = S 2 P 2. Dato che P 1 S 1 = S 2, per definizione il vettore P 1 P 2 appartiene a W 2. Inoltre P 2 = P 1 +(P 2 P 1 ) da cui si trae che S 2 = P 2 + W 2 = P 1 + (P 2 P 1 ) + W 2 = P 1 + W 2 dato che w+w 2 = W 2 (come insiemi!) per ogni w W 2 (vedi esercizio (10.4)), ed in particolare per P 2 P 1. Ora, questo implica che S 1 = S 2 se e solo se P 1 + W 1 = P 1 + W 2 ma questo accade se e solo se W 1 = W 2. Viceversa, se P 1 S 2 e P 2 S 1 e W 1 = W 2, allora come sopra si può scrivere S 1 = P 1 +W 1 e S 2 = P 2 + W 2, e quindi S 1 = S 2. Osserviamo che la proposizione (16.4) generalizza la proposizione (15.8): basta considerare i sottospazi 1-dimensionali generati da v e w. D.L. Ferrario 2006-mag-10 63

4 mag-10 Geometria e Topologia I (U1-4) (16.5) Definizione. Consideriamo un insieme di d + 1 punti P 0, P 1,... P d in uno spazio affine X. Il più piccolo sottospazio affine S X che contiene tutti i punti P 0,..., P d si dice sottospazio affine generato dai d + 1 punti P 0,..., P d. (16.6) Nota. Dobbiamo dimostrare che la definizione (16.5) è ben posta, dal momento che potrebbe non esistere un sottospazio con la proprietà cercata. Vediamo come. (16.7) Proposizione. Il sottospazio affine di X generato da d + 1 punti P 0,..., P d X è il sottospazio passante per P 0 e con giacitura P 0 P 1, P 0 P 2,... P 0 P d X, e non dipende dall ordine con cui i punti P 0,..., P d sono stati scelti. Dimostrazione. Sia S il sottospazio affine di X passante per P 0 e con giacitura W = P 0 P 1, P 0 P 2,... P 0 P d X. Si ha ovviamente P 0 S e, inoltre, per ogni i P i S dato che per ogni i = 1,... d si ha P i = P 0 + (P i P 0 ) P 0 + W = S (per definizione P i P 0 W ). Quindi S contiene tutti i punti P 0,..., P d. Supponiamo che S sia un altro sottospazio affine contenente i punti P 0,..., P d. In particolare, P 0 S, per cui esiste W X tale che S = P 0 + W. Dal momento che per ogni i = 1,..., d P i S, e quindi P i P 0 W, W = P 0 P 1, P 0 P 2,... P 0 P d W. Cioè S è contenuti in ogni sottospazio affine contenente i d + 1 punti. Sia ora S il sottospazio affine costruito a partire da una permutazione dei d + 1 punti esattamente come S. Allora l argomento di sopra si applica sia a S che a S, per cui S S e S S, cioè S = S. (16.8) Nota. Consideriamo d + 1 punti x 0, x 1,..., x d nello spazio affine X. A priori non ha senso scrivere la somma λ i x i =? per dei coefficienti λ i K, dal momento che non abbiamo definito prodotto di uno scalare λ i per un punto x i (potremmo farlo solo moltiplicando vettori con scalari, non punti con scalari). Però, si può prendere un punto qualsiasi z X e definire tale somma solo nel caso d λ i = 1: ( ) λ i x i = λ i ( zx i ) + λ i z = λ i ( zx i ) + z Possiamo in questo modo definire il baricentro di d + 1 punti, interpretando λ i come masse (più propriamente, densità di massa) mag-10 D.L. Ferrario

5 Geometria e Topologia I (U1-4) 2006-mag (16.9) Definizione. In uno spazio affine di dimensione n, si dice che d + 1 punti sono indipendenti se la dimensione del sottospazio affine generato è d, altrimenti si dicono dipendenti. È chiaro che se sono indipendenti, allora d n. Due punti sono dipendenti se e solo se coincidono. Tre punti sono dipendenti se e solo se appartengono ad una stessa retta (e si dicono allineati. Analogamente, quattro punti sono indipendenti se non sono contenuti in un piano, per cui quattro punti sono dipendenti se e solo se appartengono ad uno stesso piano. (16.10) d + 1 punti x 0, x 1,..., x d sono dipendenti se e soltanto se esistono λ 1,..., λ n non tutti nulli tali che d λ ix 0 x i = 0. Dimostrazione. Segue dalla definizione. (16.11) Nota. Due punti distinti nel piano sono sempre allineati. È vero che tre punti nello spazio sono allineati (dipendenti) se e soltanto se il determinante della matrice 3 3 delle loro coordinate è nullo? Quale direzione della doppia implicazione è vera e quale no? (16.12) Definizione. Sia X uno spazio affine su campo K di dimensione n 1. Un riferimento affine in X è (equivalentemente): (i) Una scelta di n + 1 punti di X linearmente indipendenti. (ii) Una scelta di un punto x 0 di X e di n vettori indipendenti di X (cioè, di una base per X, visto che dim( X ) = dim(x) = n). (16.13) (Equazioni parametriche) Sia S X un sottospazio affine. Allora se si sceglie un riferimento affine x 0, x 1,..., x d S si può scrivere S mediante le equazioni parametriche come o anche come S = {x 0 + i=1 x = x 0 + t i x0 x 1 : t i R}, i=1 t i x0 x 1 (16.14) Nota. Ritroviamo qui le equazioni parametriche di rette (x = x 0 + tv) e piani (x = x 0 + sv + tw). D.L. Ferrario 2006-mag-10 65

Geometria I 2009-apr

Geometria I 2009-apr Geometria I 2009-apr-29 107 15 Spazi affini Cfr: Nacinovich, Cap V, 1 [3]. Sappiamo come è definita l azione di un gruppo G su un insieme e l azione di un gruppo topologico su uno spazio topologico. Ricordiamo

Dettagli

13 Spazi affini. Geometria I 112. Cfr: Nacinovich, Cap V, 1 [3].

13 Spazi affini. Geometria I 112. Cfr: Nacinovich, Cap V, 1 [3]. Geometria I 112 13 Spazi affini Cfr: Nacinovich, Cap V, 1 [3]. Sappiamo come è definita l azione di un gruppo G su un insieme e l azione di un gruppo topologico su uno spazio topologico. Ricordiamo anche

Dettagli

15 Mappe affini mag-07 Geometria e Topologia I

15 Mappe affini mag-07 Geometria e Topologia I 62 2008-mag-07 Geometria e Topologia I 15 Mappe affini (15.1) Definizione. Siano X e Y due spazi affini sullo stesso campo K. Una funzione f : X Y si dice affine (anche, mappa affine o trasformatione affine)

Dettagli

Geometria e Topologia I 18 maggio

Geometria e Topologia I 18 maggio Geometria e Topologia I 18 maggio 2005 64 17 Mappe affini (17.1) Definizione. Siano X e Y due spazi affini sullo stesso campo K. Una funzione f : X Y si dice affine (anche, mappa affine o trasformazione

Dettagli

Geometria BAER Canale I Esercizi 9

Geometria BAER Canale I Esercizi 9 Geometria BAER Canale I Esercizi 9 Esercizio 1. Si trovi la matrice del prodotto standard di R 3 rispetto alle basi B = (2, 0, 1) t, (1, 0, 2) t, (1, 1, 1) t } e D = (2, 2, 1) t, ( 1, 2, 2) t, (2, 1, 2)

Dettagli

Sottospazi vettoriali

Sottospazi vettoriali Capitolo 6 Sottospazi vettoriali 6.1 Introduzione Riprendiamo un argomento già studiato ampiamente nel corso di Geometria, i sottospazi vettoriali di uno spazio vettoriale. Ci limiteremo a darne la definizione,

Dettagli

Rango di una matrice e teorema di Rouché-Capelli

Rango di una matrice e teorema di Rouché-Capelli Rango di una matrice e teorema di Rouché-Capelli Sappiamo che a una matrice m n, A, è associata l applicazione lineare L A : R n R m, L A (X) = AX, X R n. Definizione 1. Lo spazio nullo di A, N (A), è

Dettagli

Trapani. Dispensa di Geometria, x 1 x 2.x n. (x 1 y 1 ) (x n y n ) 2.

Trapani. Dispensa di Geometria, x 1 x 2.x n. (x 1 y 1 ) (x n y n ) 2. 2006 Trapani Dispensa di Geometria, 1 Distanze Siano P e Q punti di R n con P di coordinate allora la distanza tra P e Q e P Q = x 1 x 2 x n (x 1 y 1 ) 2 + (x n y n ) 2 e Q di coordinate Siano Σ 1 e Σ

Dettagli

Spazi affini e combinazioni affini.

Spazi affini e combinazioni affini. Spazi affini e combinazioni affini. Morfismi affini. Giorgio Ottaviani Abstract Introduciamo il concetto di combinazione affine in uno spazio affine, e in base a questo, ne caratterizziamo i sottospazi.

Dettagli

4 Sottoinsiemi chiusi di uno spazio metrico

4 Sottoinsiemi chiusi di uno spazio metrico Geometria e Topologia I 16 marzo 2005 12 4 Sottoinsiemi chiusi di uno spazio metrico (4.1) Definizione. Sia A X un sottoinsieme di uno spazio metrico X. Un punto x X si dice di accumulazione (anche: punto

Dettagli

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n NOTE DI ALGEBRA LINEARE 2- MM 9 NOVEMBRE 2 Combinazioni lineari e generatori Sia K un campo e V uno spazio vettoriale su K Siano v,, v n vettori in V Definizione Un vettore v V si dice combinazione lineare

Dettagli

Le risposte vanno giustificate con chiarezza. 1) Nello spazio vettoriale V delle matrici 2 2 a coefficienti reali, considera le matrici A 1 = , A 4 =

Le risposte vanno giustificate con chiarezza. 1) Nello spazio vettoriale V delle matrici 2 2 a coefficienti reali, considera le matrici A 1 = , A 4 = Università degli Studi di Roma Tor Vergata. Corso di Laurea in Matematica Esame di Geometria 1 con Elementi di Storia Prof. F. Tovena 30 gennaio 2015 Le risposte vanno giustificate con chiarezza. 1 Nello

Dettagli

Geometria analitica: rette e piani

Geometria analitica: rette e piani Geometria analitica: rette e piani parametriche Allineamento nel piano nello spazio Angoli tra rette e distanza 2 2006 Politecnico di Torino 1 Esempio 2 Sia A = (1, 2). Per l interpretazione geometrica

Dettagli

VETTORIALE E PRODOTTO MISTO. PIANI E RETTE DI

VETTORIALE E PRODOTTO MISTO. PIANI E RETTE DI Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia) PRODOTTO VETTORIALE E PRODOTTO MISTO. PIANI E RETTE DI R 3. FASCI E STELLE. FORMULE

Dettagli

1. Complemento ortogonale di un vettore non nullo Abbiamo visto che nel piano

1. Complemento ortogonale di un vettore non nullo Abbiamo visto che nel piano Geometria e Algebra (II), 11.12.12 1. Complemento ortogonale di un vettore non nullo Abbiamo visto che nel piano P O i vettori ortogonali ad un dato vettore non nullo descrivono una retta per O, e nello

Dettagli

Somma diretta di sottospazi vettoriali

Somma diretta di sottospazi vettoriali Capitolo 8 Somma diretta di sottospazi vettoriali 8.1 Introduzione Introduciamo un caso particolare di somma di due sottospazi vettoriali: la somma diretta. Anche questo argomento è stato visto nel corso

Dettagli

10. Il gruppo Speciale Lineare SL(V )

10. Il gruppo Speciale Lineare SL(V ) 1 2 3 4 5 6 7 8 9 1 10. Il gruppo Speciale Lineare SL(V ) Siano F un campo e V uno spazio vettoriale di dimensione n su F. Indichiamo con GL(V ) l insieme delle applicazioni lineari biiettive di V in sé.

Dettagli

Piano passante per un punto e ortogonale a un vettore (1) Piano passante per un punto e ortogonale a un vettore (2)

Piano passante per un punto e ortogonale a un vettore (1) Piano passante per un punto e ortogonale a un vettore (2) Piano passante per un punto e ortogonale a un vettore (1) Equazione vettoriale del piano passante per un punto e ortogonale a un vettore Un punto X appartiene al piano P passante per il punto X 0 e ortogonale

Dettagli

Parte 10. Geometria dello spazio I

Parte 10. Geometria dello spazio I Parte 10. Geometria dello spazio I A. Savo Appunti del Corso di Geometria 2013-14 Indice delle sezioni 1 Lo spazio vettoriale V 3 O, 1 2 Dipendenza e indipendenza lineare in V 3 O, 2 3 Sistema di riferimento

Dettagli

APPUNTI SULLA DIAGONALIZZAZIONE Corso Prof. F.Podestà, a.a

APPUNTI SULLA DIAGONALIZZAZIONE Corso Prof. F.Podestà, a.a APPUNTI SULLA DIAGONALIZZAZIONE Corso Prof FPodestà, aa 003-004 Sia V uno spazio vettoriale e sia f : V V una applicazione lineare una tale applicazione da uno spazio vettoriale in se stesso è chiamata

Dettagli

Prodotto scalare e ortogonalità

Prodotto scalare e ortogonalità Prodotto scalare e ortogonalità 12 Novembre 1 Il prodotto scalare 1.1 Definizione Possiamo estendere la definizione di prodotto scalare, già data per i vettori del piano, ai vettori dello spazio. Siano

Dettagli

NOME COGNOME MATRICOLA CANALE

NOME COGNOME MATRICOLA CANALE NOME COGNOME MATRICOLA CANALE Fondamenti di Algebra Lineare e Geometria Proff. R. Sanchez - T. Traetta - C. Zanella Ingegneria Gestionale, Meccanica e Meccatronica, dell Innovazione del Prodotto, Meccatronica

Dettagli

Dim. Usare la chiusura rispetto al prodotto esterno (vedi appunti lezione o libri di testo).

Dim. Usare la chiusura rispetto al prodotto esterno (vedi appunti lezione o libri di testo). ESERCIZI PER CASA di GEOMETRIA per il Corso di Laurea di Scienze dei Materiali, Facoltà di Scienze MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rende, 28 maggio 29 Sottospazi di uno spazio vettoriale, sistemi

Dettagli

4 Sottoinsiemi chiusi di uno spazio metrico

4 Sottoinsiemi chiusi di uno spazio metrico Geometria I 2009-mar-18 15 4 Sottoinsiemi chiusi di uno spazio metrico (4.1) Definizione. Sia A X un sottoinsieme di uno spazio metrico X. Un punto x X si dice di accumulazione (anche: punto limite) per

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 27 GIUGNO 2016

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 27 GIUGNO 2016 FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 7 GIUGNO 06 MATTEO LONGO Ogni versione del compito contiene solo due tra i quattro esercizi 6-7-8-9. Esercizio. Considerare

Dettagli

21 settembre Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

21 settembre Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 4: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 4: soluzioni Corso di Geometria - BIAR, BSIR Esercizi : soluzioni Esercizio. Sono dati i seguenti sistemi lineari omogenei nelle incognite x, y, z: { x + y z = x + y z = x + y z = S : x y + z =, S :, S 3 : x 3y =,

Dettagli

Geometria analitica: rette e piani

Geometria analitica: rette e piani Geometria analitica: rette e piani Equazioni del piano Intersezioni di piani. Rette nello spazio Fasci di piani e rette Intersezioni fra piani e rette Piani e rette ortogonali Piani di forma parametrica

Dettagli

22 Coniche proiettive

22 Coniche proiettive Geometria e Topologia I (U1-4) 2006-giu-06 95 22 Coniche proiettive (22.1) Definizione. Sia K[x 0, x 1,..., x n ] l anello dei polinomi nelle indeterminate (variabili) x 0, x 1,..., x n. Un polinomio di

Dettagli

Geometria BAER Canale I Esercizi 11

Geometria BAER Canale I Esercizi 11 Geometria BAER Canale I Esercizi 11 Esercizio 1. Data la retta x = t r : y = t z = 1 si trovi il punto A di r tale che l angolo di r con il vettore AO sia π/2, e il punto B di r tale che l angolo di r

Dettagli

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

Lezione del 5 dicembre. Sottospazi vettoriali.

Lezione del 5 dicembre. Sottospazi vettoriali. Lezione del 5 dicembre. Sottospazi vettoriali. 1. Sottospazi vettoriali. Identificato lo spazio con R 3 tramite un sistema di riferimento cartesiano ortogonale, consideriamo un piano passante per l origine

Dettagli

La retta nel piano. Supponiamo che la retta r sia assegnata attraverso un suo punto P 0 (x 0, y 0 ) e un vettore v (l, m) che ne indichi la direzione.

La retta nel piano. Supponiamo che la retta r sia assegnata attraverso un suo punto P 0 (x 0, y 0 ) e un vettore v (l, m) che ne indichi la direzione. La retta nel piano Equazioni vettoriale e parametriche di una retta Supponiamo che la retta r sia assegnata attraverso un suo punto P 0 (x 0, y 0 ) e un vettore v (l, m) che ne indichi la direzione. Condizione

Dettagli

r 2 r 2 2r 1 r 4 r 4 r 1

r 2 r 2 2r 1 r 4 r 4 r 1 SPAZI R n 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x, y, z)

Dettagli

a + 2b + c 3d = 0, a + c d = 0 c d

a + 2b + c 3d = 0, a + c d = 0 c d SPAZI VETTORIALI 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x,

Dettagli

P z. OP x, OP y, OP z sono le proiezioni ortogonali di v sugli assi x, y, z, per cui: OP x = ( v i) i. k j. P x. OP z = ( v k) k

P z. OP x, OP y, OP z sono le proiezioni ortogonali di v sugli assi x, y, z, per cui: OP x = ( v i) i. k j. P x. OP z = ( v k) k Richiami di calcolo vettoriale Consideriamo il vettore libero v = OP. Siano P x, P y, P z le proiezioni ortogonali di P sui tre assi cartesiani. v è la diagonale del parallelepipedo costruito su OP x,

Dettagli

1 Equazioni parametriche e cartesiane di sottospazi affini di R n

1 Equazioni parametriche e cartesiane di sottospazi affini di R n 2 Trapani Dispensa di Geometria, Equazioni parametriche e cartesiane di sottospazi affini di R n Un sottospazio affine Σ di R n e il traslato di un sottospazio vettoriale. Cioe esiste un sottospazio vettoriale

Dettagli

Spazi Vettoriali ed Applicazioni Lineari

Spazi Vettoriali ed Applicazioni Lineari Spazi Vettoriali ed Applicazioni Lineari 1. Sottospazi Definizione. Sia V uno spazio vettoriale sul corpo C. Un sottoinsieme non vuoto W di V è un sottospazio vettoriale di V se è chiuso rispetto alla

Dettagli

LEZIONE 9. Figura 9.1.1

LEZIONE 9. Figura 9.1.1 LEZIONE 9 9.1. Equazioni cartesiane di piani. Abbiamo visto come rappresentare parametricamente un piano. Un altro interessante metodo di rappresentazione di un piano nello spazio è tramite la sua equazione

Dettagli

Esercitazioni di Geometria A: spazi proiettivi

Esercitazioni di Geometria A: spazi proiettivi Esercitazioni di Geometria A: spazi proiettivi 30-31 marzo 016 Esercizio 1 Esercizio dell appello (del corso di Geometria II) di luglio 015. Soluzione dell esercizio 1 Si vedano le soluzioni in rete sulla

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a. 014-01 Prova scritta del 1-6-01 TESTO E SOLUZIONI Avvertenze: A. Per il recupero del primo esonero svolgere gli esercizi

Dettagli

Soluzioni. Foglio 1. Rette e piani. n x + c = 0. (1)

Soluzioni. Foglio 1. Rette e piani. n x + c = 0. (1) Soluzioni Foglio 1. Rette e piani. Esercizio 1. Se n è la normale al piano, sia c = n x 0. Dimostriamo prima che se x π, allora x soddisfa Si ha Sostituendo dentro (1) si ottiene n x + c = 0. (1) x = x

Dettagli

Intersezione e somma di sottospazi vettoriali

Intersezione e somma di sottospazi vettoriali Capitolo 6 Intersezione e somma di sottospazi vettoriali 6.1 Introduzione Ricordiamo le definizioni di intersezione e somma di due sottospazi vettoriali. Anche in questo caso rimandiamo al testo di geometria

Dettagli

Esercizi per Geometria II Geometria euclidea e proiettiva

Esercizi per Geometria II Geometria euclidea e proiettiva Esercizi per Geometria II Geometria euclidea e proiettiva Filippo F. Favale 10 aprile 01 Esercizio 1 Sia E 3 lo spazio euclideo tridimensionale dotato di un riferimento cartesiano ortonormale di coordinate

Dettagli

Parte 9. Geometria del piano

Parte 9. Geometria del piano Parte 9. Geometria del piano A. Savo Appunti del Corso di Geometria 2013-14 Indice delle sezioni 1 Vettori geometrici del piano, 1 2 Lo spazio vettoriale VO 2, 3 3 Sistemi di riferimento, 8 4 Equazioni

Dettagli

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0.

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0. . Rette in R ; circonferenze. In questo paragrafo studiamo le rette e le circonferenze in R. Ci sono due modi per descrivere una retta in R : mediante una equazione cartesiana oppure mediante una equazione

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI GENNAIO 2015 DOCENTE: M. LONGO

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI GENNAIO 2015 DOCENTE: M. LONGO FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI GENNAIO 2015 DOCENTE: M. LONGO 1. Domande Domanda 1. Dire quando una funzione f : X Y tra dee insiemi X ed Y si dice iniettiva.

Dettagli

Spazi vettoriali euclidei.

Spazi vettoriali euclidei. Spazi vettoriali euclidei Prodotto scalare, lunghezza e ortogonalità in R n Consideriamo lo spazio vettoriale R n = { =,,, n R}, n con la somma fra vettori e il prodotto di un vettore per uno scalare definiti

Dettagli

Esame scritto di Geometria I

Esame scritto di Geometria I Esame scritto di Geometria I Università degli Studi di Trento Corso di laurea in Fisica A.A. 26/27 Appello di febbraio 27 Esercizio Sia f h : R R l applicazione lineare definita da f h (e ) = 2e + (2 h)e

Dettagli

1 Rette nel piano ordinario. Rette e piani nello spazio ordinario

1 Rette nel piano ordinario. Rette e piani nello spazio ordinario 1 Rette nel piano ordinario. Rette e piani nello spazio ordinario 1.1 Vettori applicati Nel seguito denotiamo con P l insieme dei punti del piano ordinario, e con S l insieme dei punti dello spazio ordinario.

Dettagli

GEOMETRIA I Prima Prova Intermedia 3 Novembre 2017

GEOMETRIA I Prima Prova Intermedia 3 Novembre 2017 Corso di Laurea in Fisica GEOMETRIA I Prima Prova Intermedia Novembre 017 Cognome: Nome: Matricola: PARTE 1 Test a risposta multipla Una ed una sola delle quattro affermazioni è corretta. Indicarla con

Dettagli

Geometria della programmazione lineare

Geometria della programmazione lineare Geometria della programmazione lineare p. 1/39 Geometria della programmazione lineare Mariantonia Cotronei Facoltà di Ingegneria Università degli Studi Mediterranea di Reggio Calabria Geometria della programmazione

Dettagli

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni Corso di Geometria Ing. Informatica e Automatica Test : soluzioni k Esercizio Data la matrice A = k dipendente dal parametro k, si consideri il k sistema lineare omogeneo AX =, con X = x x. Determinare

Dettagli

RETTE E PIANI NELLO SPAZIO

RETTE E PIANI NELLO SPAZIO VETTORI E GEOMETRIA ANALITICA 1 RETTE E PIANI NELLO SPAZIO Rette e piani in forma cartesiana e parametrica. Parallelismo e perpendicolarità, posizioni reciproche tra rette e piani, distanze. Esercizio

Dettagli

10 dicembre Soluzione esame di geometria - Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

10 dicembre Soluzione esame di geometria - Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... 10 dicembre 003 - Soluzione esame di geometria - Ingegneria gestionale - a.a. 003-004 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura 3 ore. ISTRUZIONI

Dettagli

6 dicembre Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

6 dicembre Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

Esercizi di MATEMATICA PER RCHITETTURA prima parte: Algebra Lineare e Geometria

Esercizi di MATEMATICA PER RCHITETTURA prima parte: Algebra Lineare e Geometria Esercizi di MATEMATICA PER RCHITETTURA prima parte: Algebra Lineare e Geometria Avvertenze In quanto segue tutti i vettori hanno il medesimo punto d origine O l origine dello spazio cartesiano. Possiamo

Dettagli

Circonferenze del piano

Circonferenze del piano Circonferenze del piano 1 novembre 1 Circonferenze del piano 1.1 Definizione Una circonferenza è il luogo dei punti equidistanti da un punto fisso, detto centro. La distanza di un qualunque punto della

Dettagli

13 febbraio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

13 febbraio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI febbraio 0 - Soluzione esame di geometria - Ing. gestionale - a.a. 0-0 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati

Dettagli

Prodotto scalare. Piani nello spazio Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1

Prodotto scalare. Piani nello spazio Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1 Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@polimi.it Prodotto scalare in R n. Piani nello spazio. 19 Dicembre 2016 Indice 1 Prodotto scalare nello spazio 2

Dettagli

Geometria analitica del piano pag 12 Adolfo Scimone

Geometria analitica del piano pag 12 Adolfo Scimone Geometria analitica del piano pag 12 Adolfo Scimone Fasci di rette Siano r e r' due rette distinte di equazioni r: ax + by + c r': a' x + b' y + c' Consideriamo la retta combinazione lineare delle due

Dettagli

Geometria della programmazione lineare

Geometria della programmazione lineare Geometria della programmazione lineare poliedri punti estremi, vertici, soluzioni di base esistenza di punti estremi rif. Fi 3.1; BT 2.1, 2.2, 2.5 Iperpiani, semispazi Definizione Sia a un vettore non

Dettagli

Università di Pisa - Ingegneria Meccanica Geometria e Algebra Lineare 2009/2010. Soluzioni esercitazione 11/11/2009

Università di Pisa - Ingegneria Meccanica Geometria e Algebra Lineare 2009/2010. Soluzioni esercitazione 11/11/2009 Università di Pisa - Ingegneria Meccanica Geometria e Algebra Lineare 29/2 Soluzioni esercitazione //29 Esercizio. Risolvere, al variare del parametro reale λ, il seguente sistema lineare: x 2 y z = λ

Dettagli

Ingegneria Gestionale - Corso di Algebra lineare e Analisi II anno accademico 2009/2010 ESERCITAZIONE 4.4

Ingegneria Gestionale - Corso di Algebra lineare e Analisi II anno accademico 2009/2010 ESERCITAZIONE 4.4 Ingegneria Gestionale - Corso di Algebra lineare e Analisi II anno accademico 9/ ESERCITAZIONE. (Cognome) (Nome) (Numero di matricola) Proposizione Vera Falsa Per due punti distinti di R passa un unica

Dettagli

ESERCIZI DI ALGEBRA LINEARE (II PARTE) In ogni sezione gli esercizi sono tendenzialmente ordinati per difficoltà crescente.

ESERCIZI DI ALGEBRA LINEARE (II PARTE) In ogni sezione gli esercizi sono tendenzialmente ordinati per difficoltà crescente. ESERCIZI DI ALGEBRA LINEARE (II PARTE) versione: 4 maggio 26 In ogni sezione gli esercizi sono tendenzialmente ordinati per difficoltà crescente Autovettori e autovalori Esercizio Trova gli autovalori

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 3: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 3: soluzioni Corso di Geometria - BIAR, BSIR Esercizi : soluzioni Rango e teorema di Rouché-Capelli Esercizio. Calcolare il rango di ciascuna delle seguenti matrici: ( ) ( ) ( ) A =, A =, A =, A 4 = ( ). a a a Soluzione.

Dettagli

2 Sistemi lineari. Metodo di riduzione a scala.

2 Sistemi lineari. Metodo di riduzione a scala. Sistemi lineari. Metodo di riduzione a scala. Esercizio.1 Utilizzando il metodo di eliminazione di Gauss, risolvere i seguenti sistemi lineari: 1. 3. x 1 x + 3x 3 = 1 x 1 x x 3 = x 1 + x + 3x 3 = 5 x 1

Dettagli

PARALLELISMO NELLO SPAZIO

PARALLELISMO NELLO SPAZIO 1 PARALLELISMO NELLO SPAZIO 3.1 Parallelismo retta piano Def Si dicono paralleli una retta e un piano che non hanno punti in comune Come già sappiamo non è sufficiente una definizione per garantire l esistenza

Dettagli

Algebra Lineare e Geometria, a.a. 2012/2013

Algebra Lineare e Geometria, a.a. 2012/2013 Diario delle esercitazioni e lezioni per il corso di Algebra Lineare e Geometria, a.a. 2012/2013 (solo la parte per Fisici e Matematici, non ci sono le lezioni del Modulo B) Lidia Stoppino Lezione 1 9

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 9: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 9: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 9: soluzioni Esercizio 1. Nello spazio sono dati i punti A = (1, 2, 3), B = (2, 4, 5), C = (1, 1, 4). a) Scrivere equazioni parametriche della retta r 1 passante

Dettagli

Capitolo 1 Vettori applicati e geometria dello spazio

Capitolo 1 Vettori applicati e geometria dello spazio Capitolo 1 Vettori applicati e geometria dello spazio Marco Robutti Facoltà di ingegneria Università degli studi di Pavia Tutorato di geometria e algebra lineare Anno accademico 2014-2015 Definizione (Vettore

Dettagli

Soluzione facsimile 2 d esame di geometria - Ingegneria gestionale - a.a ISTRUZIONI

Soluzione facsimile 2 d esame di geometria - Ingegneria gestionale - a.a ISTRUZIONI Soluzione facsimile d esame di geometria - Ingegneria gestionale - a.a. 00-004 COGNOME......................................... NOME......................................... N. MATRICOLA................

Dettagli

Algebra lineare Geometria 1 15 luglio 2009

Algebra lineare Geometria 1 15 luglio 2009 Algebra lineare Geometria 1 15 luglio 2009 Esercizio 1. Nello spazio vettoriale reale R 3 [x] si considerino l insieme A k = {1 + x, k + (1 k)x 2, 1 + (k 1)x 2 + x 3 }, il vettore v k = k + kx x 3 e la

Dettagli

Rette e piani in R 3

Rette e piani in R 3 Rette e piani in R 3 In questa dispensa vogliamo introdurre in modo elementare rette e piani nello spazio R 3 (si faccia riferimento anche al testo Algebra Lineare di S. Lang). 1 Rette in R 3 Vogliamo

Dettagli

Geometria BAER Canale I Esercizi 10

Geometria BAER Canale I Esercizi 10 Geometria BAER Canale I Esercizi 10 Esercizio 1. Data la retta x = t r : y = t z = 1 si trovi il punto A di r tale che l angolo di r con il vettore AO sia π/2, e il punto B di r tale che l angolo di r

Dettagli

ESERCIZI DI RIPASSO, A.A

ESERCIZI DI RIPASSO, A.A ESERCIZI DI RIPASSO, A.A. 14-15 Per ogni risposta, segnare V se è vera, F se è falsa. Ogni test viene valutato 3 punti se vengono date tutte e sole le risposte corrette. Altrimenti, la valutazione è 0.

Dettagli

x 1 Fig.1 Il punto P = P =

x 1 Fig.1 Il punto P = P = Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi

Dettagli

CORSO DI GEOMETRIA DETERMINANTE A.A. 2018/2019 PROF. VALENTINA BEORCHIA

CORSO DI GEOMETRIA DETERMINANTE A.A. 2018/2019 PROF. VALENTINA BEORCHIA CORSO DI GEOMETRIA DETERMINANTE AA 2018/2019 PROF VALENTINA BEORCHIA INDICE 1 Definizione induttiva di determinante 1 2 Caratterizzazione delle matrici quadrate di rango massimo 5 3 Regole di Laplace 6

Dettagli

30 marzo Soluzione esame di geometria - Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

30 marzo Soluzione esame di geometria - Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... 0 marzo 004 - Soluzione esame di geometria - Ingegneria gestionale - a.a. 00-004 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI

Dettagli

APPUNTI DI ALGEBRA LINEARE

APPUNTI DI ALGEBRA LINEARE APPUNTI DI ALGEBRA LINEARE. Definizione Si dice spazio vettoriale (sul campo dei numeri reali R) un insieme V per il quale siano definite l operazione interna di somma (che ad ogni coppia di vettori e

Dettagli

1 giugno Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

1 giugno Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

Geometria della programmazione lineare

Geometria della programmazione lineare Geometria della programmazione lineare poliedri punti estremi, vertici, soluzioni di base esistenza di punti estremi rif. Fi 3.1; BT 2.1, 2.2, 2.5 Iperpiani, semispazi Definizione Sia a un vettore non

Dettagli

Lezioni di Algebra Lineare V. Autovalori e autovettori

Lezioni di Algebra Lineare V. Autovalori e autovettori Lezioni di Algebra Lineare V. Autovalori e autovettori Versione novembre 2008 Contenuto 1. Cambiamenti di base 2. Applicazioni lineari, matrici e cambiamenti di base 3. Autovalori e autovettori 2 1. Cambiamenti

Dettagli

Esercizi di geometria analitica negli spazi affini Giorgio Ottaviani

Esercizi di geometria analitica negli spazi affini Giorgio Ottaviani Esercizi di geometria analitica negli spazi affini Giorgio Ottaviani Percorse a cavallo duemila chilometri di steppa russa, superó gli Urali, entró in Siberia, viaggió per quaranta giorni fino a raggiungere

Dettagli

Definizione 1 Un insieme (V, +, ) dotato delle due operazioni: - + somma di elementi v 1 V, v 2 V ;

Definizione 1 Un insieme (V, +, ) dotato delle due operazioni: - + somma di elementi v 1 V, v 2 V ; Spazi vettoriali Definizione Un insieme (V, +, ) dotato delle due operazioni: - + somma di elementi v V, v V ; - prodotto per uno scalare λ K, (K campo); e chiuso rispetto ad esse, è uno spazio vettoriale

Dettagli

Pagine di Algebra lineare. di premessa al testo Pagine di Geometria di Sara Dragotti. Parte terza: SISTEMI LINEARI

Pagine di Algebra lineare. di premessa al testo Pagine di Geometria di Sara Dragotti. Parte terza: SISTEMI LINEARI Pagine di Algebra lineare di premessa al testo Pagine di Geometria di Sara Dragotti Parte terza: SISTEMI LINEARI 1. Definizioni Dato un campo K ed m 1 polinomi su K in n indeterminate di grado non superiore

Dettagli

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette Annalisa Amadori e Benedetta Pellacci amadori@uniparthenope.it pellacci@uniparthenope.it Università di Napoli Parthenope Contenuti Nel Piano

Dettagli

24 giugno Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

24 giugno Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... 4 giugno 010 - Soluzione esame di geometria - 1 crediti Ingegneria gestionale - a.a. 009-010 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore.

Dettagli

Esercitazione: 16 novembre 2009 SOLUZIONI

Esercitazione: 16 novembre 2009 SOLUZIONI Esercitazione: 16 novembre 009 SOLUZIONI Esercizio 1 Scrivere [ ] equazione vettoriale, parametrica [ ] e cartesiana della retta passante 1 per il punto P = e avente direzione d =. 1 x 1 Soluzione: Equazione

Dettagli

Fattorizzazione QR e matrici di Householder

Fattorizzazione QR e matrici di Householder Fattorizzazione QR e matrici di Householder ottobre 009 In questa nota considereremo un tipo di fattorizzazione che esiste sempre nel caso di matrici quadrate non singolari ad entrate reali. Definizione

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 10: soluzioni 1 Geometria dello spazio Esercizio 1. Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2 = 0, determinare: a) Le equazioni parametriche

Dettagli

Rette e piani nello spazio Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1

Rette e piani nello spazio Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1 ette e piani nello spazio Federico Lastaria, Analisi e Geometria 1 Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@polimi.it ette e piani nello spazio. 9 Gennaio

Dettagli

Autovalori, Autovettori, Diagonalizzazione.

Autovalori, Autovettori, Diagonalizzazione. Autovalori Autovettori Diagonalizzazione Autovalori e Autovettori Definizione Sia V uno spazio vettoriale sul campo K = R o C e sia T : V V un endomorfismo Un vettore non nullo v V \ {O} si dice autovettore

Dettagli

5 settembre Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a ISTRUZIONI

5 settembre Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a ISTRUZIONI COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

Sullo svolgimento di una delle quattro versioni della prova scritta di Geometria analitica e algebra lineare del giorno 11 febbraio 2013.

Sullo svolgimento di una delle quattro versioni della prova scritta di Geometria analitica e algebra lineare del giorno 11 febbraio 2013. Sullo svolgimento di una delle quattro versioni della prova scritta di Geometria analitica e algebra lineare del giorno febbraio 0 x + y + z = 0 Stabilire se le due rette r, di equazioni cartesiane ed

Dettagli

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria. Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo

Dettagli