Spazi Vettoriali ed Applicazioni Lineari

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Spazi Vettoriali ed Applicazioni Lineari"

Transcript

1 Spazi Vettoriali ed Applicazioni Lineari 1. Sottospazi Definizione. Sia V uno spazio vettoriale sul corpo C. Un sottoinsieme non vuoto W di V è un sottospazio vettoriale di V se è chiuso rispetto alla somma ed al prodotto per scalari; ovvero u, w W, α, β C αu + βw W. 1.1 Osservazione. Siano V uno spazio vettoriale su C ed U e W due suoi sottospazi. Allora U W è un sottospazio di V. Più in generale, data una qualsiasi famiglia di sottospazi di V, la sua intersezione è ancora un sottospazio di V. Se l intersezione di due (o più) sottospazi vettoriali è ancora uno sottospazio vettoriale, non è vero, in generale, che l unione di due sottospazi sia ancora un sottospazio. Introduciamo quindi un nuovo concetto, quello di sottospazio generato da un insieme. Definizione. Sia S un sottoinsieme di uno spazio vettoriale V. Si chiama sottospazio generato da S il minimo sottospazio S, contenente il sottoinsieme S, ovvero l intersezione di tutti i sottospazi che contengono S.

2 Possiamo descrivere in modo esplicito gli elementi del sottospazio generato da un sottoinsieme S : S = { α 1 s α k s k α 1,..., α k C, s 1,..., s k S, k N }. Grazie alla nozione di sottospazio generato, possiamo definire un operazione tra sottospazi di uno spazio vettoriale che può essere pensata come l analogo dell unione tra sottoinsiemi. Definizione. Siano U e W due sottospazi di uno spazio vettoriale V. Si chiama somma di U e W il sottospazio U + W = U W = { u + w u U, w W }. Se, inoltre U W = 0, diremo che la somma dei due sottospazi è diretta e scriveremo U W in luogo di U + W. Proposizione. Siano V uno spazio vettoriale su C e U, W suoi sottospazi. Si ha V = U W se e solo se ogni vettore v V si scrive unicamente come v = u + w, con u U e w W. Difatti, se u + w = u + w, con u, u U e w, w W, sarebbe u u = w w U W = (0), cioè u = u e w = w. E viceversa, se 0 t U W e se v = u + w con u U e w W, sarebbe anche v = (u + t) + (w t) un altra scrittura.

3 Più in generale, se W 1,..., W r sono sottospazi di V, diciamo che la somma W = W W r è diretta se ogni v W W r si scrive unicamente come Si scrive allora v = w w r con w i W i i = 1,..., r. W = W 1 W r. è come dire che le somme parziali (W W i ) + W i+1 sono tutte dirette, per i = 1, 2,..., r 1. Difatti, supponiamo che la somma sia diretta. Allora, se v = w + w i+1 con w = w w i W W i e w i+1 W i+1, la scrittura w = w w i + w i+1 è unica, e quindi lo è anche la scrittura v = w + w i+1, con w W e w i+1 W i+1. Quindi la somma W + W i+1 è diretta pe ogni i. Viceversa, se le somme parziali (W W i ) + W i+1 sono tutte dirette, e se v = w w r si comincia col mostrare che la scrittura v = (w w r 1 ) + w r è unica, che è il caso r = 2 già dimostrato. Poi si ragiona per induzione r 1 r.

4 2. Indipendenza lineare. Basi Definizione. Sia V uno spazio vettoriale su C. Un sottoinsieme non vuoto S di V si dice formato da vettori linearmente indipendenti (o, più brevemente, indipendente) se, dati comunque dei vettori v 1,..., v r di S, a 1 v a r v r = 0 a 1 = = a r = 0. Ovvero se l unico modo di scrivere il vettore nullo come combinazione di elementi di S sia quello di prendere tutti i coefficienti uguali a zero. Dei vettori che non siano linearmente indipendenti si diranno linearmente dipendenti. ESERCIZIO 1. Sia V uno spazio vettoriale sul campo C. Si dimostri che (a) Il vettore 0 è linearmente dipendente. (a0 = 0 con a 0.) (b) Un vettore v è linearmente indipendente se e solo se v 0. (Se v 0 e a C, a 0, esiste a 1 C. Allora se av = 0 è v = (a 1 a)v = a 1 (av) = a 1 0 = 0. Contraddizione!) (c) Due vettori v, w sono linearmente indipendenti se e solo se nessuno dei due è multiplo dell altro. (Se v, w sono linearmente dipendenti è av + bw = 0, con (a, b) (0, 0). Se, per esempio, a 0, si ha v = a 1 bw, cioè v è multiplo di w.)

5 Definizione. Sia V uno spazio vettoriale su C. Una base di V è un insieme di generatori linearmente indipendenti dello spazio V. La seguente osservazione mette in luce l importanza delle basi tra tutti i possibili insiemi di generatori. Proposizione. Siano V uno spazio vettoriale su C e B una sua base. Allora ogni vettore di V si scrive in modo unico come combinazione lineare di elementi di B. Il risultato fondamentale sulla struttura degli spazi vettoriali asserisce che ogni spazio vettoriale ammette una base e che ogni base di un dato spazio ha lo stesso numero di elementi, che chiameemo dimensione. Daremo ora una dimostrazione di questo risultato fondamentale soltanto nel caso degli spazi vettoriali finitamente generati. Attenzione! Non tutti gli spazi vettoriali sono finitamente generati. P. es. R è un Q-spazio vettoriale, non finitamente generato. Anche l R-spazio vettoriale F delle funzioni continue [0, π] R non è finitamente generato. Una base esiste sempre, ma non lo dimostriamo. Per esempio, l R-spazio vettoriale R[X] dei polinomi ha come base {1, X, X 2,... }. Si può anche parlare di dimensione. Per esempio, la dimensione di R su Q è la cardinalità del continuo ed è strettamente maggiore della dimensione di R[X] su R, che è numerabile.

6 Definizione. Uno spazio vettoriale V su C si dice finitamente generato se esiste un insieme finito di generatori per V. Teorema. [struttura degli spazi vettoriali] Sia V uno spazio vettoriale finitamente generato sul corpo C. Allora esiste una base per V e due diverse basi di V hanno lo stesso numero di elementi. La dimostrazione discenderà subito dal seguente fatto Lemma. [Lemma di scambio] Sia {v 1,..., v n } un insieme di generatori per uno spazio vettoriale V su C e sia {w 1,..., w r } un insieme formato da vettori linearmente indipendenti di V ; allora r n. Lo voglio dimostrare in questa forma: Lemma. Sia {v 1,..., v n } un insieme di generatori per uno spazio vettoriale V su C. Allora n + 1 vettori w 1,..., w di V sono linearmente dipendenti. Dimostrazione Induzione su n. Per n = 0 è chiaro: in questo caso V = {0} e ogni vettore è 0, e quindi linearmente dipendente. Supponiamo di avere dimostrato il caso n 1. Mostriamo che vale il caso n. Scriviamo: per indicare il passo induttivo. Caso n 1 Caso n,

7 Allora, i = 1,..., n + 1, w i = n a ij v j, w i a i1 v 1 = n a ij v j Questi sono n + 1 vettori generati da n 1 vettori:si applica il caso il caso n 1 e dice che tale che per cui j=2 i = 1,..., n + 1, j = 1,..., n, λ (i) j R i j (diciamolo j(i)) tale che λ (i) j 0 λ (i) j (w j a j1 v 1 ) = 0, Addirittura possiamo sempre supporre che λ (i) i = 0, i = 1,..., n + 1, perchè già n vettori in uno spazio generato da n 1 sono linearmente dipendenti!

8 dice che Sviluppiamo quanto scritto: λ (i) λ (i) j (w j a i1 v 1 ) = 0, j w j = ( λ (i) j a i1 ) v 1 = A i v 1. Se A i = 0, per qualche i, diciamo i = i 0, abbiamo finito, dato che avremmo una combinazione lineare nulla dei vettori w 1,..., w, in cui almeno il coefficiente λ (i 0) j 0. Se invece A i 0 per ogni i, prendiamo due indici diversi i 0 i 1, con λ (i 0) i 1 0. Allora λ (i 0) j w j = A i0 v 1. λ (i 1) j w j = A i1 v 1. A i1 λ (i 0) j w j A i0 λ (i 1) j w j = 0. Si noti che il coefficiente di w i1 è A i1 λ (i 0) i 1 0. Fine della dimostrazione.

9 Possiamo quindi dare la seguente definizione. Definizione. Sia V un spazio vettoriale (finitamente generato) sul campo C. Si chiama dimensione di V su C il numero di elementi di una base di V su C. In particolare, si scriverà dim C V per indicare la dimensione dello spazio V. SI noti che la dimensione dipende anche dal corpo C. Per esempio, il corpo dei numeri complessi C = R + R i = R R i è uno spazio vettoriale di dimensione 1 su se stesso, ma 2 sul corpo R. Cioè dim C C = 1, dim R C = 2 Adeso deduciamo dal Lemma di scambio che Teorema Sia V uno spazio vettoriale sul corpo C di dimensione n > 0. (a) Ogni insieme di generatori di V formato da n vettori, è una base. (b) Ogni insieme di n vettori linearmente indipendenti di V, è una base. (c) Ogni insieme di vettori linearmente indipendenti di V può essere completato in una base. In particolare, ha al più n elementi. (d) Ogni insieme di generatori di V contiene una base. In particolare, ha almeno n elementi. Dimostrazione (a). Sia {v 1,..., v n } l insieme in questione. Se non è una base, è l.d.. Allora, per esempio v n è c.l. di {v 1,..., v n 1 }, che dunque è un insieme di generatori di V. Per il Lemma di Scambio, la dimensione di V è n 1. Contraddizione.

10 (b) Ogni insieme di n vettori linearmente indipendenti di V, è una base. Sia {v 1,..., v n } l insieme in questione. Se non è una base, vuol dire che c è un vettore w che non è c.l. dei v i. Allora, {v 1,..., v n, w} è l.i.; difatti aw + n a i v i = 0, i=1 darebbe a = 0 (w non è c.l. di v i ) e quindi ogni a i = 0 (i v i sono l.i.). Questo contraddice il Lemma di Scambio, perchè avremmo un insieme l.i. di n + 1 vettori in uno spazio generato da n. (c) Ogni insieme di vettori linearmente indipendenti di V può essere completato in una base. In particolare, ha al più n elementi. Sia {v 1,..., v r } l insieme l.i. in questione. È r n, per il Lemma di Scambio. Se non è una base di V, esiste un v r+1 che non è c.l. dei {v 1,..., v r }. Allora {v 1,..., v r, v r+1 } è l.i. e r + 1 n. E cosí via. Dopo s = n r passi ci si deve fermare, perchè non ci sono n + 1 vettori l.i.. (d) Ogni insieme di generatori di V contiene una base. In particolare, ha almeno n elementi. Sia {v 1,..., v r } l insieme di generatori in questione. Scegliamo un insieme massimale di vettori scelti tra i v i che siano l.i.. Supponiamo siano {v 1,..., v s }, con s r. Se s = r, i {v 1,..., v r } sono una base per definizione. Altrimenti, v s+i, per i = 1,..., r s è c.l. dei {v 1,..., v s } e dunque lo spazio generato v 1,..., v r = v 1,..., v s, che allora è una base.

11 3. Relazioni di Grassmann Siano V uno spazio vettoriale di dimensione finita sul campo C ed U e W due suoi sottospazi. Si ha dim C (U + W ) = dim C U + dim C W dim C (U W ) Dimostrazione Sia {v 1,..., v r } una base di U W e completiamola in una base e in una Allora {v 1,..., v r, u 1,..., u s } di U, {v 1,..., v r, w 1,..., w t } di W. {v 1,..., v r, u 1,..., u s, w 1,..., w t } è base di U + W. Difatti, siano U = u 1,..., u s e W = w 1,..., w t. Difatti, certo si tratta di un insieme di generatori di U + W. D altra parte, se si ha una c.l. a i v i i + j b j u j + h c h w h = 0, e se a i 0, per esempio, allora deve esserci sia un b j 0 che un c h 0. Idem se uno dei b j 0 o se uno dei c h 0. Quindi una tale c.l. deve avere coefficienti non nulli in ciascuno dei 3 tipi a i, b j, c h. In definitiva, sommando all interno dei 3 tipi diversi otteniamo a + b + c = 0, con a U W, b U e c W. Ma W W (U W ) (U W ), ma W (U W ) = (0) e dunque U W = (0). Similmente U W = (0) e quindi la somma (U W ) + U + W è diretta = (U W ) U W, e si ha che la sua dimensione è r + s + t.

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n NOTE DI ALGEBRA LINEARE 2- MM 9 NOVEMBRE 2 Combinazioni lineari e generatori Sia K un campo e V uno spazio vettoriale su K Siano v,, v n vettori in V Definizione Un vettore v V si dice combinazione lineare

Dettagli

LEZIONE 12. v = α 1 v α n v n =

LEZIONE 12. v = α 1 v α n v n = LEZIONE 12 12.1. Combinazioni lineari. Definizione 12.1.1. Sia V uno spazio vettoriale su k = R, C e v 1,..., v n V vettori fissati. Un vettore v V si dice combinazione lineare di v 1,..., v n se esistono

Dettagli

Elementi di Algebra Lineare Spazi Vettoriali

Elementi di Algebra Lineare Spazi Vettoriali Elementi di Algebra Lineare Spazi Vettoriali Antonio Lanteri e Cristina Turrini UNIMI - 2015/2016 Antonio Lanteri e Cristina Turrini (UNIMI - 2015/2016) Elementi di Algebra Lineare 1 / 37 index Spazi vettoriali

Dettagli

i) la somma e il prodotto godano delle proprietà associativa, commutativa e distributiva;

i) la somma e il prodotto godano delle proprietà associativa, commutativa e distributiva; 1 Spazi vettoriali 11 Definizioni ed assiomi Definizione 11 Un campo è un insieme K dotato di una operazione somma K K K, (x, y) x + y e di una operazione prodotto K K K, (x, y) xy tali che i) la somma

Dettagli

LEZIONE 13. v =α 1 v α i 1 v i 1 + α i v i = =α 1 v α i 1 v i 1 + α i (λ 1 v λ i 1 v i 1 ) =

LEZIONE 13. v =α 1 v α i 1 v i 1 + α i v i = =α 1 v α i 1 v i 1 + α i (λ 1 v λ i 1 v i 1 ) = LEZIONE 13 13.1. Il metodo degli scarti. Sia dato uno spazio vettoriale V su k = R, C e siano v 1,..., v n V. Quanto visto nella lezione precedente ci suggerisce il seguente algoritmo per stabilire se

Dettagli

Definizione 1. Una matrice n m a coefficienti in K é una tabella del tipo. ... K m, detto vettore riga i-esimo, ed a im

Definizione 1. Una matrice n m a coefficienti in K é una tabella del tipo. ... K m, detto vettore riga i-esimo, ed a im APPUNTI ed ESERCIZI su matrici, rango e metodo di eliminazione di Gauss Corso di Laurea in Chimica, Facoltà di Scienze MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rende, 23 Aprile 2010 Matrici, rango e metodo

Dettagli

Geometria e Topologia I (U1-4) 2006-mag-10 61

Geometria e Topologia I (U1-4) 2006-mag-10 61 Geometria e Topologia I (U1-4) 2006-mag-10 61 (15.9) Teorema. Consideriamo il piano affine. Se A A 2 (K) è un punto e r una retta che non passa per A, allora esiste unica la retta per A che non interseca

Dettagli

1 Indipendenza lineare e scrittura unica

1 Indipendenza lineare e scrittura unica Geometria Lingotto. LeLing7: Indipendenza lineare, basi e dimensione. Ārgomenti svolti: Indipendenza lineare e scrittura unica. Basi e dimensione. Coordinate. Ēsercizi consigliati: Geoling. Indipendenza

Dettagli

dipendenti. Cosa possiamo dire sulla dimensione di V?

dipendenti. Cosa possiamo dire sulla dimensione di V? Esercizi Esercizi. In uno spazio vettoriale V ci sono tre vettori v, v 2, v linearmente indipendenti. Cosa possiamo dire sulla dimensione di V? 2. In uno spazio vettoriale V ci sono tre vettori v, v 2,

Dettagli

Parte 4. Spazi vettoriali

Parte 4. Spazi vettoriali Parte 4. Spazi vettoriali A. Savo Appunti del Corso di Geometria 23-4 Indice delle sezioni Spazi vettoriali, 2 Prime proprietà, 3 3 Dipendenza e indipendenza lineare, 4 4 Generatori, 6 5 Basi, 8 6 Sottospazi,

Dettagli

Spazi affini e combinazioni affini.

Spazi affini e combinazioni affini. Spazi affini e combinazioni affini. Morfismi affini. Giorgio Ottaviani Abstract Introduciamo il concetto di combinazione affine in uno spazio affine, e in base a questo, ne caratterizziamo i sottospazi.

Dettagli

Corso di Geometria Lezione II: Spazi vettoriali

Corso di Geometria Lezione II: Spazi vettoriali .. Corso di Geometria Lezione II: Spazi vettoriali F. Baldassarri 8 ottobre 2013 Definizione di spazio vettoriale Uno spazio vettoriale su un campo C (ad es. Q,R,C,{0, 1}) è un insieme V dotato di due

Dettagli

Forme bilineari simmetriche

Forme bilineari simmetriche Forme bilineari simmetriche Qui il campo dei coefficienti è sempre R Definizione 1 Sia V uno spazio vettoriale Una forma bilineare su V è una funzione b: V V R tale che v 1, v 2, v 3 V b(v 1 + v 2, v 3

Dettagli

APPUNTI DI TEORIA DEGLI INSIEMI. L assioma della scelta e il lemma di Zorn Sia {A i } i I

APPUNTI DI TEORIA DEGLI INSIEMI. L assioma della scelta e il lemma di Zorn Sia {A i } i I APPUNTI DI TEORIA DEGLI INSIEMI MAURIZIO CORNALBA L assioma della scelta e il lemma di Zorn Sia {A i } i I un insieme di insiemi. Il prodotto i I A i è l insieme di tutte le applicazioni α : I i I A i

Dettagli

Prodotto interno (prodotto scalare definito positivo)

Prodotto interno (prodotto scalare definito positivo) Contenuto Prodotto scalare. Lunghezza, ortogonalità. Sistemi e basi ortonormali. Somma diretta: V = U U. Proiezioni. Teorema di Pitagora, disuguaglianza di Cauchy-Schwarz. Angoli. Federico Lastaria. Analisi

Dettagli

ESERCIZI sui VETTORI

ESERCIZI sui VETTORI ESERCIZI sui VETTORI 1. Calcolare la somma di v 1 (2, 3) e v 2 (1, 4). 2. Calcolare la somma di v 1 (1, 5, 4) e v 2 (6, 8, 2). 3. Calcolare il prodotto di α = 2 e v 1 (1, 4). 4. Calcolare il prodotto di

Dettagli

a + 2b + c 3d = 0, a + c d = 0 c d

a + 2b + c 3d = 0, a + c d = 0 c d SPAZI VETTORIALI 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x,

Dettagli

ESERCIZI VARI su SPAZI VETTORIALI. Si giustifichi la risposta ad ogni esercizio ( o parte di esercizio ) posto in forma di domanda.

ESERCIZI VARI su SPAZI VETTORIALI. Si giustifichi la risposta ad ogni esercizio ( o parte di esercizio ) posto in forma di domanda. ESERCIZI VARI su SPAZI VETTORIALI Si giustifichi la risposta ad ogni esercizio ( o parte di esercizio ) posto in forma di domanda. Esercizio. Dimostrare che i vettori in R sono linearmente indipendenti

Dettagli

Parte 8. Prodotto scalare, teorema spettrale

Parte 8. Prodotto scalare, teorema spettrale Parte 8. Prodotto scalare, teorema spettrale A. Savo Appunti del Corso di Geometria 3-4 Indice delle sezioni Prodotto scalare in R n, Basi ortonormali, 4 3 Algoritmo di Gram-Schmidt, 7 4 Matrici ortogonali,

Dettagli

SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n

SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n SPAZI E SOTTOSPAZI 1 SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n Spazi di matrici. Spazi di polinomi. Generatori, dipendenza e indipendenza lineare, basi e dimensione. Intersezione e somma di sottospazi,

Dettagli

ESERCIZI DI ALGEBRA LINEARE E COMPLEMENTI DI GEOMETRIA

ESERCIZI DI ALGEBRA LINEARE E COMPLEMENTI DI GEOMETRIA ESERCIZI DI ALGEBRA LINEARE E COMPLEMENTI DI GEOMETRIA Foglio 4 Esempio. Sia V = P 5 (R) lo spazio dei polinomi di grado strettamente minore di 5. Si considerino i seguenti sottoinsiemi di V (i) Dimostrare

Dettagli

Capitolo IV SPAZI VETTORIALI EUCLIDEI

Capitolo IV SPAZI VETTORIALI EUCLIDEI Capitolo IV SPAZI VETTORIALI EUCLIDEI È ben noto che in VO 3 si possono considerare strutture più ricche di quella di spazio vettoriale; si pensi in particolare all operazioni di prodotto scalare di vettori.

Dettagli

LEZIONE 3. a + b + 2c + e = 1 b + d + g = 0 3b + f + 3g = 2. a b c d e f g

LEZIONE 3. a + b + 2c + e = 1 b + d + g = 0 3b + f + 3g = 2. a b c d e f g LEZIONE 3 3.. Matrici fortemente ridotte per righe. Nella precedente lezione abbiamo introdotto la nozione di soluzione di un sistema di equazioni lineari. In questa lezione ci poniamo il problema di descrivere

Dettagli

Parte 5. Sottospazi. A. Savo Appunti del Corso di Geometria

Parte 5. Sottospazi. A. Savo Appunti del Corso di Geometria Parte 5. Sottospazi A. Savo Appunti del Corso di Geometria 03-4 Indice delle sezioni Sottospazi di R n, Equazioni di un sottospazio di R n, 3 3 Sottospazio intersezione, 6 4 Sottospazio somma, 8 5 Formula

Dettagli

Appunti di ALGEBRA LINEARE

Appunti di ALGEBRA LINEARE Appunti di ALGEBRA LINEARE Corso di Laurea in Chimica A. A. 2009/200 Capitolo SPAZI VETTORIALI In matematica si incontrano spesso insiemi di elementi su cui sono definite delle operazioni che godono di

Dettagli

Appunti sui Codici di Reed Muller. Giovanni Barbarino

Appunti sui Codici di Reed Muller. Giovanni Barbarino Appunti sui Codici di Reed Muller Giovanni Barbarino Capitolo 1 Codici di Reed-Muller I codici di Reed-Muller sono codici lineari su F q legati alle valutazioni dei polinomi sullo spazio affine. Per semplicità

Dettagli

Spazi vettoriali euclidei.

Spazi vettoriali euclidei. Spazi vettoriali euclidei Prodotto scalare, lunghezza e ortogonalità in R n Consideriamo lo spazio vettoriale R n = { =,,, n R}, n con la somma fra vettori e il prodotto di un vettore per uno scalare definiti

Dettagli

Lezioni di Algebra Lineare I. Le nozioni di base sugli spazi vettoriali

Lezioni di Algebra Lineare I. Le nozioni di base sugli spazi vettoriali Lezioni di Algebra Lineare I. Le nozioni di base sugli spazi vettoriali Versione settembre 8 Contenuto. Combinazioni lineari di vettori. Sottospazi vettoriali 3. Sottospazio vettoriale generato da un insieme

Dettagli

Il teorema di Eakin-Nagata per gli anelli noetheriani

Il teorema di Eakin-Nagata per gli anelli noetheriani Il teorema di Eakin-Nagata per gli anelli noetheriani Dispense per i corsi di Algebra Commutativa a.a. 2015/2016 Stefania Gabelli Dipartimento di Matematica, Università degli Studi Roma Tre 1 Gli anelli

Dettagli

Volumi in spazi euclidei 12 dicembre 2014

Volumi in spazi euclidei 12 dicembre 2014 Volumi in spazi euclidei 12 dicembre 2014 1 Definizioni In uno spazio euclideo reale V di dimensione n siano dati k n vettori linearmente indipendenti e sia Π := Π(v 1 v 2... v k ) il parallelepipedo generato

Dettagli

Sistemi lineari e spazi vettoriali 1 / 14

Sistemi lineari e spazi vettoriali 1 / 14 Sistemi lineari e spazi vettoriali 1 / 14 Sistemi lineari 2 / 14 Studieremo sistemi lineari costituiti da m equazioni in n incognite (m,n N, m,n 1): cioè a 11 x 1 + +a 1n x n = b 1 a 21 x 1 + +a 2n x n

Dettagli

Somma diretta di sottospazi vettoriali

Somma diretta di sottospazi vettoriali Capitolo 8 Somma diretta di sottospazi vettoriali 8.1 Introduzione Introduciamo un caso particolare di somma di due sottospazi vettoriali: la somma diretta. Anche questo argomento è stato visto nel corso

Dettagli

0.1 Spazi Euclidei in generale

0.1 Spazi Euclidei in generale 0.1. SPAZI EUCLIDEI IN GENERALE 1 0.1 Spazi Euclidei in generale Sia V uno spazio vettoriale definito su R. Diremo, estendendo una definizione data in precedenza, che V è uno spazio vettoriale euclideo

Dettagli

Gli insiemi N, Z e Q. I numeri naturali

Gli insiemi N, Z e Q. I numeri naturali Università Roma Tre L. Chierchia 1 Gli insiemi N, Z e Q Il sistema dei numeri reali (R, +,, ) può essere definito tramite sedici assiomi: quindici assiomi algebrici (si veda ad esempio 2.3 in [Giusti,

Dettagli

Matematica Discreta e Algebra Lineare (per Informatica)

Matematica Discreta e Algebra Lineare (per Informatica) Matematica Discreta e Algebra Lineare (per Informatica) Docente: Alessandro Berarducci Anno accademico 2016-2017, versione 14 Marzo 2017 Tipiche domande d esame La seguente lista di domande non intende

Dettagli

1. Sistemi lineari. Definizione. Un sistema lineare di m equazioni in n incognite è un sistema di equazioni della forma

1. Sistemi lineari. Definizione. Un sistema lineare di m equazioni in n incognite è un sistema di equazioni della forma Dispense di Algebra Lineare per Ingegneria Sistemi lineari Definizione Un sistema lineare di m equazioni in n incognite è un sistema di equazioni della forma a x +a x + +a n x n = b a x +a x + +a n x n

Dettagli

Spazi vettoriali di dimensione infinita e basi: due esempi

Spazi vettoriali di dimensione infinita e basi: due esempi Spazi vettoriali di dimensione infinita e basi: due esempi Emanuele Bottazzi Versione aggiornata al 2 novembre 2015 Indice 1 Introduzione 1 2 Lo spazio vettoriale dei polinomi a coefficienti reali 2 2.1

Dettagli

Esercizi e Complementi di Algebra Lineare

Esercizi e Complementi di Algebra Lineare Dipartimento di Matematica Guido Castelnuovo Sapienza Università di Roma Esercizi e Complementi di Algebra Lineare 2006-2007 Enrico Arbarello e Marco Manetti Indice iii E. Arbarello e M. Manetti: algebra

Dettagli

0.1 Condizione sufficiente di diagonalizzabilità

0.1 Condizione sufficiente di diagonalizzabilità 0.1. CONDIZIONE SUFFICIENTE DI DIAGONALIZZABILITÀ 1 0.1 Condizione sufficiente di diagonalizzabilità È naturale porsi il problema di sapere se ogni matrice sia o meno diagonalizzabile. Abbiamo due potenziali

Dettagli

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni Corso di Geometria Ing. Informatica e Automatica Test : soluzioni k Esercizio Data la matrice A = k dipendente dal parametro k, si consideri il k sistema lineare omogeneo AX =, con X = x x. Determinare

Dettagli

REGISTRO DELLE LEZIONI

REGISTRO DELLE LEZIONI UNIVERSITA DEGLI STUDI DI GENOVA FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI REGISTRO DELLE LEZIONI del Corso UFFICIALE di GEOMETRIA B tenute dal prof. Domenico AREZZO nell anno accademico 2006/2007

Dettagli

Sottospazi vettoriali. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni.

Sottospazi vettoriali. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni. Politecnico di Torino. Sottospazi vettoriali. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni. Argomenti: Sottospazi. Generatori. Confrontando sottospazi: intersezione.

Dettagli

LEZIONE 4. { x + y + z = 1 x y + 2z = 3

LEZIONE 4. { x + y + z = 1 x y + 2z = 3 LEZIONE 4 4.. Operazioni elementari di riga. Abbiamo visto, nella precedente lezione, quanto sia semplice risolvere sistemi di equazioni lineari aventi matrice incompleta fortemente ridotta per righe.

Dettagli

Appunti di Geometria - 3

Appunti di Geometria - 3 Appunti di Geometria - 3 Samuele Mongodi - smongodi@snsit Cambi di base nel duale Richiami Sia V uno spazio vettoriale di dimensione n sul campo K e sia V il suo duale Supponiamo di avere fissate due basi

Dettagli

DIARIO DEL CORSO DI GEOMETRIA E ALGEBRA LINEARE

DIARIO DEL CORSO DI GEOMETRIA E ALGEBRA LINEARE DIARIO DEL CORSO DI GEOMETRIA E ALGEBRA LINEARE DOCENTI: S. MATTAREI (TITOLARE), G. VIGNA SURIA, D. FRAPPORTI Prima settimana. Lezione di martedí 23 febbraio 2010 Introduzione al corso: applicazioni dell

Dettagli

Esercizi svolti. delle matrici

Esercizi svolti. delle matrici Esercizi svolti. astratti. Si dica se l insieme delle coppie reali (x, y) soddisfacenti alla relazione x + y è un sottospazio vettoriale di R La risposta è sì, perchè l unica coppia reale che soddisfa

Dettagli

Lezione 10: Teorema di Rouchè-Capelli e la classificazione dei sistemi lineari

Lezione 10: Teorema di Rouchè-Capelli e la classificazione dei sistemi lineari Lezione 10: Teorema di Rouchè-Capelli e la classificazione dei sistemi lineari In questa lezione ci dedicheremo a studiare a fondo quali proprietà della matrice dei coefficienti di un sistema (e della

Dettagli

Geometria della programmazione lineare

Geometria della programmazione lineare Geometria della programmazione lineare poliedri punti estremi, vertici, soluzioni di base esistenza di punti estremi rif. Fi 3.1; BT 2.1, 2.2, 2.5 Iperpiani, semispazi Definizione Sia a un vettore non

Dettagli

DAI NUMERI NATURALI AI NUMERI RAZIONALI

DAI NUMERI NATURALI AI NUMERI RAZIONALI DAI NUMERI NATURALI AI NUMERI RAZIONALI 1. L insieme dei numeri naturali Nel sistema assiomatico ZF, l Assioma dell infinito stabilisce che: Esiste un insieme A, i cui elementi sono insiemi e tale che

Dettagli

Intersezione e somma di sottospazi vettoriali

Intersezione e somma di sottospazi vettoriali Capitolo 6 Intersezione e somma di sottospazi vettoriali 6.1 Introduzione Ricordiamo le definizioni di intersezione e somma di due sottospazi vettoriali. Anche in questo caso rimandiamo al testo di geometria

Dettagli

Algebra e topologia. Appendice A. 1. Algebra

Algebra e topologia. Appendice A. 1. Algebra Appendice A Algebra e topologia In questa appendice richiamiamo alcuni concetti di algebra e di topologia che dovrebbero essere familiari a tutti. Questa è solo una breve lista di definizioni per una trattazione

Dettagli

Algebra Lineare ed Elementi di Geometria Corso di Laurea in Matematica Applicata MODULO 1

Algebra Lineare ed Elementi di Geometria Corso di Laurea in Matematica Applicata MODULO 1 Algebra Lineare ed Elementi di Geometria Corso di Laurea in Matematica Applicata MODULO 1 Prof. Lidia Angeleri Anno accademico 2015-2016 1 1 appunti aggiornati in data 14 gennaio 2016 Indice I Gruppi 3

Dettagli

ALGEBRA I: ASSIOMI DI PEANO E PROPRIETÀ DEI NUMERI NATURALI

ALGEBRA I: ASSIOMI DI PEANO E PROPRIETÀ DEI NUMERI NATURALI ALGEBRA I: ASSIOMI DI PEANO E PROPRIETÀ DEI NUMERI NATURALI 1. GLI ASSIOMI DI PEANO Come puro esercizio di stile voglio offrire una derivazione delle proprietà elementari dei numeri naturali e delle operazioni

Dettagli

Miglior approssimazione in spazi euclidei

Miglior approssimazione in spazi euclidei Miglior approssimazione in spazi euclidei 15 gennaio 2009 1 Introduzione astratta Sia E uno spazio vettoriale dotato di un prodotto interno (, ) (talvolta un tale spazio è detto euclideo, cf. [7, p.148]),

Dettagli

Esercizi per Geometria II Geometria euclidea e proiettiva

Esercizi per Geometria II Geometria euclidea e proiettiva Esercizi per Geometria II Geometria euclidea e proiettiva Filippo F. Favale 8 aprile 014 Esercizio 1 Si consideri E dotato di un riferimento cartesiano ortonormale di coordinate (x, y) e origine O. Si

Dettagli

LEZIONE 2. ( ) a 1 x 1 + a 2 x a n x n = b, ove a j, b R sono fissati.

LEZIONE 2. ( ) a 1 x 1 + a 2 x a n x n = b, ove a j, b R sono fissati. LEZIONE 2 2 Sistemi di equazioni lineari Definizione 2 Un equazione lineare nelle n incognite x, x 2,, x n a coefficienti reali, è un equazione della forma (2 a x + a 2 x 2 + + a n x n = b, ove a j, b

Dettagli

1 Campi di spezzamento

1 Campi di spezzamento 1 Campi di spezzamento In ogni sezione viene dato un polinomio P (X) a coefficienti interi e si discute il grado di un suo campo di spezzamento su Q e sui campi F 2, F 3, F 5. 1.1 X 4 + X 2 + 1 Trovare

Dettagli

Equivalentemente, le colonne di A sono linearmente indipendenti se e solo se

Equivalentemente, le colonne di A sono linearmente indipendenti se e solo se Lezioni di Algebra Lineare. Versione novembre 2008 VI. Il determinante Il determinante det A di una matrice A, reale e quadrata, è un numero reale associato ad A. Dunque det è una funzione dall insieme

Dettagli

x1 + 2x 2 + 3x 3 = 0 nelle tre incognite x 1, x 2, x 3. Possiamo risolvere l equazione ricavando l incognita x 1 x 1 = 2x 2 3x 3 2r 1 3r 2 x 2 x 3

x1 + 2x 2 + 3x 3 = 0 nelle tre incognite x 1, x 2, x 3. Possiamo risolvere l equazione ricavando l incognita x 1 x 1 = 2x 2 3x 3 2r 1 3r 2 x 2 x 3 Matematica II -..9 Spazio delle soluzioni di un sistema lineare omogeneo.. Consideriamo l equazione lineare omogenea nelle tre incognite x, x, x 3. x + x + 3x 3 = Possiamo risolvere l equazione ricavando

Dettagli

A = {1,2,3,5} B = {x N : x 2 = 9 o x 2 = 16} e C = {4,6,7} Si descrivano gli insiemi A B C (A B) (A B) (C B). elencandone gli elementi.

A = {1,2,3,5} B = {x N : x 2 = 9 o x 2 = 16} e C = {4,6,7} Si descrivano gli insiemi A B C (A B) (A B) (C B). elencandone gli elementi. .. Indicazioni per lo studio e per gli esercizi per casa. Sabato 4 ottobre: potete fare gli esercizi.4, tutti quelli sui numeri complessi, tutti quelli sulle matrici (soprattutto il.). Potete fare anche

Dettagli

Parte 7. Autovettori e autovalori

Parte 7. Autovettori e autovalori Parte 7. Autovettori e autovalori A. Savo Appunti del Corso di Geometria 23-4 Indice delle sezioni Endomorfismi, 2 Cambiamento di base, 3 3 Matrici simili, 6 4 Endomorfismi diagonalizzabili, 7 5 Autovettori

Dettagli

Pagine di Algebra lineare. di premessa al testo Pagine di Geometria di Sara Dragotti. Parte terza: SISTEMI LINEARI

Pagine di Algebra lineare. di premessa al testo Pagine di Geometria di Sara Dragotti. Parte terza: SISTEMI LINEARI Pagine di Algebra lineare di premessa al testo Pagine di Geometria di Sara Dragotti Parte terza: SISTEMI LINEARI 1. Definizioni Dato un campo K ed m 1 polinomi su K in n indeterminate di grado non superiore

Dettagli

SISTEMI DI RADICI. Tesina per la Laurea Quadriennale in Matematica. Professore: Rita Fioresi. Studente: Marzia Dalla Venezia

SISTEMI DI RADICI. Tesina per la Laurea Quadriennale in Matematica. Professore: Rita Fioresi. Studente: Marzia Dalla Venezia SISTEMI DI RADICI Tesina per la Laurea Quadriennale in Matematica Professore: Rita Fioresi Studente: Marzia Dalla Venezia Capitolo 1 Sistemi di radici Sia V uno spazio vettoriale nito-dimensionale euclideo

Dettagli

04 - Logica delle dimostrazioni

04 - Logica delle dimostrazioni Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 04 - Logica delle dimostrazioni Anno Accademico 013/014 D. Provenzano,

Dettagli

Appunti di algebra lineare. Federico G. Lastaria. Mauro Saita. Politecnico di Milano. gennaio 2008

Appunti di algebra lineare. Federico G. Lastaria. Mauro Saita. Politecnico di Milano. gennaio 2008 1 Appunti di algebra lineare Federico G. Lastaria Mauro Saita Politecnico di Milano gennaio 2008 Email degli autori: federico.lastaria@polimi.it maurosaita@tiscalinet.it 2 Indice 1 Spazi vettoriali e Applicazioni

Dettagli

Appunti del Corso Analisi 1

Appunti del Corso Analisi 1 Appunti del Corso Analisi 1 Anno Accademico 2011-2012 Roberto Monti Versione del 5 Ottobre 2011 1 Contents Chapter 1. Cardinalità 5 1. Insiemi e funzioni. Introduzione informale 5 2. Cardinalità 7 3.

Dettagli

Parte 10. Geometria dello spazio I

Parte 10. Geometria dello spazio I Parte 10. Geometria dello spazio I A. Savo Appunti del Corso di Geometria 2013-14 Indice delle sezioni 1 Lo spazio vettoriale V 3 O, 1 2 Dipendenza e indipendenza lineare in V 3 O, 2 3 Sistema di riferimento

Dettagli

Lezioni di Algebra Lineare con applicazioni alla Geometria Analitica Errata Corrige. Fulvio Bisi, Francesco Bonsante, Sonia Brivio

Lezioni di Algebra Lineare con applicazioni alla Geometria Analitica Errata Corrige. Fulvio Bisi, Francesco Bonsante, Sonia Brivio Lezioni di Algebra Lineare con applicazioni alla Geometria Analitica Errata Corrige Fulvio Bisi, Francesco Bonsante, Sonia Brivio Riportiamo di seguito gli errata corrige principali, aggiornati alla data

Dettagli

Risoluzione di sistemi lineari

Risoluzione di sistemi lineari Risoluzione di sistemi lineari Teorema (Rouché-Capelli) Dato il sistema di m equazioni in n incognite Ax = b, con A M at(m, n) b R n x R n [A b] si ha che: matrice dei coefficienti, vettore dei termini

Dettagli

La lunghezza dei vettori e legata alle operazioni sui vettori nel modo seguente: Consideriamo due vettori v, w e il vettore v + w loro somma.

La lunghezza dei vettori e legata alle operazioni sui vettori nel modo seguente: Consideriamo due vettori v, w e il vettore v + w loro somma. Matematica II, 20.2.. Lunghezza di un vettore nel piano Consideriamo il piano vettoriale geometrico P O. Scelto un segmento come unita, possiamo parlare di lunghezza di un vettore v P O rispetto a tale

Dettagli

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

DETERMINANTI (PRIMA PARTE). NOTE DI ALGEBRA LINEARE

DETERMINANTI (PRIMA PARTE). NOTE DI ALGEBRA LINEARE DETERMINANTI (PRIMA PARTE). NOTE DI ALGEBRA LINEARE 2010-11 MARCO MANETTI: 10 DICEMBRE 2010 1. Una formula per il determinante Iniziamo con il definire, per ogni n 0 e per ogni matrice A M n,n (K) un scalare

Dettagli

Geometria analitica: rette e piani

Geometria analitica: rette e piani Geometria analitica: rette e piani Equazioni del piano Intersezioni di piani. Rette nello spazio Fasci di piani e rette Intersezioni fra piani e rette Piani e rette ortogonali Piani di forma parametrica

Dettagli

INSIEMI. Se X è un insieme, indichiamo con P(X) l insieme dei sottoinsiemi di X (sono elementi di P(X) anche e X).

INSIEMI. Se X è un insieme, indichiamo con P(X) l insieme dei sottoinsiemi di X (sono elementi di P(X) anche e X). INSIEMI Se X è un insieme, indichiamo con P(X) l insieme dei sottoinsiemi di X (sono elementi di P(X) anche e X). Sia A = {A λ : λ Λ} una famiglia di insiemi. Definiamo: unione A = A λ è l insieme U tale

Dettagli

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria. Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo

Dettagli

ALGEBRA E GEOMETRIA Esercizi Corso di Laurea in Chimica - anno acc. 2015/2016 docente: Elena Polastri,

ALGEBRA E GEOMETRIA Esercizi Corso di Laurea in Chimica - anno acc. 2015/2016 docente: Elena Polastri, ALGEBRA E GEOMETRIA Esercizi Corso di Laurea in Chimica - anno acc. 05/06 docente: Elena Polastri, plslne@unife.it Esercizi 3: SPAZI VETTORIALI e MATRICI Combinazioni lineari di vettori.. Scrivere il vettore

Dettagli

SPAZI DUALI. NOTE DI ALGEBRA LINEARE

SPAZI DUALI. NOTE DI ALGEBRA LINEARE SPAZI DUALI. NOTE DI ALGEBRA LINEARE 200- MARCO MANETTI: 4 DICEMBRE 200. Spazi di applicazioni lineari Dati due spazi vettoriali V, W indichiamo con L(V, W ) l insieme di tutte le applicazioni lineari

Dettagli

7. Dipendenza ed indipendenza lineare.

7. Dipendenza ed indipendenza lineare. 1 7. Dipendenza ed indipendenza lineare. 7.1. Osservazione. In generale, (α u) v α (u v). Infatti (α u) v = α (u v) (α u) v = (α u) (α v) v = α v 1*v = α v v = 0 vel α = 1 7.2. Esempio. Si ha che 2 [(1,

Dettagli

Esame di Geometria - 9 CFU (Appello del 14 gennaio A)

Esame di Geometria - 9 CFU (Appello del 14 gennaio A) Esame di Geometria - 9 CFU (Appello del 4 gennaio 24 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. Si considerino le rette s : { x x 2 2x 3 = 2 3x x 2 =, { x + x s 2 : 2 x 3 = x 2 =.. Stabilire

Dettagli

Trapani. Dispensa di Geometria, x 1 x 2.x n. (x 1 y 1 ) (x n y n ) 2.

Trapani. Dispensa di Geometria, x 1 x 2.x n. (x 1 y 1 ) (x n y n ) 2. 2006 Trapani Dispensa di Geometria, 1 Distanze Siano P e Q punti di R n con P di coordinate allora la distanza tra P e Q e P Q = x 1 x 2 x n (x 1 y 1 ) 2 + (x n y n ) 2 e Q di coordinate Siano Σ 1 e Σ

Dettagli

LEZIONE 11. s V : V V V (v 1, v 2 ) v 1 + v 2 = s V (v 1, v 2 ), p V : k V V. per cui valgono:

LEZIONE 11. s V : V V V (v 1, v 2 ) v 1 + v 2 = s V (v 1, v 2 ), p V : k V V. per cui valgono: LEZIONE 11 11.1. Spazi vettoriali ed esempi. La nozione di spazio vettoriale generalizza quanto visto nelle lezioni precedenti: l insieme k m,n delle matrici m n a coefficienti in k = R, C, l insieme V

Dettagli

Matematica per Analisi dei Dati,

Matematica per Analisi dei Dati, Matematica per Analisi dei Dati, 09.03.09 1. Sia n in intero positivo fissato, e sia V un sottospazio di R n. Il massimo numero di vettori linearmente indipendenti in V viene detto dimensione di V, e viene

Dettagli

Lezioni di Algebra Lineare con applicazioni alla Geometria Analitica Errata Corrige. Fulvio Bisi, Francesco Bonsante, Sonia Brivio

Lezioni di Algebra Lineare con applicazioni alla Geometria Analitica Errata Corrige. Fulvio Bisi, Francesco Bonsante, Sonia Brivio Lezioni di Algebra Lineare con applicazioni alla Geometria Analitica Errata Corrige Fulvio Bisi, Francesco Bonsante, Sonia Brivio DA GENNAIO 2015 1 Da gennaio 2015 Riportiamo di seguito gli errata corrige

Dettagli

Introduzione ai grafi

Introduzione ai grafi TFA A048 Anno Accademico 2012-13 Outline Cenni storici sui grafi Nozioni introduttive: cammini, connessione, alberi, cicli Cammini di costo minimo Origini storiche La nascita della teoria dei grafi risale

Dettagli

IL TEOREMA FONDAMENTALE DELL ARITMETICA: DIMOSTRAZIONE VELOCE.

IL TEOREMA FONDAMENTALE DELL ARITMETICA: DIMOSTRAZIONE VELOCE. IL TEOREMA FONDAMENTALE DELL ARITMETICA: DIMOSTRAZIONE VELOCE. PH. ELLIA Indice Introduzione 1 1. Divisori di un numero. 1 2. Il Teorema Fondamentale dell Aritmetica. 2 3. L insieme dei numeri primi è

Dettagli

Elementi di Algebra Lineare. Spazio Vettoriale (lineare)

Elementi di Algebra Lineare. Spazio Vettoriale (lineare) Elementi di Algebra Lineare Spazio Vettoriale (lineare) Uno spazio vettoriale su un corpo F è una quadrupla (X, F, +, ) costituita da: un insieme di elementi X, detti vettori, un corpo F, i cui elementi

Dettagli

Esercizi di Geometria - 2

Esercizi di Geometria - 2 Esercizi di Geometria - 2 Samuele Mongodi - s.mongodi@sns.it La prima sezione contiene alcune domande aperte e alcune domande verofalso, come quelle che potrebbero capitare nel test. E consigliabile, nel

Dettagli

3/10/ Divisibilità e massimo comun divisore

3/10/ Divisibilità e massimo comun divisore MCD in N e Polinomi 3/10/2013 1 Divisibilità e massimo comun divisore 1.1 Divisibilità in N In questa sezione introdurremo il concetto di divisibilità e di massimo comun divisore di due numeri naturali

Dettagli

ALGEBRE DI BOOLE. (d) x, y X x y oppure y x.

ALGEBRE DI BOOLE. (d) x, y X x y oppure y x. ALGEBRE DI BOOLE Un insieme parzialmente ordinato è una coppia ordinata (X, ) dove X è un insieme non vuoto e " " è una relazione binaria definita su X tale che (a) x X x x (riflessività) (b) x, y, X se

Dettagli

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette Annalisa Amadori e Benedetta Pellacci amadori@uniparthenope.it pellacci@uniparthenope.it Università di Napoli Parthenope Contenuti Nel Piano

Dettagli

Geometria della Programmazione Lineare

Geometria della Programmazione Lineare Capitolo 2 Geometria della Programmazione Lineare In questo capitolo verranno introdotte alcune nozioni della teoria dei poliedri che permetteranno di cogliere gli aspetti geometrici della Programmazione

Dettagli

Definizione 1 Una applicazione f : V W, con V, W spazi vettoriali sul campo K si dice lineare se conserva le combinazioni lineari:

Definizione 1 Una applicazione f : V W, con V, W spazi vettoriali sul campo K si dice lineare se conserva le combinazioni lineari: Applicazioni lineari Definizione Una applicazione f : V W, con V, W spazi vettoriali sul campo K si dice lineare se conserva le combinazioni lineari: f(αv + βv 2 ) = αf(v ) + βf(v 2 ) v, v 2 V, α, β K.

Dettagli

MATRICI E SISTEMI LINEARI

MATRICI E SISTEMI LINEARI - - MATRICI E SISTEMI LINEARI ) Calcolare i seguenti determinanti: a - c - d - e - f - g - 8 7 8 h - ) Calcolare per quali valori di si annullano i seguenti determinanti: a - c - ) Calcolare il rango delle

Dettagli

Complemento ortogonale e proiezioni

Complemento ortogonale e proiezioni Complemento ortogonale e proiezioni Dicembre 9 Complemento ortogonale di un sottospazio Sie E un sottospazio di R n Definiamo il complemento ortogonale di E come l insieme dei vettori di R n ortogonali

Dettagli

Spazi di Funzioni. Docente:Alessandra Cutrì. A. Cutrì e Metodi Matematici per l ingegneria Ing. Gestionale

Spazi di Funzioni. Docente:Alessandra Cutrì. A. Cutrì e Metodi Matematici per l ingegneria Ing. Gestionale Spazi di Funzioni Docente:Alessandra Cutrì Spazi vettoriali normati Uno spazio Vettoriale V si dice NORMATO se è definita su V una norma, cioè una funzione che verifica: v 0 e v = 0 v = 0 λv = λ v λ R(o

Dettagli

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ. ESERCIZI SVOLTI DI ALGEBRA LINEARE (Sono svolti alcune degli esercizi proposti nei fogli di esercizi su vettori linearmente dipendenti e vettori linearmente indipendenti e su sistemi lineari ) I. Foglio

Dettagli

Registro Lezioni di Algebra lineare del 15 e 16 novembre 2016.

Registro Lezioni di Algebra lineare del 15 e 16 novembre 2016. Registro Lezioni di Algebra lineare del 15 e 16 novembre 2016 Di seguito si riporta il riassunto degli argomenti svolti; i riferimenti sono a parti del Cap8 Elementi di geometria e algebra lineare Par5

Dettagli

ALGEBRA I: SOLUZIONI QUINTA ESERCITAZIONE 9 maggio 2011

ALGEBRA I: SOLUZIONI QUINTA ESERCITAZIONE 9 maggio 2011 ALGEBRA I: SOLUZIONI QUINTA ESERCITAZIONE 9 maggio 2011 Esercizio 1. Usando l algoritmo euclideo delle divisioni successive, calcolare massimo comune divisore e identità di Bézout per le seguenti coppie

Dettagli

02 - Logica delle dimostrazioni

02 - Logica delle dimostrazioni Università degli Studi di Palermo Facoltà di Economia Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 0 - Logica delle dimostrazioni Anno Accademico 015/016

Dettagli

Matematica per Analisi dei Dati,

Matematica per Analisi dei Dati, Matematica per Analisi dei Dati, 230209 1 Spazio vettoriale R n Sia n un intero positivo fissato Lo spazio vettoriale R n e l insieme delle n ple ordinate di numeri reali, che rappresenteremo sempre come

Dettagli