Spazi Vettoriali ed Applicazioni Lineari

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Spazi Vettoriali ed Applicazioni Lineari"

Transcript

1 Spazi Vettoriali ed Applicazioni Lineari 1. Sottospazi Definizione. Sia V uno spazio vettoriale sul corpo C. Un sottoinsieme non vuoto W di V è un sottospazio vettoriale di V se è chiuso rispetto alla somma ed al prodotto per scalari; ovvero u, w W, α, β C αu + βw W. 1.1 Osservazione. Siano V uno spazio vettoriale su C ed U e W due suoi sottospazi. Allora U W è un sottospazio di V. Più in generale, data una qualsiasi famiglia di sottospazi di V, la sua intersezione è ancora un sottospazio di V. Se l intersezione di due (o più) sottospazi vettoriali è ancora uno sottospazio vettoriale, non è vero, in generale, che l unione di due sottospazi sia ancora un sottospazio. Introduciamo quindi un nuovo concetto, quello di sottospazio generato da un insieme. Definizione. Sia S un sottoinsieme di uno spazio vettoriale V. Si chiama sottospazio generato da S il minimo sottospazio S, contenente il sottoinsieme S, ovvero l intersezione di tutti i sottospazi che contengono S.

2 Possiamo descrivere in modo esplicito gli elementi del sottospazio generato da un sottoinsieme S : S = { α 1 s α k s k α 1,..., α k C, s 1,..., s k S, k N }. Grazie alla nozione di sottospazio generato, possiamo definire un operazione tra sottospazi di uno spazio vettoriale che può essere pensata come l analogo dell unione tra sottoinsiemi. Definizione. Siano U e W due sottospazi di uno spazio vettoriale V. Si chiama somma di U e W il sottospazio U + W = U W = { u + w u U, w W }. Se, inoltre U W = 0, diremo che la somma dei due sottospazi è diretta e scriveremo U W in luogo di U + W. Proposizione. Siano V uno spazio vettoriale su C e U, W suoi sottospazi. Si ha V = U W se e solo se ogni vettore v V si scrive unicamente come v = u + w, con u U e w W. Difatti, se u + w = u + w, con u, u U e w, w W, sarebbe u u = w w U W = (0), cioè u = u e w = w. E viceversa, se 0 t U W e se v = u + w con u U e w W, sarebbe anche v = (u + t) + (w t) un altra scrittura.

3 Più in generale, se W 1,..., W r sono sottospazi di V, diciamo che la somma W = W W r è diretta se ogni v W W r si scrive unicamente come Si scrive allora v = w w r con w i W i i = 1,..., r. W = W 1 W r. è come dire che le somme parziali (W W i ) + W i+1 sono tutte dirette, per i = 1, 2,..., r 1. Difatti, supponiamo che la somma sia diretta. Allora, se v = w + w i+1 con w = w w i W W i e w i+1 W i+1, la scrittura w = w w i + w i+1 è unica, e quindi lo è anche la scrittura v = w + w i+1, con w W e w i+1 W i+1. Quindi la somma W + W i+1 è diretta pe ogni i. Viceversa, se le somme parziali (W W i ) + W i+1 sono tutte dirette, e se v = w w r si comincia col mostrare che la scrittura v = (w w r 1 ) + w r è unica, che è il caso r = 2 già dimostrato. Poi si ragiona per induzione r 1 r.

4 2. Indipendenza lineare. Basi Definizione. Sia V uno spazio vettoriale su C. Un sottoinsieme non vuoto S di V si dice formato da vettori linearmente indipendenti (o, più brevemente, indipendente) se, dati comunque dei vettori v 1,..., v r di S, a 1 v a r v r = 0 a 1 = = a r = 0. Ovvero se l unico modo di scrivere il vettore nullo come combinazione di elementi di S sia quello di prendere tutti i coefficienti uguali a zero. Dei vettori che non siano linearmente indipendenti si diranno linearmente dipendenti. ESERCIZIO 1. Sia V uno spazio vettoriale sul campo C. Si dimostri che (a) Il vettore 0 è linearmente dipendente. (a0 = 0 con a 0.) (b) Un vettore v è linearmente indipendente se e solo se v 0. (Se v 0 e a C, a 0, esiste a 1 C. Allora se av = 0 è v = (a 1 a)v = a 1 (av) = a 1 0 = 0. Contraddizione!) (c) Due vettori v, w sono linearmente indipendenti se e solo se nessuno dei due è multiplo dell altro. (Se v, w sono linearmente dipendenti è av + bw = 0, con (a, b) (0, 0). Se, per esempio, a 0, si ha v = a 1 bw, cioè v è multiplo di w.)

5 Definizione. Sia V uno spazio vettoriale su C. Una base di V è un insieme di generatori linearmente indipendenti dello spazio V. La seguente osservazione mette in luce l importanza delle basi tra tutti i possibili insiemi di generatori. Proposizione. Siano V uno spazio vettoriale su C e B una sua base. Allora ogni vettore di V si scrive in modo unico come combinazione lineare di elementi di B. Il risultato fondamentale sulla struttura degli spazi vettoriali asserisce che ogni spazio vettoriale ammette una base e che ogni base di un dato spazio ha lo stesso numero di elementi, che chiameemo dimensione. Daremo ora una dimostrazione di questo risultato fondamentale soltanto nel caso degli spazi vettoriali finitamente generati. Attenzione! Non tutti gli spazi vettoriali sono finitamente generati. P. es. R è un Q-spazio vettoriale, non finitamente generato. Anche l R-spazio vettoriale F delle funzioni continue [0, π] R non è finitamente generato. Una base esiste sempre, ma non lo dimostriamo. Per esempio, l R-spazio vettoriale R[X] dei polinomi ha come base {1, X, X 2,... }. Si può anche parlare di dimensione. Per esempio, la dimensione di R su Q è la cardinalità del continuo ed è strettamente maggiore della dimensione di R[X] su R, che è numerabile.

6 Definizione. Uno spazio vettoriale V su C si dice finitamente generato se esiste un insieme finito di generatori per V. Teorema. [struttura degli spazi vettoriali] Sia V uno spazio vettoriale finitamente generato sul corpo C. Allora esiste una base per V e due diverse basi di V hanno lo stesso numero di elementi. La dimostrazione discenderà subito dal seguente fatto Lemma. [Lemma di scambio] Sia {v 1,..., v n } un insieme di generatori per uno spazio vettoriale V su C e sia {w 1,..., w r } un insieme formato da vettori linearmente indipendenti di V ; allora r n. Lo voglio dimostrare in questa forma: Lemma. Sia {v 1,..., v n } un insieme di generatori per uno spazio vettoriale V su C. Allora n + 1 vettori w 1,..., w di V sono linearmente dipendenti. Dimostrazione Induzione su n. Per n = 0 è chiaro: in questo caso V = {0} e ogni vettore è 0, e quindi linearmente dipendente. Supponiamo di avere dimostrato il caso n 1. Mostriamo che vale il caso n. Scriviamo: per indicare il passo induttivo. Caso n 1 Caso n,

7 Allora, i = 1,..., n + 1, w i = n a ij v j, w i a i1 v 1 = n a ij v j Questi sono n + 1 vettori generati da n 1 vettori:si applica il caso il caso n 1 e dice che tale che per cui j=2 i = 1,..., n + 1, j = 1,..., n, λ (i) j R i j (diciamolo j(i)) tale che λ (i) j 0 λ (i) j (w j a j1 v 1 ) = 0, Addirittura possiamo sempre supporre che λ (i) i = 0, i = 1,..., n + 1, perchè già n vettori in uno spazio generato da n 1 sono linearmente dipendenti!

8 dice che Sviluppiamo quanto scritto: λ (i) λ (i) j (w j a i1 v 1 ) = 0, j w j = ( λ (i) j a i1 ) v 1 = A i v 1. Se A i = 0, per qualche i, diciamo i = i 0, abbiamo finito, dato che avremmo una combinazione lineare nulla dei vettori w 1,..., w, in cui almeno il coefficiente λ (i 0) j 0. Se invece A i 0 per ogni i, prendiamo due indici diversi i 0 i 1, con λ (i 0) i 1 0. Allora λ (i 0) j w j = A i0 v 1. λ (i 1) j w j = A i1 v 1. A i1 λ (i 0) j w j A i0 λ (i 1) j w j = 0. Si noti che il coefficiente di w i1 è A i1 λ (i 0) i 1 0. Fine della dimostrazione.

9 Possiamo quindi dare la seguente definizione. Definizione. Sia V un spazio vettoriale (finitamente generato) sul campo C. Si chiama dimensione di V su C il numero di elementi di una base di V su C. In particolare, si scriverà dim C V per indicare la dimensione dello spazio V. SI noti che la dimensione dipende anche dal corpo C. Per esempio, il corpo dei numeri complessi C = R + R i = R R i è uno spazio vettoriale di dimensione 1 su se stesso, ma 2 sul corpo R. Cioè dim C C = 1, dim R C = 2 Adeso deduciamo dal Lemma di scambio che Teorema Sia V uno spazio vettoriale sul corpo C di dimensione n > 0. (a) Ogni insieme di generatori di V formato da n vettori, è una base. (b) Ogni insieme di n vettori linearmente indipendenti di V, è una base. (c) Ogni insieme di vettori linearmente indipendenti di V può essere completato in una base. In particolare, ha al più n elementi. (d) Ogni insieme di generatori di V contiene una base. In particolare, ha almeno n elementi. Dimostrazione (a). Sia {v 1,..., v n } l insieme in questione. Se non è una base, è l.d.. Allora, per esempio v n è c.l. di {v 1,..., v n 1 }, che dunque è un insieme di generatori di V. Per il Lemma di Scambio, la dimensione di V è n 1. Contraddizione.

10 (b) Ogni insieme di n vettori linearmente indipendenti di V, è una base. Sia {v 1,..., v n } l insieme in questione. Se non è una base, vuol dire che c è un vettore w che non è c.l. dei v i. Allora, {v 1,..., v n, w} è l.i.; difatti aw + n a i v i = 0, i=1 darebbe a = 0 (w non è c.l. di v i ) e quindi ogni a i = 0 (i v i sono l.i.). Questo contraddice il Lemma di Scambio, perchè avremmo un insieme l.i. di n + 1 vettori in uno spazio generato da n. (c) Ogni insieme di vettori linearmente indipendenti di V può essere completato in una base. In particolare, ha al più n elementi. Sia {v 1,..., v r } l insieme l.i. in questione. È r n, per il Lemma di Scambio. Se non è una base di V, esiste un v r+1 che non è c.l. dei {v 1,..., v r }. Allora {v 1,..., v r, v r+1 } è l.i. e r + 1 n. E cosí via. Dopo s = n r passi ci si deve fermare, perchè non ci sono n + 1 vettori l.i.. (d) Ogni insieme di generatori di V contiene una base. In particolare, ha almeno n elementi. Sia {v 1,..., v r } l insieme di generatori in questione. Scegliamo un insieme massimale di vettori scelti tra i v i che siano l.i.. Supponiamo siano {v 1,..., v s }, con s r. Se s = r, i {v 1,..., v r } sono una base per definizione. Altrimenti, v s+i, per i = 1,..., r s è c.l. dei {v 1,..., v s } e dunque lo spazio generato v 1,..., v r = v 1,..., v s, che allora è una base.

11 3. Relazioni di Grassmann Siano V uno spazio vettoriale di dimensione finita sul campo C ed U e W due suoi sottospazi. Si ha dim C (U + W ) = dim C U + dim C W dim C (U W ) Dimostrazione Sia {v 1,..., v r } una base di U W e completiamola in una base e in una Allora {v 1,..., v r, u 1,..., u s } di U, {v 1,..., v r, w 1,..., w t } di W. {v 1,..., v r, u 1,..., u s, w 1,..., w t } è base di U + W. Difatti, siano U = u 1,..., u s e W = w 1,..., w t. Difatti, certo si tratta di un insieme di generatori di U + W. D altra parte, se si ha una c.l. a i v i i + j b j u j + h c h w h = 0, e se a i 0, per esempio, allora deve esserci sia un b j 0 che un c h 0. Idem se uno dei b j 0 o se uno dei c h 0. Quindi una tale c.l. deve avere coefficienti non nulli in ciascuno dei 3 tipi a i, b j, c h. In definitiva, sommando all interno dei 3 tipi diversi otteniamo a + b + c = 0, con a U W, b U e c W. Ma W W (U W ) (U W ), ma W (U W ) = (0) e dunque U W = (0). Similmente U W = (0) e quindi la somma (U W ) + U + W è diretta = (U W ) U W, e si ha che la sua dimensione è r + s + t.

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n NOTE DI ALGEBRA LINEARE 2- MM 9 NOVEMBRE 2 Combinazioni lineari e generatori Sia K un campo e V uno spazio vettoriale su K Siano v,, v n vettori in V Definizione Un vettore v V si dice combinazione lineare

Dettagli

Elementi di Algebra Lineare Spazi Vettoriali

Elementi di Algebra Lineare Spazi Vettoriali Elementi di Algebra Lineare Spazi Vettoriali Antonio Lanteri e Cristina Turrini UNIMI - 2016/2017 Antonio Lanteri e Cristina Turrini (UNIMI - 2016/2017) Elementi di Algebra Lineare 1 / 41 index Spazi vettoriali

Dettagli

LEZIONE 12. v = α 1 v α n v n =

LEZIONE 12. v = α 1 v α n v n = LEZIONE 12 12.1. Combinazioni lineari. Definizione 12.1.1. Sia V uno spazio vettoriale su k = R, C e v 1,..., v n V vettori fissati. Un vettore v V si dice combinazione lineare di v 1,..., v n se esistono

Dettagli

Esempi. In R 2, le coppia (2, 5) è combinazione lineare dei vettori (0, 1) e (1, 1). Infatti:

Esempi. In R 2, le coppia (2, 5) è combinazione lineare dei vettori (0, 1) e (1, 1). Infatti: Combinazioni lineari [Abate, 4.2] Sia V uno spazio vettoriale e v 1, v 2,..., v n dei vettori di V. Diremo che un vettore w V è combinazione lineare dei vettori v 1,..., v n se esistono a 1, a 2,..., a

Dettagli

GEOMETRIA 1 seconda parte

GEOMETRIA 1 seconda parte GEOMETRIA 1 seconda parte Cristina Turrini C. di L. in Fisica - 2014/2015 Cristina Turrini (C. di L. in Fisica - 2014/2015) GEOMETRIA 1 1 / 40 index Spazi vettoriali 1 Spazi vettoriali 2 Sottospazi 3 Sistemi

Dettagli

Elementi di Algebra Lineare Spazi Vettoriali

Elementi di Algebra Lineare Spazi Vettoriali Elementi di Algebra Lineare Spazi Vettoriali Antonio Lanteri e Cristina Turrini UNIMI - 2015/2016 Antonio Lanteri e Cristina Turrini (UNIMI - 2015/2016) Elementi di Algebra Lineare 1 / 37 index Spazi vettoriali

Dettagli

Elementi di Algebra Lineare Spazi Vettoriali

Elementi di Algebra Lineare Spazi Vettoriali Elementi di Algebra Lineare Spazi Vettoriali Antonio Lanteri e Cristina Turrini UNIMI - 2017/2018 Antonio Lanteri e Cristina Turrini (UNIMI - 2017/2018) Elementi di Algebra Lineare 1 / 37 index Spazi vettoriali

Dettagli

Elementi di Algebra Lineare Spazi Vettoriali

Elementi di Algebra Lineare Spazi Vettoriali Elementi di Algebra Lineare Spazi Vettoriali Cristina Turrini UNIMI - 2018/2019 Cristina Turrini (UNIMI - 2018/2019) Elementi di Algebra Lineare 1 / 32 index Spazi vettoriali 1 Spazi vettoriali 2 Sottospazi

Dettagli

i) la somma e il prodotto godano delle proprietà associativa, commutativa e distributiva;

i) la somma e il prodotto godano delle proprietà associativa, commutativa e distributiva; 1 Spazi vettoriali 11 Definizioni ed assiomi Definizione 11 Un campo è un insieme K dotato di una operazione somma K K K, (x, y) x + y e di una operazione prodotto K K K, (x, y) xy tali che i) la somma

Dettagli

LEZIONE 13. v =α 1 v α i 1 v i 1 + α i v i = =α 1 v α i 1 v i 1 + α i (λ 1 v λ i 1 v i 1 ) =

LEZIONE 13. v =α 1 v α i 1 v i 1 + α i v i = =α 1 v α i 1 v i 1 + α i (λ 1 v λ i 1 v i 1 ) = LEZIONE 13 13.1. Il metodo degli scarti. Sia dato uno spazio vettoriale V su k = R, C e siano v 1,..., v n V. Quanto visto nella lezione precedente ci suggerisce il seguente algoritmo per stabilire se

Dettagli

Insiemi di generatori, dipendenza lineare e basi

Insiemi di generatori, dipendenza lineare e basi Insiemi di generatori, dipendenza lineare e basi July 4, 2015 1 Insiemi di generatori Nel seguito V è uno spazio vettoriale sul campo K. Definizione. Una combinazione lineare di vettori v 1, v 2,..., v

Dettagli

Per capire meglio il concetto di combinazione lineare prendiamo in considerazione alcuni esempi.

Per capire meglio il concetto di combinazione lineare prendiamo in considerazione alcuni esempi. Lezione 14 14.1 Combinazioni lineari Definizione 14.1. Sia V uno spazio vettoriale su un campo K = R, C esiano v 1,...,v n 2 V vettori fissati. Un vettore v 2 V si dice combinazione lineare di v 1,...,v

Dettagli

Dim. Usare la chiusura rispetto al prodotto esterno (vedi appunti lezione o libri di testo).

Dim. Usare la chiusura rispetto al prodotto esterno (vedi appunti lezione o libri di testo). ESERCIZI PER CASA di GEOMETRIA per il Corso di Laurea di Scienze dei Materiali, Facoltà di Scienze MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rende, 28 maggio 29 Sottospazi di uno spazio vettoriale, sistemi

Dettagli

Esempio. L immagine di f è l insieme dei vettori w = (w 1, w 2 ) R 2 che hanno w 1 = w 2. Quindi:

Esempio. L immagine di f è l insieme dei vettori w = (w 1, w 2 ) R 2 che hanno w 1 = w 2. Quindi: Nucleo, immagine e loro proprietà [Abate, 5.2] Data una applicazione lineare f : V W, chiamiamo nucleo di f l insieme N(f) := { v V : f(v) = 0 W } Se S V è un sottoinsieme del dominio, indichiamo con f(s)

Dettagli

7. Dipendenza ed indipendenza lineare.

7. Dipendenza ed indipendenza lineare. 1 7. Dipendenza ed indipendenza lineare. 7.1. Osservazione. In generale, (α u) v α (u v). Infatti (α u) v = α (u v) (α u) v = (α u) (α v) v = α v 1*v = α v v = 0 vel α = 1 7.2. Esempio. Si ha che 2 [(1,

Dettagli

Esercizi di Geometria Spazi vettoriali e sottospazi - indipendenza lineare

Esercizi di Geometria Spazi vettoriali e sottospazi - indipendenza lineare Esercizi di Geometria Spazi vettoriali e sottospazi - indipendenza lineare 1. Quali dei seguenti sottoinsiemi sono sottospazi di R 3? Motivare la risposta. (a) {(x, y, 1) x, y R} (b) {(0, y, 0) y R} (c)

Dettagli

Definizione 1. Una matrice n m a coefficienti in K é una tabella del tipo. ... K m, detto vettore riga i-esimo, ed a im

Definizione 1. Una matrice n m a coefficienti in K é una tabella del tipo. ... K m, detto vettore riga i-esimo, ed a im APPUNTI ed ESERCIZI su matrici, rango e metodo di eliminazione di Gauss Corso di Laurea in Chimica, Facoltà di Scienze MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rende, 23 Aprile 2010 Matrici, rango e metodo

Dettagli

Lezione del 5 dicembre. Sottospazi vettoriali.

Lezione del 5 dicembre. Sottospazi vettoriali. Lezione del 5 dicembre. Sottospazi vettoriali. 1. Sottospazi vettoriali. Identificato lo spazio con R 3 tramite un sistema di riferimento cartesiano ortogonale, consideriamo un piano passante per l origine

Dettagli

ENDOMORFISMI. NOTE DI ALGEBRA LINEARE

ENDOMORFISMI. NOTE DI ALGEBRA LINEARE ENDOMORFISMI. NOTE DI ALGEBRA LINEARE 2010-11 MARCO MANETTI: 15 GENNAIO 2011 1. Endomorfismi e sottospazi invarianti Definizione 1.1. Sia V uno spazio vettoriale su K. Un endomorfismo di V è una qualsiasi

Dettagli

Definizione 1 Un insieme (V, +, ) dotato delle due operazioni: - + somma di elementi v 1 V, v 2 V ;

Definizione 1 Un insieme (V, +, ) dotato delle due operazioni: - + somma di elementi v 1 V, v 2 V ; Spazi vettoriali Definizione Un insieme (V, +, ) dotato delle due operazioni: - + somma di elementi v V, v V ; - prodotto per uno scalare λ K, (K campo); e chiuso rispetto ad esse, è uno spazio vettoriale

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 4: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 4: soluzioni Corso di Geometria - BIAR, BSIR Esercizi : soluzioni Esercizio. Sono dati i seguenti sistemi lineari omogenei nelle incognite x, y, z: { x + y z = x + y z = x + y z = S : x y + z =, S :, S 3 : x 3y =,

Dettagli

1 Indipendenza lineare e scrittura unica

1 Indipendenza lineare e scrittura unica Geometria Lingotto. LeLing7: Indipendenza lineare, basi e dimensione. Ārgomenti svolti: Indipendenza lineare e scrittura unica. Basi e dimensione. Coordinate. Ēsercizi consigliati: Geoling. Indipendenza

Dettagli

Parte 4. Spazi vettoriali

Parte 4. Spazi vettoriali Parte 4. Spazi vettoriali A. Savo Appunti del Corso di Geometria 23-4 Indice delle sezioni Spazi vettoriali, 2 Prime proprietà, 3 3 Dipendenza e indipendenza lineare, 4 4 Generatori, 6 5 Basi, 8 6 Sottospazi,

Dettagli

Lezione Il metodo degli scarti

Lezione Il metodo degli scarti Lezione 15 15.1 Il metodo degli scarti Sia dato uno spazio vettoriale V su un campo K = R, C esianov 1,...,v n 2 V vettori fissati. Quanto visto nella lezione precedente ci suggerisce il seguente algoritmo

Dettagli

10. Il gruppo Speciale Lineare SL(V )

10. Il gruppo Speciale Lineare SL(V ) 1 2 3 4 5 6 7 8 9 1 10. Il gruppo Speciale Lineare SL(V ) Siano F un campo e V uno spazio vettoriale di dimensione n su F. Indichiamo con GL(V ) l insieme delle applicazioni lineari biiettive di V in sé.

Dettagli

APPUNTI DI TEORIA DEGLI INSIEMI. L assioma della scelta e il lemma di Zorn Sia {A i } i I

APPUNTI DI TEORIA DEGLI INSIEMI. L assioma della scelta e il lemma di Zorn Sia {A i } i I APPUNTI DI TEORIA DEGLI INSIEMI MAURIZIO CORNALBA L assioma della scelta e il lemma di Zorn Sia {A i } i I un insieme di insiemi. Il prodotto i I A i è l insieme di tutte le applicazioni α : I i I A i

Dettagli

Geometria BAER A.A. Canale I Foglio esercizi 4

Geometria BAER A.A. Canale I Foglio esercizi 4 Geometria BAER A.A. Canale I Foglio esercizi 4 Esercizio. Si trovino basi degli spazi delle soluzioni dei seguenti sistemi lineari Soluzione: Sol(S ) = L[ x + 3x x 3 + 5x 4 = S : x + 3x x 3 + x 4 = S x

Dettagli

p(ϕ) = a 0 Id + a 1 ϕ + + a n ϕ n,

p(ϕ) = a 0 Id + a 1 ϕ + + a n ϕ n, 1. Autospazi e autospazi generalizzati Sia ϕ: V V un endomorfismo. Allora l assegnazione x ϕ induce un morfismo di anelli ρ: K[x] End K (V ). Più esplicitamente, al polinomio p dato da viene associato

Dettagli

Spazi affini e combinazioni affini.

Spazi affini e combinazioni affini. Spazi affini e combinazioni affini. Morfismi affini. Giorgio Ottaviani Abstract Introduciamo il concetto di combinazione affine in uno spazio affine, e in base a questo, ne caratterizziamo i sottospazi.

Dettagli

Corso di Geometria Lezione II: Spazi vettoriali

Corso di Geometria Lezione II: Spazi vettoriali .. Corso di Geometria Lezione II: Spazi vettoriali F. Baldassarri 8 ottobre 2013 Definizione di spazio vettoriale Uno spazio vettoriale su un campo C (ad es. Q,R,C,{0, 1}) è un insieme V dotato di due

Dettagli

Rango di una matrice e teorema di Rouché-Capelli

Rango di una matrice e teorema di Rouché-Capelli Rango di una matrice e teorema di Rouché-Capelli Sappiamo che a una matrice m n, A, è associata l applicazione lineare L A : R n R m, L A (X) = AX, X R n. Definizione 1. Lo spazio nullo di A, N (A), è

Dettagli

dipendenti. Cosa possiamo dire sulla dimensione di V?

dipendenti. Cosa possiamo dire sulla dimensione di V? Esercizi Esercizi. In uno spazio vettoriale V ci sono tre vettori v, v 2, v linearmente indipendenti. Cosa possiamo dire sulla dimensione di V? 2. In uno spazio vettoriale V ci sono tre vettori v, v 2,

Dettagli

Geometria e Topologia I (U1-4) 2006-mag-10 61

Geometria e Topologia I (U1-4) 2006-mag-10 61 Geometria e Topologia I (U1-4) 2006-mag-10 61 (15.9) Teorema. Consideriamo il piano affine. Se A A 2 (K) è un punto e r una retta che non passa per A, allora esiste unica la retta per A che non interseca

Dettagli

Parte 8. Prodotto scalare, teorema spettrale

Parte 8. Prodotto scalare, teorema spettrale Parte 8. Prodotto scalare, teorema spettrale A. Savo Appunti del Corso di Geometria 3-4 Indice delle sezioni Prodotto scalare in R n, Basi ortonormali, 4 3 Algoritmo di Gram-Schmidt, 7 4 Matrici ortogonali,

Dettagli

Forme bilineari simmetriche

Forme bilineari simmetriche Forme bilineari simmetriche Qui il campo dei coefficienti è sempre R Definizione 1 Sia V uno spazio vettoriale Una forma bilineare su V è una funzione b: V V R tale che v 1, v 2, v 3 V b(v 1 + v 2, v 3

Dettagli

Università di L Aquila. Claudio Arbib. Ricerca Operativa. Basi in IR n

Università di L Aquila. Claudio Arbib. Ricerca Operativa. Basi in IR n Università di L Aquila Claudio Arbib Ricerca Operativa Basi in IR n Sommario Combinazione lineare, affine, conica e convessa Dipendenza e indipendenza lineare e affine Basi per un insieme di vettori di

Dettagli

Prodotto interno (prodotto scalare definito positivo)

Prodotto interno (prodotto scalare definito positivo) Contenuto Prodotto scalare. Lunghezza, ortogonalità. Sistemi e basi ortonormali. Somma diretta: V = U U. Proiezioni. Teorema di Pitagora, disuguaglianza di Cauchy-Schwarz. Angoli. Federico Lastaria. Analisi

Dettagli

a + 2b + c 3d = 0, a + c d = 0 c d

a + 2b + c 3d = 0, a + c d = 0 c d SPAZI VETTORIALI 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x,

Dettagli

Esercizi di geometria per Fisica / Fisica e Astrofisica

Esercizi di geometria per Fisica / Fisica e Astrofisica Esercizi di geometria per Fisica / Fisica e Astrofisica Foglio 3 - Soluzioni Esercizio. Stabilire se i seguenti sottoinsiemi di R 3 sono sottospazi vettoriali: (a) S = {(x y z) R 3 : x + y + z = }. (b)

Dettagli

ESERCIZI VARI su SPAZI VETTORIALI. Si giustifichi la risposta ad ogni esercizio ( o parte di esercizio ) posto in forma di domanda.

ESERCIZI VARI su SPAZI VETTORIALI. Si giustifichi la risposta ad ogni esercizio ( o parte di esercizio ) posto in forma di domanda. ESERCIZI VARI su SPAZI VETTORIALI Si giustifichi la risposta ad ogni esercizio ( o parte di esercizio ) posto in forma di domanda. Esercizio. Dimostrare che i vettori in R sono linearmente indipendenti

Dettagli

SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n

SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n SPAZI E SOTTOSPAZI 1 SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n Spazi di matrici. Spazi di polinomi. Generatori, dipendenza e indipendenza lineare, basi e dimensione. Intersezione e somma di sottospazi,

Dettagli

Vale: I (J 1 + J 2 ) = IJ 1 + IJ 2. (Si prova verificando la doppia inclusione). Def. Due ideali I, J di A si dicono coprimi se I + J = (1).

Vale: I (J 1 + J 2 ) = IJ 1 + IJ 2. (Si prova verificando la doppia inclusione). Def. Due ideali I, J di A si dicono coprimi se I + J = (1). Operazioni con gli ideali Sia A un anello (commutativo, unitario). Se I e J sono due ideali di A, si definisce I + J come il pi`piccolo ideale che contiene sia I, sia J. Si verifica che vale: I + J = {a

Dettagli

CORSO DI ALGEBRA LINEARE Anno Accademico 2004/2005 Appunti su SPAZI VETTORIALI

CORSO DI ALGEBRA LINEARE Anno Accademico 2004/2005 Appunti su SPAZI VETTORIALI CORSO DI ALGEBRA LINEARE Anno Accademico 2004/2005 Appunti su SPAZI VETTORIALI In questa dispensa sono raccolte alcune nozioni fondamentali sugli spazi vettoriali. Un sul margine destro indica la fine

Dettagli

Sottospazi vettoriali

Sottospazi vettoriali Capitolo 6 Sottospazi vettoriali 6.1 Introduzione Riprendiamo un argomento già studiato ampiamente nel corso di Geometria, i sottospazi vettoriali di uno spazio vettoriale. Ci limiteremo a darne la definizione,

Dettagli

ESERCIZI sui VETTORI

ESERCIZI sui VETTORI ESERCIZI sui VETTORI 1. Calcolare la somma di v 1 (2, 3) e v 2 (1, 4). 2. Calcolare la somma di v 1 (1, 5, 4) e v 2 (6, 8, 2). 3. Calcolare il prodotto di α = 2 e v 1 (1, 4). 4. Calcolare il prodotto di

Dettagli

Autovalori, Autovettori, Diagonalizzazione.

Autovalori, Autovettori, Diagonalizzazione. Autovalori Autovettori Diagonalizzazione Autovalori e Autovettori Definizione Sia V uno spazio vettoriale sul campo K = R o C e sia T : V V un endomorfismo Un vettore non nullo v V \ {O} si dice autovettore

Dettagli

1. Complemento ortogonale di un vettore non nullo Abbiamo visto che nel piano

1. Complemento ortogonale di un vettore non nullo Abbiamo visto che nel piano Geometria e Algebra (II), 11.12.12 1. Complemento ortogonale di un vettore non nullo Abbiamo visto che nel piano P O i vettori ortogonali ad un dato vettore non nullo descrivono una retta per O, e nello

Dettagli

Criteri di diagonalizzabilità Maurizio Cornalba 18/12/2013

Criteri di diagonalizzabilità Maurizio Cornalba 18/12/2013 Criteri di diagonalizzabilità Maurizio Cornalba 8/2/203 Sia K un campo e sia P (t) un polinomio a coefficienti in K. Se a K, la molteplicità di a come radice di P (t), che indicheremo con m a, è il massimo

Dettagli

Corso di Laurea in Fisica. Geometria. a.a Prof. P. Piazza Soluzione compito a casa del 24/10/09

Corso di Laurea in Fisica. Geometria. a.a Prof. P. Piazza Soluzione compito a casa del 24/10/09 Corso di Laurea in Fisica. Geometria. a.a. 29-. Prof. P. Piazza Soluzione compito a casa del 24//9 Soluzione esercizio. Siano A e B due matrici simmetriche e λ un numero reale. Dobbiamo mostrare che anche

Dettagli

Appunti del corso di geometria 1. G. Bande

Appunti del corso di geometria 1. G. Bande Appunti del corso di geometria 1 G. Bande 21 febbraio 2011 2 Indice 1 Spazi vettoriali 5 1.0.1 Esempi di spazi vettoriali.................. 6 1.1 Sottospazi vettoriali......................... 7 1.1.1

Dettagli

Parte I. Algebra lineare teorica

Parte I. Algebra lineare teorica Parte I Algebra lineare teorica 1 1 Gli spazi vettoriali 11 Definizione ed esempi Consideriamo come esempio di riferimento lo spazio R n, n 1, ossia l insieme delle n uple di numeri reali con n fissato

Dettagli

Parte 5. Sottospazi. A. Savo Appunti del Corso di Geometria

Parte 5. Sottospazi. A. Savo Appunti del Corso di Geometria Parte 5. Sottospazi A. Savo Appunti del Corso di Geometria 03-4 Indice delle sezioni Sottospazi di R n, Equazioni di un sottospazio di R n, 3 3 Sottospazio intersezione, 6 4 Sottospazio somma, 8 5 Formula

Dettagli

Capitolo IV SPAZI VETTORIALI EUCLIDEI

Capitolo IV SPAZI VETTORIALI EUCLIDEI Capitolo IV SPAZI VETTORIALI EUCLIDEI È ben noto che in VO 3 si possono considerare strutture più ricche di quella di spazio vettoriale; si pensi in particolare all operazioni di prodotto scalare di vettori.

Dettagli

Lezioni di Algebra Lineare I. Le nozioni di base sugli spazi vettoriali

Lezioni di Algebra Lineare I. Le nozioni di base sugli spazi vettoriali Lezioni di Algebra Lineare I. Le nozioni di base sugli spazi vettoriali Versione settembre 8 Contenuto. Combinazioni lineari di vettori. Sottospazi vettoriali 3. Sottospazio vettoriale generato da un insieme

Dettagli

Corso di Matematica Discreta. Anno accademico Appunti sulla diagonalizzazione.

Corso di Matematica Discreta. Anno accademico Appunti sulla diagonalizzazione. Corso di Matematica Discreta. Anno accademico 2008-2009 Appunti sulla diagonalizzazione. Autovalori e autovettori di un endomorfismo lineare. Sia T : V V una applicazione lineare da uno spazio vettoriale

Dettagli

ESERCIZI DI ALGEBRA LINEARE E COMPLEMENTI DI GEOMETRIA

ESERCIZI DI ALGEBRA LINEARE E COMPLEMENTI DI GEOMETRIA ESERCIZI DI ALGEBRA LINEARE E COMPLEMENTI DI GEOMETRIA Foglio 4 Esempio. Sia V = P 5 (R) lo spazio dei polinomi di grado strettamente minore di 5. Si considerino i seguenti sottoinsiemi di V (i) Dimostrare

Dettagli

Appunti di ALGEBRA LINEARE

Appunti di ALGEBRA LINEARE Appunti di ALGEBRA LINEARE Corso di Laurea in Chimica A. A. 2009/200 Capitolo SPAZI VETTORIALI In matematica si incontrano spesso insiemi di elementi su cui sono definite delle operazioni che godono di

Dettagli

Appunti di Algebra Lineare. Spazi Vettoriali

Appunti di Algebra Lineare. Spazi Vettoriali Appunti di Algebra Lineare Spazi Vettoriali aprile 3 La Biblioteca è una sfera il cui centro esatto è qualsiasi esagono e la cui circonferenza è inaccessibile. J. L. Borges Finzioni - La Biblioteca di

Dettagli

Lezione 4: Base e dimensione

Lezione 4: Base e dimensione Lezione 4: Base e dimensione 1 Base: definizione ed esempi Come la parola stessa suggerisce, il concetto di base di uno spazio vettoriale e fondamentale e racchiude tutte le informazioni necessarie a ricostruire

Dettagli

APPUNTI SULLA DIAGONALIZZAZIONE Corso Prof. F.Podestà, a.a

APPUNTI SULLA DIAGONALIZZAZIONE Corso Prof. F.Podestà, a.a APPUNTI SULLA DIAGONALIZZAZIONE Corso Prof FPodestà, aa 003-004 Sia V uno spazio vettoriale e sia f : V V una applicazione lineare una tale applicazione da uno spazio vettoriale in se stesso è chiamata

Dettagli

UN BREVE VIAGGIO ATTRAVERSO GLI SPAZI VETTORIALI 1

UN BREVE VIAGGIO ATTRAVERSO GLI SPAZI VETTORIALI 1 asdf UN BREVE VIAGGIO ATTRAVERSO GLI SPAZI VETTORIALI 4 November 2011 Con questo articolo, stavolta, proviamo a compiere un "viaggetto" attraverso gli spazi vettoriali. Come sempre avremo a che fare con

Dettagli

Esercizi di Geometria 1 - Foglio 1

Esercizi di Geometria 1 - Foglio 1 Esercizi di Geometria 1 - Foglio 1 Alessandro Rubin (alex.rubin@outlook.com) Si ringrazia Ricardo Tzantzoglou per il codice L A TEX condiviso 22 dicembre 2017 Esercizio 1. Sia V uno spazio vettoriale sul

Dettagli

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria: Elettronica. Corso di Geometria ed Algebra Docente F. Flamini

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria: Elettronica. Corso di Geometria ed Algebra Docente F. Flamini Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria: Elettronica Corso di Geometria ed Algebra Docente F. Flamini Capitolo IV - 3: Teorema Spettrale degli operatori autoaggiunti e Teorema

Dettagli

Insiemi di generatori e basi

Insiemi di generatori e basi Insiemi di generatori e basi Proposizione (Corollario al Teorema di Steinitz) Siano V (K) uno spazio vettoriale, B una sua base di cardinalità n e A un sottoinsieme di V di n vettori. Allora: se A è libero,

Dettagli

Appunti sui Codici di Reed Muller. Giovanni Barbarino

Appunti sui Codici di Reed Muller. Giovanni Barbarino Appunti sui Codici di Reed Muller Giovanni Barbarino Capitolo 1 Codici di Reed-Muller I codici di Reed-Muller sono codici lineari su F q legati alle valutazioni dei polinomi sullo spazio affine. Per semplicità

Dettagli

1 Addendum su Diagonalizzazione

1 Addendum su Diagonalizzazione Addendum su Diagonalizzazione Vedere le dispense per le definizioni di autovettorre, autovalore e di trasformazione lineare (o matrice) diagonalizzabile. In particolare, si ricorda che una condizione necessaria

Dettagli

Corso Matematica Discreta Anno accademico Lista domande per l orale breve.

Corso Matematica Discreta Anno accademico Lista domande per l orale breve. Corso Matematica Discreta Anno accademico 2015-2016 Lista domande per l orale breve. 1. Dimostrare una delle leggi che coinvolgono l intersezione, l unione, il complementare di insiemi contenute nel Teorema

Dettagli

Corso Matematica Discreta Anno accademico Lista domande per l orale breve.

Corso Matematica Discreta Anno accademico Lista domande per l orale breve. Corso Matematica Discreta Anno accademico 2014-2015 Lista domande per l orale breve. 1. Dimostrare una delle leggi che coinvolgono l intersezione, l unione, il complementare (associativa, distributiva

Dettagli

0.1 Spazi Euclidei in generale

0.1 Spazi Euclidei in generale 0.1. SPAZI EUCLIDEI IN GENERALE 1 0.1 Spazi Euclidei in generale Sia V uno spazio vettoriale definito su R. Diremo, estendendo una definizione data in precedenza, che V è uno spazio vettoriale euclideo

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI Fra le applicazioni definite tra spazi vettoriali sono particolarmente significative quelle che conservano le operazioni, dette applicazioni lineari. Definizione Siano V, W due k-s.v.

Dettagli

Spazi vettoriali euclidei.

Spazi vettoriali euclidei. Spazi vettoriali euclidei Prodotto scalare, lunghezza e ortogonalità in R n Consideriamo lo spazio vettoriale R n = { =,,, n R}, n con la somma fra vettori e il prodotto di un vettore per uno scalare definiti

Dettagli

Matematica Discreta e Algebra Lineare (per Informatica)

Matematica Discreta e Algebra Lineare (per Informatica) Matematica Discreta e Algebra Lineare (per Informatica) Docente: Alessandro Berarducci Anno accademico 2016-2017, versione 14 Marzo 2017 Tipiche domande d esame La seguente lista di domande non intende

Dettagli

Forme bilineari e prodotti scalari

Forme bilineari e prodotti scalari Forme bilineari e prodotti scalari Il prodotto scalare standard di R n può anche essere scritto come un prodotto riga per colonna u, v R n = u t Iv dove I è la matrice identità. Possiamo generalizzare

Dettagli

ALGEBRA LINEARE: LEZIONI DAL 10 AL 18 OTTOBRE

ALGEBRA LINEARE: LEZIONI DAL 10 AL 18 OTTOBRE ALGEBRA LINEARE: LEZIONI DAL 10 AL 18 OTTOBRE Sommario delle lezioni 10 Ott: Lezione 4. Dipendenza ed indipendenza lineare. Sottospazio generato da un sottoinsieme. Sottospazio generato da un numero finito

Dettagli

CORSO DI ALGEBRA LINEARE Anno Accademico 2004/2005 Appunti su SISTEMI di EQUAZIONI LINEARI

CORSO DI ALGEBRA LINEARE Anno Accademico 2004/2005 Appunti su SISTEMI di EQUAZIONI LINEARI CORSO DI ALGEBRA LINEARE Anno Accademico 2004/2005 Appunti su SISTEMI di EQUAZIONI LINEARI Lo studente ha forse già incontrato i sistemi di equazioni lineari alla scuola secondaria Con il termine equazione

Dettagli

Il teorema di Eakin-Nagata per gli anelli noetheriani

Il teorema di Eakin-Nagata per gli anelli noetheriani Il teorema di Eakin-Nagata per gli anelli noetheriani Dispense per i corsi di Algebra Commutativa a.a. 2015/2016 Stefania Gabelli Dipartimento di Matematica, Università degli Studi Roma Tre 1 Gli anelli

Dettagli

APPUNTI DI ALGEBRA LINEARE

APPUNTI DI ALGEBRA LINEARE APPUNTI DI ALGEBRA LINEARE. Definizione Si dice spazio vettoriale (sul campo dei numeri reali R) un insieme V per il quale siano definite l operazione interna di somma (che ad ogni coppia di vettori e

Dettagli

Corso di GEOMETRIA Dipartimento di Ingegneria ed Architettura Università degli Studi di Trieste Prof. Fabio Perroni. 3. Sistemi di equazioni lineari

Corso di GEOMETRIA Dipartimento di Ingegneria ed Architettura Università degli Studi di Trieste Prof. Fabio Perroni. 3. Sistemi di equazioni lineari Corso di GEOMETRIA Dipartimento di Ingegneria ed Architettura Università degli Studi di Trieste Prof Fabio Perroni 3 Sistemi di equazioni lineari Siano m, n N \ {}, sia K un campo Definizione a) Un sistema

Dettagli

Note sui sistemi lineari per il Corso di Geometria per Chimica, Facoltà di Scienze MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rende, 4 Maggio 2010

Note sui sistemi lineari per il Corso di Geometria per Chimica, Facoltà di Scienze MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rende, 4 Maggio 2010 Note sui sistemi lineari per il Corso di Geometria per Chimica, Facoltà di Scienze MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rende, 4 Maggio 21 Sistemi lineari. Un sistema lineare di n 1 equazioni in m incognite

Dettagli

LEZIONE 3. a + b + 2c + e = 1 b + d + g = 0 3b + f + 3g = 2. a b c d e f g

LEZIONE 3. a + b + 2c + e = 1 b + d + g = 0 3b + f + 3g = 2. a b c d e f g LEZIONE 3 3.. Matrici fortemente ridotte per righe. Nella precedente lezione abbiamo introdotto la nozione di soluzione di un sistema di equazioni lineari. In questa lezione ci poniamo il problema di descrivere

Dettagli

Spazi vettoriali. Indipendenza lineare.

Spazi vettoriali. Indipendenza lineare. Spazi vettoriali Indipendenza lineare Nel piano vettoriale G 2, fissato un punto O ed identificati i vettori con i segmenti orientati con origine in O, informalmente si puo dire che che due vettori sono

Dettagli

Spazio degli omomorfismi

Spazio degli omomorfismi Capitolo 13 Spazio degli omomorfismi 13.1 Introduzione Ecco un argomento totalmente nuovo. Abbiamo visto che ad ogni omomorfismo tra spazi vettoriali di dimensione finita possiamo associare una matrice

Dettagli

Analisi dei dati corso integrato - Algebra lineare, e a b c 0. le soluzioni del sistema lineare omogeneo x d e f 2. a b c.

Analisi dei dati corso integrato - Algebra lineare, e a b c 0. le soluzioni del sistema lineare omogeneo x d e f 2. a b c. Analisi dei dati corso integrato - Algebra lineare 4.3.8 e 5.3.8-1 1. Nella lezione precedente abbiamo definito lo spazio nullo e lo spazio delle colonne di una matrice; ora definiamo lo spazio delle righe

Dettagli

ULTRAFILTRI E METODI NONSTANDARD IN TEORIA COMBINATORIA DEI NUMERI

ULTRAFILTRI E METODI NONSTANDARD IN TEORIA COMBINATORIA DEI NUMERI ULTRAFILTRI E METODI NONSTANDARD IN TEORIA COMBINATORIA DEI NUMERI MAURO DI NASSO 1. Filtri e ultrafiltri Iniziamo introducendo le fondamentali nozioni di filtro e ultrafiltro. Definizione 1.1. Un filtro

Dettagli

0.1 Condizione sufficiente di diagonalizzabilità

0.1 Condizione sufficiente di diagonalizzabilità 0.1. CONDIZIONE SUFFICIENTE DI DIAGONALIZZABILITÀ 1 0.1 Condizione sufficiente di diagonalizzabilità È naturale porsi il problema di sapere se ogni matrice sia o meno diagonalizzabile. Abbiamo due potenziali

Dettagli

GEOMETRIA PROIETTIVA

GEOMETRIA PROIETTIVA GEOMETRIA PROIETTIVA 1. Sottospazi affini e punti all infinito Sia V uno spazio vettoriale. Una combinazione lineare a 0 v 0 + + a n v n di vettori v i V si dice una combinazione baricentrica se a i =

Dettagli

Analisi dei dati corso integrato - Algebra lineare,

Analisi dei dati corso integrato - Algebra lineare, Analisi dei dati corso integrato - Algebra lineare, 26.2.8-27.2.8. Un sottinsieme non vuoto = V R n dello spaio vettoriale R n che sia chiuso rispetto alle operaioni sui vettori, cioe tale che per ogni

Dettagli

REGISTRO DELLE LEZIONI

REGISTRO DELLE LEZIONI UNIVERSITA DEGLI STUDI DI GENOVA FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI REGISTRO DELLE LEZIONI del Corso UFFICIALE di GEOMETRIA B tenute dal prof. Domenico AREZZO nell anno accademico 2006/2007

Dettagli

r 2 r 2 2r 1 r 4 r 4 r 1

r 2 r 2 2r 1 r 4 r 4 r 1 SPAZI R n 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x, y, z)

Dettagli

Gli insiemi N, Z e Q. I numeri naturali

Gli insiemi N, Z e Q. I numeri naturali Università Roma Tre L. Chierchia 1 Gli insiemi N, Z e Q Il sistema dei numeri reali (R, +,, ) può essere definito tramite sedici assiomi: quindici assiomi algebrici (si veda ad esempio 2.3 in [Giusti,

Dettagli

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni Corso di Geometria Ing. Informatica e Automatica Test : soluzioni k Esercizio Data la matrice A = k dipendente dal parametro k, si consideri il k sistema lineare omogeneo AX =, con X = x x. Determinare

Dettagli

Algebra 2. Programma Roma, novembre 2009

Algebra 2. Programma Roma, novembre 2009 Algebra 2. Programma 2009 2010. Roma, novembre 2009 1. Anelli, ideali, moduli. In questo corso gli anelli possiedono sempre un elemento 1. Gli omomorfismi di anelli mandano sempre 1 in 1. In particolare,

Dettagli

TOPOLOGIA - APPUNTI SETTIMANA 2/12/2013-5/11/2013

TOPOLOGIA - APPUNTI SETTIMANA 2/12/2013-5/11/2013 TOPOLOGIA - APPUNTI SETTIMANA 2/12/2013-5/11/2013 KIERAN G. O GRADY - 9 DICEMBRE 2013 1. Connessione Se X è uno spazio topologico connesso per archi vale il Teorema dei valori intermedi : dati una f :

Dettagli

Algebra Lineare. a.a Gruppo A-H. Prof. P. Piazza Appunti sulla geometria dello spazio affine

Algebra Lineare. a.a Gruppo A-H. Prof. P. Piazza Appunti sulla geometria dello spazio affine Algebra Lineare. a.a. 2004-05. Gruppo A-H. Prof. P. Piazza Appunti sulla geometria dello spazio affine Vi invito a rileggere attentamente le due sezioni sui sottospazi affini di uno spazio vettoriale e

Dettagli

Note per il corso di Geometria Corso di laurea in Ing. Edile/Architettura. 4 Sistemi lineari. Metodo di eliminazione di Gauss Jordan

Note per il corso di Geometria Corso di laurea in Ing. Edile/Architettura. 4 Sistemi lineari. Metodo di eliminazione di Gauss Jordan Note per il corso di Geometria 2006-07 Corso di laurea in Ing. Edile/Architettura Sistemi lineari. Metodo di eliminazione di Gauss Jordan.1 Operazioni elementari Abbiamo visto che un sistema di m equazioni

Dettagli

Spazi vettoriali di dimensione infinita e basi: due esempi

Spazi vettoriali di dimensione infinita e basi: due esempi Spazi vettoriali di dimensione infinita e basi: due esempi Emanuele Bottazzi Versione aggiornata al 2 novembre 2015 Indice 1 Introduzione 1 2 Lo spazio vettoriale dei polinomi a coefficienti reali 2 2.1

Dettagli

Fattorizzazione QR e matrici di Householder

Fattorizzazione QR e matrici di Householder Fattorizzazione QR e matrici di Householder ottobre 009 In questa nota considereremo un tipo di fattorizzazione che esiste sempre nel caso di matrici quadrate non singolari ad entrate reali. Definizione

Dettagli