Analisi dei dati corso integrato - Algebra lineare,

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Analisi dei dati corso integrato - Algebra lineare,"

Transcript

1 Analisi dei dati corso integrato - Algebra lineare, Un sottinsieme non vuoto = V R n dello spaio vettoriale R n che sia chiuso rispetto alle operaioni sui vettori, cioe tale che per ogni due vettori u, v in V, anche u + v sta in V, per ogni vettore u in V ed ogni scalare α in R, anche αu sta in V, si dice sottospaio vettoriale di R n. Si usa il termine spaio vettoriale per indicare un sottospaio di un qualche spaio vettoriale R, R 2, R 3, Nello spaio vettoriale R 3 consideriamo l insieme delle soluioni dell equaione lineare omogenea 2x 5y + =. Osserviamo che, se ciascuno dei due vettori u u = u 2 u 3, v = e soluione dell equaione, cioe se valgono le uguagliane v v 2 v 3 2u 5u 2 + u 3 = 2v 5v 2 + v 3 =, allora, sommando membro a membro le due uguagliane, si ha pure l uguagliana 2(u + v ) 5(u 2 + v 2 ) + (u 3 + v 3 ) =, la quale significa che anche il vettore u + v u 2 + v 2 = u + v u 3 + v 3 e una soluione dell equaione. Inoltre, se α e uno scalre in R, allora, moltiplicando per α entrambi i membri della prima uguagliana, si ha pure l uguagliana 2(αu ) 5(αu 2 ) + (αu 3 ) =, la quale significa che anche il vettore αu αu 2 = αu αu 3 e una soluione dell equaione. Questo esempio ci porta a comprendere che

2 Per una qualsiasi equaione lineare omogenea in n incognite a x + + a n x n =, l insieme delle soluioni e un sottospaio di R n. 3. Piu in generale, si ha Per un qualsiasi sistema lineare omogeneo di n equaioni in p incognite Ax =, A R n p, l insieme delle soluioni e un sottospaio di R p. Infatti, se u, v R p sono due soluioni del sistema, cioe se valgono le uguagliane Au = Av =, allora, sommando membro a membro le due uguagliane, si ha pure l uguagliana la quale significa che anche il vettore e una soluione del sistema. A(u + v) =, u + v Inoltre, se α e uno scalre in R, allora, moltiplicando per α entrambi i membri della prima uguagliana, si ha pure l uguagliana la quale significa che anche il vettore e una soluione del sistema. A(αu) =, 4. Nello spaio vettoriale R 3 consideriamo l insieme delle colonne di termini noti per i quali il sistema lineare 2 b 3 x + 4 y = b b 3 e risolubile. In realta, questo insieme non e altro che l insieme delle combinaioni lineari 2 3 α + 4 β α, β R αu

3 delle colonne dei coefficienti del sistema. Osserviamo che, se 2 3 α + 4 β 5 6 e 3 5 α β 2 sono due combinaioni lineari delle colonne dei coefficienti del sistema, allora anche la loro somma e una combinaione lineare dei coefficienti del sistema, precisamente e la combinaione lineare 3 5 (α + α 2 ) (β + β 2 ). Inoltre, il prodotto di un qualsiasi scalare γ per una qualsiasi combinaione lineare delle colonne dei coefficienti del sistema 2 3 α + 4 β 5 6 e ancora una combinaione lineare dei coefficienti del sistema, precisamente e la combinaione lineare 2 3 (αγ) + 4 (βγ). 5 6 Questo esempio ci porta a comprendere che Per un qualsiasi sistema lineare di n equaioni in due incognite a x + a 2 y = p, a, a 2, p R n l insieme dei termini noti p che rendono risolubile il sistema e un sottospaio di R n. 5. Piu in generale, si ha Per un qualsiasi sistema lineare di n equaioni in p incognite a x + + a p x p = b, a,..., a p, b R n, l insieme dei termini noti b che rendono risolubile il sistema e un sottospaio di R n. Questo insieme non e altro che l insieme delle combinaioni lineari a α + + a p α p, α,..., α p R 3

4 delle colonne dei coefficienti delle incognite. Se a α + + a p α p e a β + + a p β p, sono due combinaioni lineari delle colonne dei coefficienti del sistema, allora anche la loro somma e una combinaione lineare dei coefficienti del sistema, precisamente e la combinaione lineare a (α + β ) + + a p (α p + β p ). Inoltre, il prodotto di un qualsiasi scalare γ per una qualsiasi combinaione lineare delle colonne dei coefficienti del sistema a α + + a p α p, e ancora una combinaione lineare dei coefficienti del sistema, precisamente e la combinaione lineare a (α γ) + + a p (α p γ). 6. Sia data una matrice di tipo m n A = r. r m = [ c... c n ], ri R n, c j R m, dove r,..., r m sono le righe e c,..., c n sono le colonne di A. Abbiamo visto che alla matrice A R m n sono associati due spai, un sottospaio di R n ed un sottospaio di R m : L insieme delle soluioni del sistema lineare omogeneo r x =., r m x = dove x e il vettore colonna delle n incognite, o in altri termini Ax =, R m e un sottospaio di R n. Questo spaio si dice spaio nullo della matrice A, e si indica con N (A). L insieme delle combinaioni lineari c x + + c n x n 4

5 delle colonne di A, o in altri termini l insieme dei vettori colonna b R m per i quali e risolubile il sistema lineare Ax = b, e un sottospaio di R m. Questo spaio si dice spaio delle colonne della matrice A, e si indica con R(A). Il simbolo R viene dall inglese range 7. Nelle leioni precedenti abbiamo introdotto alcune definiioni e provato alcuni risultati che estendono allo spaio vettoriale R n alcuni concetti e alcuni fatti legati ai sistemi di riferimento nello spaio della geometria elementare. Ora, queste definiioni hanno senso, e questi risultati contuinuano a valere in un qualsiasi sottospaio vettoriale V di uno spaio R n. Precisamente, per un sottinsieme S = {v,..., v p } di vettori di uno spaio vettoriale V si possono dare le seguenti definiioni: S si dice linearmente indipendente se e solo se l uguagliana v α + + v p α p = α,..., α p R e soddisfatta solo per α = = α p = ; S si dice linearmente indipendente massimale in V se e solo se S e linearmente indipendente, e tutti gli insiemi ottenuti aggiungendo ad S un nuovo vettore di V sono linearmente dipendenti; S si dice base di V se e solo se ogni vettore v V si puo scrivere in uno ed un solo modo come combinaione lineare dei vettori di S. e valgono le seguenti proposiioni: v = v α + + v p α p se S consiste di piu di n vettori, allora S e linearmente dipendente; se S e linearmente indipendente allora l insieme ottenuto aggiungendo ad S un n nuovo vettore v V e linearmente dipendente se e solo se v si puo scrivere come combinaione lineare dei vettori di S; tutti i sottinsiemi linearmente indipendenti massimali in V sono formati dallo stesso numero d n di vettori; questo numero viene detto la dimensione di V e viene indicato con che sta per codominio; vedremo in seguito perche. dim(v ); 5

6 ciascun sottinsieme linearmente indipendente massimale in V e anche una base di V, e viceversa. Si noti che per provare che S e linearmente indipendente massimale in V o, equivalentemente, che S e una base di V basta verificare che S e linearmente indipendente; ogni v V si puo scrivere come combinaione lineare dei vettori di S. Di seguito determiniamo basi e dimensioni dello spaio nullo e dello spaio delle colonne di alcune matrici particolari. 8. Consideriamo la matrice A = [ ]. Lo spaio nullo N (A) di A e il sottospaio di R 3 dell equaione lineare omogenea costituito dalle soluioni x + y + =. La generica soluione di questa equaione si puo descrivere come un vettore del tipo x α β y = α, β dove α, β sono parametri liberi in R. Possiamo scrivere questo vettore nella forma x y = α + β = v α + v 2 β. Si puo osservare che {v, v 2 } e linearmente indipendente; ogni v N (A) si puo scrivere come combinaione lineare dei vettori di {v, v 2 }. Dunque, si ha che {v, v 2 } e una base di N (A), e dim (N (A)) = 2. Lo spaio delle colonne R(A) di A e il sottospaio di R costituito dalle combinaioni lineari delle colonne di A... : {} e una base di R(A), e dim (R(A)) =. 9. Consideriamo la matrice A = [ 2 2 ]. 6

7 Lo spaio nullo N (A) di A e il sottospaio di R 3 costituito dalle soluioni del sistema lineare omogeneo [ ] x [ ] y =, 2 2 che e equivalente al sistema [ ] La generica soluione di questo sistema si puo descrivere come un vettore del tipo x y = α = α = uα, α dove α e un parametro libero in R. Si ha che x y = {u} e una base di N (A), e dim (N (A)) =. Lo spaio delle colonne R(A) di A e il sottospaio di R 2 costituito dalle combinaioni lineari [ ] [ ] [ ] α + β + γ = c 2 2 α + c 2 β + c 3 γ delle colonne di A... : [ {c, c 2 } e una base di R(A), e dim (R(A)) = 2. ].. Consideriamo la matrice A = Lo spaio nullo N (A) di A e il sottospaio di R 3 costituito dalle soluioni del sistema lineare omogeneo che e equivalente al sistema x y x y = =,. 7

8 L unica soluione di questo sistema e il vettore nullo x y = = 3. Si ha che l insieme vuoto {} e una base di N (A), e dim (N (A)) =. Lo spaio delle colonne R(A) di A e il sottospaio di R 3 costituito dalle combinaioni lineari α + 2 β + 2 γ = c α + c 2 β + c 3 γ 2 3 delle colonne di A... : {c, c 2, c 3 } e una base di R(A), e dim (R(A)) = 3.. Cio che abbiamo visto in questi esempi ha portata generale: Proposiione. Per ogni matrice, la somma delle dimensioni del suo spaio delle colonne e del suo spaio nullo e uguale al numero delle sue colonne; in simboli: A R m n, dim (R(A)) + dim (N (A)) = n 8

Nell ultimo esercizio della lezione 5 le sequenze A, B

Nell ultimo esercizio della lezione 5 le sequenze A, B Una sequena di vettori (v v n ) generatori di V(K) libera si dice base di V(K). Nell ultimo eserciio della leione 5 le sequene A B costituiscono una base per le rispettive coperture lineari. Basi di uno

Dettagli

Analisi dei dati corso integrato - Algebra lineare, e a b c 0. le soluzioni del sistema lineare omogeneo x d e f 2. a b c.

Analisi dei dati corso integrato - Algebra lineare, e a b c 0. le soluzioni del sistema lineare omogeneo x d e f 2. a b c. Analisi dei dati corso integrato - Algebra lineare 4.3.8 e 5.3.8-1 1. Nella lezione precedente abbiamo definito lo spazio nullo e lo spazio delle colonne di una matrice; ora definiamo lo spazio delle righe

Dettagli

Lezione del 5 dicembre. Sottospazi vettoriali.

Lezione del 5 dicembre. Sottospazi vettoriali. Lezione del 5 dicembre. Sottospazi vettoriali. 1. Sottospazi vettoriali. Identificato lo spazio con R 3 tramite un sistema di riferimento cartesiano ortogonale, consideriamo un piano passante per l origine

Dettagli

x1 + 2x 2 + 3x 3 = 0 nelle tre incognite x 1, x 2, x 3. Possiamo risolvere l equazione ricavando l incognita x 1 x 1 = 2x 2 3x 3 2r 1 3r 2 x 2 x 3

x1 + 2x 2 + 3x 3 = 0 nelle tre incognite x 1, x 2, x 3. Possiamo risolvere l equazione ricavando l incognita x 1 x 1 = 2x 2 3x 3 2r 1 3r 2 x 2 x 3 Matematica II -..9 Spazio delle soluzioni di un sistema lineare omogeneo.. Consideriamo l equazione lineare omogenea nelle tre incognite x, x, x 3. x + x + 3x 3 = Possiamo risolvere l equazione ricavando

Dettagli

1. Complemento ortogonale di un vettore non nullo Abbiamo visto che nel piano

1. Complemento ortogonale di un vettore non nullo Abbiamo visto che nel piano Geometria e Algebra (II), 11.12.12 1. Complemento ortogonale di un vettore non nullo Abbiamo visto che nel piano P O i vettori ortogonali ad un dato vettore non nullo descrivono una retta per O, e nello

Dettagli

Matematica per Analisi dei Dati,

Matematica per Analisi dei Dati, Matematica per Analisi dei Dati, 230209 1 Spazio vettoriale R n Sia n un intero positivo fissato Lo spazio vettoriale R n e l insieme delle n ple ordinate di numeri reali, che rappresenteremo sempre come

Dettagli

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ. ESERCIZI SVOLTI DI ALGEBRA LINEARE (Sono svolti alcune degli esercizi proposti nei fogli di esercizi su vettori linearmente dipendenti e vettori linearmente indipendenti e su sistemi lineari ) I. Foglio

Dettagli

1, v 3 = 1. A che spazio. 7. Sapresti trovare esplicitamente una loro combinazione lineare che fa 0? Sapresti trovarle tutte?

1, v 3 = 1. A che spazio. 7. Sapresti trovare esplicitamente una loro combinazione lineare che fa 0? Sapresti trovarle tutte? Esercii Esercii. Se v, v 2, v 3 sono linearmente indipendenti, allora v e v 2 sono linearmente indipendenti: vero o falso? 2. Se v, v 2, v 3 sono linearmente dipendenti, allora v e v 2 sono linearmente

Dettagli

b = p + q l q Diciamo che p e la proiezione ortogonale di b su l, e che q e la proiezione ortogonale di b su l.

b = p + q l q Diciamo che p e la proiezione ortogonale di b su l, e che q e la proiezione ortogonale di b su l. Matematica II, 4... rtogonalita nel piano. Fissato nel piano un punto, consideriamo il piano vettoriale P. Diamo per intuitivamente nota la nozione di ortogonalita fra due vettori non nulli. Per convenzione,

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA II Parziale - Compito C 3/5/25 A. A. 24 25 ) Risolvere il seguente sistema

Dettagli

Esercitazione N.2. Sistemi lineari con parametro. di sistemi lineari con parametro. La regola di Cramer Discussione e risoluzione

Esercitazione N.2. Sistemi lineari con parametro. di sistemi lineari con parametro. La regola di Cramer Discussione e risoluzione Esercitaione N. maro 7 Sistemi lineari con parametro La regola di Cramer Discussione e risoluione di sistemi lineari con parametro sistemi lineari omogenei Rosalba Barattero ESERCIZIO. Sistema di Cramer

Dettagli

r 2 r 2 2r 1 r 4 r 4 r 1

r 2 r 2 2r 1 r 4 r 4 r 1 SPAZI R n 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x, y, z)

Dettagli

Esercizio 1 Dato il sistema:

Esercizio 1 Dato il sistema: Leione - Esercitaioni di Algebra e Geometria - Anno accademico 9- Eserciio Dato il sistema: R ) ( a) studiare il rango della matrice incompleta del sistema; b) studiare il rango della matrice completa

Dettagli

Spazi Vettoriali ed Applicazioni Lineari

Spazi Vettoriali ed Applicazioni Lineari Spazi Vettoriali ed Applicazioni Lineari 1. Sottospazi Definizione. Sia V uno spazio vettoriale sul corpo C. Un sottoinsieme non vuoto W di V è un sottospazio vettoriale di V se è chiuso rispetto alla

Dettagli

ESERCIZI sui VETTORI

ESERCIZI sui VETTORI ESERCIZI sui VETTORI 1. Calcolare la somma di v 1 (2, 3) e v 2 (1, 4). 2. Calcolare la somma di v 1 (1, 5, 4) e v 2 (6, 8, 2). 3. Calcolare il prodotto di α = 2 e v 1 (1, 4). 4. Calcolare il prodotto di

Dettagli

Testi di esercizi di preparazione alla I prova in itinere Gli esercizi in elenco sono in gran parte tratti da vecchie prove d esame

Testi di esercizi di preparazione alla I prova in itinere Gli esercizi in elenco sono in gran parte tratti da vecchie prove d esame Testi di esercii di preparaione alla I prova in itinere Gli esercii in elenco sono in gran parte tratti da veccie prove d esame Eserciio Al variare di k discutere e ove possibile risolvere il sistema lineare

Dettagli

1 Risoluzione di sistemi lineari con l uso dei determinanti

1 Risoluzione di sistemi lineari con l uso dei determinanti 2006 Trapani Dispensa di Geometria, 1 Risoluzione di sistemi lineari con l uso dei determinanti Sia A una matrice n n con det(a) 0 consideriamo il sistema lineare AX = b abbiamo n = numero di righe di

Dettagli

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n NOTE DI ALGEBRA LINEARE 2- MM 9 NOVEMBRE 2 Combinazioni lineari e generatori Sia K un campo e V uno spazio vettoriale su K Siano v,, v n vettori in V Definizione Un vettore v V si dice combinazione lineare

Dettagli

Analisi dei dati corso integrato - Algebra lineare,

Analisi dei dati corso integrato - Algebra lineare, Analisi dei dati corso integrato - Algebra lineare, 050308-2 1 Ortogonalita nel piano Sia fissato nel piano un sistema di riferimento cartesiano ortogonale monometrico, con origine in O Tranne avviso contrario,

Dettagli

Spazi vettoriali. Indipendenza lineare.

Spazi vettoriali. Indipendenza lineare. Spazi vettoriali Indipendenza lineare Nel piano vettoriale G 2, fissato un punto O ed identificati i vettori con i segmenti orientati con origine in O, informalmente si puo dire che che due vettori sono

Dettagli

Esercizi Di Geometria 1 (BAER) Canale 1 Da consegnare Lunedi 26 Ottobre

Esercizi Di Geometria 1 (BAER) Canale 1 Da consegnare Lunedi 26 Ottobre Esercizi Di Geometria 1 (BAER) Canale 1 Da consegnare Lunedi 26 Ottobre SETTIMANA 4 (19 25 Ottobre) Matrici elementari Gli esercizi sono presi dal libro Intorduction to Linear Algebra di Serge Lang. Esercizio

Dettagli

Sistemi lineari 1 / 12

Sistemi lineari 1 / 12 Sistemi lineari 1 / 12 Sistemi lineari 2 / 12 Ricordiamo che cosa è un sistema lineare con m equazioni in n incognite (m,n N, m,n 1): a 11 x 1 + +a 1n x n = b 1 a 21 x 1 + +a 2n x n = b 2, (1).. a m1 x

Dettagli

Esercitazione 6 - Soluzione

Esercitazione 6 - Soluzione Anno Accademico 28-29 Corso di Algebra Lineare e Calcolo Numerico per Ingegneria Meccanica Esercitazione 6 - Soluzione Immagine, nucleo. Teorema di Rouché-Capelli. Esercizio Sia L : R 3 R 3 l applicazione

Dettagli

Esercizi proposti. Si dica quali dei precedenti sono sottospazi vettoriali dello spazio vettoriale quadrate di ordine n.

Esercizi proposti. Si dica quali dei precedenti sono sottospazi vettoriali dello spazio vettoriale quadrate di ordine n. Esercizi proposti 1. astratti 1.1 Si consideri lo spazio R [x] dei polinomi nella variabile x con coefficienti reali. Si dica se il suo sottoinsieme S formato dai polinomi privi del termine di grado 2

Dettagli

ESERCIZI DI ALGEBRA LINEARE E COMPLEMENTI DI GEOMETRIA

ESERCIZI DI ALGEBRA LINEARE E COMPLEMENTI DI GEOMETRIA ESERCIZI DI ALGEBRA LINEARE E COMPLEMENTI DI GEOMETRIA Foglio 4 Esempio. Sia V = P 5 (R) lo spazio dei polinomi di grado strettamente minore di 5. Si considerino i seguenti sottoinsiemi di V (i) Dimostrare

Dettagli

Definizione 1 Un insieme (V, +, ) dotato delle due operazioni: - + somma di elementi v 1 V, v 2 V ;

Definizione 1 Un insieme (V, +, ) dotato delle due operazioni: - + somma di elementi v 1 V, v 2 V ; Spazi vettoriali Definizione Un insieme (V, +, ) dotato delle due operazioni: - + somma di elementi v V, v V ; - prodotto per uno scalare λ K, (K campo); e chiuso rispetto ad esse, è uno spazio vettoriale

Dettagli

Esercizi di Geometria Spazi vettoriali e sottospazi - indipendenza lineare

Esercizi di Geometria Spazi vettoriali e sottospazi - indipendenza lineare Esercizi di Geometria Spazi vettoriali e sottospazi - indipendenza lineare 1. Quali dei seguenti sottoinsiemi sono sottospazi di R 3? Motivare la risposta. (a) {(x, y, 1) x, y R} (b) {(0, y, 0) y R} (c)

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 4: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 4: soluzioni Corso di Geometria - BIAR, BSIR Esercizi : soluzioni Esercizio. Sono dati i seguenti sistemi lineari omogenei nelle incognite x, y, z: { x + y z = x + y z = x + y z = S : x y + z =, S :, S 3 : x 3y =,

Dettagli

A titolo di esempio proponiamo la risoluzione del sistema sia con il metodo della matrice inversa sia con il metodo di Cramer.

A titolo di esempio proponiamo la risoluzione del sistema sia con il metodo della matrice inversa sia con il metodo di Cramer. ) Trovare le soluzioni del seguente sistema lineare: x+ y+ z = 3x y + z = 0 x + 5y 4z = 5 Osserviamo in primo luogo che il sistema dato è un sistema quadrato di tre equazioni in tre incognite, precisamente

Dettagli

Algebra lineare Geometria 1 11 luglio 2008

Algebra lineare Geometria 1 11 luglio 2008 Algebra lineare Geometria 1 11 luglio 2008 Esercizio 1. Si considerino la funzione: { R f : 3 R 3 (α, β, γ) ( 2β α γ, (k 1)β + (1 k)γ α, 3β + (k 2)γ ) dove k è un parametro reale, e il sottospazio U =

Dettagli

[Si può fare una dimostrazione valida per ogni scelta di u, che sfrutti solo la linearità del prodotto scalare]

[Si può fare una dimostrazione valida per ogni scelta di u, che sfrutti solo la linearità del prodotto scalare] Università di Bergamo Anno accademico 20182019 Primo anno di Ingegneria Foglio 7 Geometria e Algebra Lineare Sottospazi, basi e dimensione Esercizio 7.1. Sia u = (1, 1, 1) e si consideri il sottoinsieme

Dettagli

GEOMETRIA 1 terza parte

GEOMETRIA 1 terza parte GEOMETRIA 1 terza parte Cristina Turrini C. di L. in Fisica - 2014/2015 Cristina Turrini (C. di L. in Fisica - 2014/2015) GEOMETRIA 1 1 / 32 index Applicazioni lineari 1 Applicazioni lineari 2 Nucleo e

Dettagli

Geometria per fisica (L-P), a. a Esercizi svolti. e (2)

Geometria per fisica (L-P), a. a Esercizi svolti. e (2) Geometria per fisica (L-P, a a 016-17 - Esercii svolti Eserciio 1 Si considerino i sistemi lineari + + = 1 + = 0 (1 3 + 3 + 13 = 8 5 + 5 9 = 5 + 5 + = 3 e ( + + = 0 + = 0 3 + 3 + 13 = 0 5 + 5 9 = 0 5 +

Dettagli

a + 2b + c 3d = 0, a + c d = 0 c d

a + 2b + c 3d = 0, a + c d = 0 c d SPAZI VETTORIALI 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x,

Dettagli

Registro Lezioni di Algebra lineare del 15 e 16 novembre 2016.

Registro Lezioni di Algebra lineare del 15 e 16 novembre 2016. Registro Lezioni di Algebra lineare del 15 e 16 novembre 2016 Di seguito si riporta il riassunto degli argomenti svolti; i riferimenti sono a parti del Cap8 Elementi di geometria e algebra lineare Par5

Dettagli

Sistemi lineari e spazi vettoriali 1 / 14

Sistemi lineari e spazi vettoriali 1 / 14 Sistemi lineari e spazi vettoriali 1 / 14 Sistemi lineari 2 / 14 Studieremo sistemi lineari costituiti da m equazioni in n incognite (m,n N, m,n 1): cioè a 11 x 1 + +a 1n x n = b 1 a 21 x 1 + +a 2n x n

Dettagli

Matematica per Analisi dei Dati,

Matematica per Analisi dei Dati, Matematica per Analisi dei Dati, 09.03.09 1. Sia n in intero positivo fissato, e sia V un sottospazio di R n. Il massimo numero di vettori linearmente indipendenti in V viene detto dimensione di V, e viene

Dettagli

La lunghezza dei vettori e legata alle operazioni sui vettori nel modo seguente: Consideriamo due vettori v, w e il vettore v + w loro somma.

La lunghezza dei vettori e legata alle operazioni sui vettori nel modo seguente: Consideriamo due vettori v, w e il vettore v + w loro somma. Matematica II, 20.2.. Lunghezza di un vettore nel piano Consideriamo il piano vettoriale geometrico P O. Scelto un segmento come unita, possiamo parlare di lunghezza di un vettore v P O rispetto a tale

Dettagli

(b) Determinare gli autovalori di A specificandone molteplicità algebriche e geometriche.

(b) Determinare gli autovalori di A specificandone molteplicità algebriche e geometriche. CORSO DI GEOMETRIA E ALGEBRA Cognome e Nome: Corso di Laurea: 9 febbraio 27 Matricola: Anno di corso: ( ( 2. (8 pt Si consideri la matrice A = e X = y ; sia L A : R 3 R 3 l applicaione lineare definita

Dettagli

Appendice 1. Spazi vettoriali

Appendice 1. Spazi vettoriali Appendice. Spazi vettoriali Indice Spazi vettoriali 2 2 Dipendenza lineare 2 3 Basi 3 4 Prodotto scalare 3 5 Applicazioni lineari 4 6 Applicazione lineare trasposta 5 7 Tensori 5 8 Decomposizione spettrale

Dettagli

Alcuni esercizi sulla diagonalizzazione di matrici. campo dei reali. Se lo è calcolare una base spettrale e la relativa forma diagonale di A.

Alcuni esercizi sulla diagonalizzazione di matrici. campo dei reali. Se lo è calcolare una base spettrale e la relativa forma diagonale di A. Alcuni esercii sulla diagonaliaione di matrici Eserciio Dire se la matrice A 4 8 è diagonaliabile sul 3 3 campo dei reali Se lo è calcolare una base spettrale e la relativa forma diagonale di A Svolgimento

Dettagli

Capitolo 7 Struttura metrica in R n Esercizi svolti Tutorato di geometria e algebra lineare. Marco Robutti

Capitolo 7 Struttura metrica in R n Esercizi svolti Tutorato di geometria e algebra lineare. Marco Robutti Capitolo 7 Struttura metrica in R n Esercizi svolti Tutorato di geometria e algebra lineare Marco Robutti 5 Ottobre 27 Introduzione Gli esercizi di questo capitolo riguardano i seguenti argomenti: Data

Dettagli

Note per il corso di Geometria Corso di laurea in Ing. Edile/Architettura. 4 Sistemi lineari. Metodo di eliminazione di Gauss Jordan

Note per il corso di Geometria Corso di laurea in Ing. Edile/Architettura. 4 Sistemi lineari. Metodo di eliminazione di Gauss Jordan Note per il corso di Geometria 2006-07 Corso di laurea in Ing. Edile/Architettura Sistemi lineari. Metodo di eliminazione di Gauss Jordan.1 Operazioni elementari Abbiamo visto che un sistema di m equazioni

Dettagli

A =, c d. d = ad cb. c d A =

A =, c d. d = ad cb. c d A = Geometria e Algebra (II), 271112 1 Definizione D ora innanzi, al posto di dire matrice quadrata di tipo n n o matrice quadrata n n diremo matrice quadrata di ordine n o in breve matrice di ordine n Il

Dettagli

Algebra lineare Geometria 1 15 luglio 2009

Algebra lineare Geometria 1 15 luglio 2009 Algebra lineare Geometria 1 15 luglio 2009 Esercizio 1. Nello spazio vettoriale reale R 3 [x] si considerino l insieme A k = {1 + x, k + (1 k)x 2, 1 + (k 1)x 2 + x 3 }, il vettore v k = k + kx x 3 e la

Dettagli

Matematica II,

Matematica II, Matematica II 181111 1 Matrici a scala Data una riga R = [a 1 a 2 a n ] di numeri reali non tutti nulli il primo elemento non nullo di R si dice pivot di R Cosi il pivot di R compare come j mo elemento

Dettagli

(VX) (F) Se A e B sono due matrici simmetriche n n allora anche A B è una matrice simmetrica.

(VX) (F) Se A e B sono due matrici simmetriche n n allora anche A B è una matrice simmetrica. 5 luglio 010 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

Introduzione al Metodo agli Elementi Finiti (FEM) (x, y) Γ Tale formulazione viene detta Formulazione forte del problema.

Introduzione al Metodo agli Elementi Finiti (FEM) (x, y) Γ Tale formulazione viene detta Formulazione forte del problema. Introduzione al Metodo agli Elementi Finiti (FEM) Consideriamo come problema test l equazione di Poisson 2 u x 2 + 2 u = f(x, y) u = f y2 definita su un dominio Ω R 2 avente come frontiera la curva Γ,

Dettagli

(d) Determinare il segno di q e fornire, se esistono, un vettore non nullo su cui q è nulla e uno su cui q è negativa, giustificando la risposta.

(d) Determinare il segno di q e fornire, se esistono, un vettore non nullo su cui q è nulla e uno su cui q è negativa, giustificando la risposta. CORSO DI GEOMETRIA E ALGEBRA Cognome e Nome: Corso di Laurea: 9 febbraio 2017 Matricola: Anno di corso: ( ) ( ) 2 0 0 1. (8 pt) Si consideri la matrice A = 0 1 1 e X = y ; sia L A : R 3 R 3 0 1 1 l applicaione

Dettagli

Elementi di Algebra Lineare

Elementi di Algebra Lineare Elementi di Algebra Lineare Corso di Calcolo Numerico, a.a. 2009/2010 Francesca Mazzia Dipartimento di Matematica Università di Bari 13 Marzo 2006 Francesca Mazzia (Univ. Bari) Elementi di Algebra Lineare

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 3: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 3: soluzioni Corso di Geometria - BIAR, BSIR Esercizi : soluzioni Rango e teorema di Rouché-Capelli Esercizio. Calcolare il rango di ciascuna delle seguenti matrici: ( ) ( ) ( ) A =, A =, A =, A 4 = ( ). a a a Soluzione.

Dettagli

1 Equazioni parametriche e cartesiane di sottospazi affini di R n

1 Equazioni parametriche e cartesiane di sottospazi affini di R n 2 Trapani Dispensa di Geometria, Equazioni parametriche e cartesiane di sottospazi affini di R n Un sottospazio affine Σ di R n e il traslato di un sottospazio vettoriale. Cioe esiste un sottospazio vettoriale

Dettagli

Esercizi di Geometria 1 - Foglio 3bis

Esercizi di Geometria 1 - Foglio 3bis Esercizi di Geometria - Foglio 3bis Alessandro Rubin (alex.rubin@outlook.com) Si ringrazia Ricardo Tzantzoglou per il codice L A TEX condiviso dicembre 7 Esercizio. Sia f : V W un applicazione e G = {(v,

Dettagli

Algebra delle matrici

Algebra delle matrici Algebra delle matrici Metodo di Gauss-Jordan per l inversione di una matrice. Nella lezione scorsa abbiamo visto che un modo per determinare l eventuale inversa di una matrice quadrata A consiste nel risolvere

Dettagli

Capitolo 1 Vettori applicati e geometria dello spazio

Capitolo 1 Vettori applicati e geometria dello spazio Capitolo 1 Vettori applicati e geometria dello spazio Marco Robutti Facoltà di ingegneria Università degli studi di Pavia Tutorato di geometria e algebra lineare Anno accademico 2014-2015 Definizione (Vettore

Dettagli

ESAME DI GEOMETRIA. 6 febbraio 2002 CORREZIONE QUIZ

ESAME DI GEOMETRIA. 6 febbraio 2002 CORREZIONE QUIZ ESAME DI GEOMETRIA 6 febbraio CORREZIONE QUIZ. La parte reale di ( + i) 9 è positiva. QUIZ Si può procedere in due modi. Un primo modo è osservare che ( + i) =i, dunque ( + i) 9 =(+i)(i) 4 = 4 ( + i) :

Dettagli

Geometria Prova scritta, appello unico, sessione autunnale Corso di laurea in fisica A.A 2017/2018 Canali A C, e L Pa

Geometria Prova scritta, appello unico, sessione autunnale Corso di laurea in fisica A.A 2017/2018 Canali A C, e L Pa Geometria Prova scritta, appello unico, sessione autunnale Corso di laurea in fisica A.A 27/28 Canali A C, e L Pa Durata: 2 ore e 3 minuti Simone Diverio Alessandro D Andrea Paolo Piccinni 7 settembre

Dettagli

ESERCIZI DI ALGEBRA LINEARE. Vincenzo Di Gennaro

ESERCIZI DI ALGEBRA LINEARE. Vincenzo Di Gennaro ESERCIZI DI ALGEBRA LINEARE Vincenzo Di Gennaro Sono raccolti, in ordine cronologico, gli esercizi di Algebra Lineare proposti nelle prove scritte per i vari corsi di Geometria 1 che ho tenuto presso la

Dettagli

Geometria analitica: rette e piani

Geometria analitica: rette e piani Geometria analitica: rette e piani parametriche Allineamento nel piano nello spazio Angoli tra rette e distanza 2 2006 Politecnico di Torino 1 Esempio 2 Sia A = (1, 2). Per l interpretazione geometrica

Dettagli

Algebra Lineare. a.a Gruppo A-H. Prof. P. Piazza Soluzioni del compito pomeridiano del 6/12/2004

Algebra Lineare. a.a Gruppo A-H. Prof. P. Piazza Soluzioni del compito pomeridiano del 6/12/2004 Algebra Lineare. a.a. 004-05. Gruppo A-H. Prof. P. Piazza Soluzioni del compito pomeridiano del 6/1/004 Esercizio 1. Siano V e W due spazi vettoriali e sia F : V W un isomorfismo (quindi F è lineare e

Dettagli

Sistemi di equazioni lineari

Sistemi di equazioni lineari Sistemi di equazioni lineari A. Bertapelle 25 ottobre 212 Cos è un sistema lineare? Definizione Un sistema di m equazioni lineari (o brevemente sistema lineare) nelle n incognite x 1,..., x n, a coefficienti

Dettagli

ESERCIZI DI ALGEBRA LINEARE E COMPLEMENTI DI GEOMETRIA

ESERCIZI DI ALGEBRA LINEARE E COMPLEMENTI DI GEOMETRIA ESERCIZI DI ALGEBRA LINEARE E COMPLEMENTI DI GEOMETRIA Foglio Esempio. Determinare le soluzioni del sistema lineare Ax = B, in cui 4 A = 6 6, B = Sol. Consideriamo la matrice aumentata C = 4 6 6 6 5 e

Dettagli

Note per le esercitazioni di Geometria 1 a.a. 2007/08 A. Lotta. Metodi per il calcolo del rango di una matrice

Note per le esercitazioni di Geometria 1 a.a. 2007/08 A. Lotta. Metodi per il calcolo del rango di una matrice Note per le esercitazioni di Geometria 1 a.a. 2007/08 A. Lotta Versione del 21/12/07 Metodi per il calcolo del rango di una matrice Sia A M m,n (K). Denotiamo con A (i) la riga i-ma di A, i {1,..., m}.

Dettagli

Sistemi di equazioni lineari

Sistemi di equazioni lineari Sistemi di equazioni lineari Siano X 1,, X n indeterminate Un equazione lineare (o di primo grado) nelle incognite X 1,, X n a coefficienti nel campo K è della forma a 1 X 1 + + a n X n = b, a i, b K,

Dettagli

1 Esercitazione tipo compitino

1 Esercitazione tipo compitino 1 Esercitazione tipo compitino Risolvo i primi due esercizi Esercizio 1. Sia g =: L B : R 4 R 4, la funzione definita da L B (X) = BX ove B = 0 1 1 2 0 1 1 2 1 2 1 3 1. Si dimostri che L B è una funzione

Dettagli

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria. Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI GENNAIO 2015 DOCENTE: M. LONGO

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI GENNAIO 2015 DOCENTE: M. LONGO FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI GENNAIO 2015 DOCENTE: M. LONGO 1. Domande Domanda 1. Dire quando una funzione f : X Y tra dee insiemi X ed Y si dice iniettiva.

Dettagli

Autovalori e autovettori

Autovalori e autovettori Autovalori e autovettori Definizione 1 (per endomorfismi). Sia V uno spazio vettoriale su di un campo K e f : V V un suo endomorfismo. Si dice autovettore per f ogni vettore x 0 tale che f(x) = λx, per

Dettagli

Geometria e Topologia I (U1-4) 2006-mag-10 61

Geometria e Topologia I (U1-4) 2006-mag-10 61 Geometria e Topologia I (U1-4) 2006-mag-10 61 (15.9) Teorema. Consideriamo il piano affine. Se A A 2 (K) è un punto e r una retta che non passa per A, allora esiste unica la retta per A che non interseca

Dettagli

Corso di Laurea in Fisica. Geometria 1. a.a Gruppo B. Prof. P. Piazza Soluzioni compito a casa del 17/11/06 B =

Corso di Laurea in Fisica. Geometria 1. a.a Gruppo B. Prof. P. Piazza Soluzioni compito a casa del 17/11/06 B = Corso di Laurea in Fisica. Geometria. a.a. 26-7. Gruppo B. Prof. P. Piazza Soluzioni compito a casa del 7//6 Soluzione esercizio. Sia B {e, e 2 } e sia B {v, v 2 }. La matrice B del cambiamento di base

Dettagli

Appunti su Indipendenza Lineare di Vettori

Appunti su Indipendenza Lineare di Vettori Appunti su Indipendenza Lineare di Vettori Claudia Fassino a.a. Queste dispense, relative a una parte del corso di Matematica Computazionale (Laurea in Informatica), rappresentano solo un aiuto per lo

Dettagli

ESERCIZI DI ALGEBRA LINEARE. Vincenzo Di Gennaro

ESERCIZI DI ALGEBRA LINEARE. Vincenzo Di Gennaro ESERCIZI DI ALGEBRA LINEARE Vincenzo Di Gennaro Sono raccolti, in ordine cronologico, gli esercizi di Algebra Lineare proposti nelle prove scritte per i vari corsi di Geometria che ho tenuto presso la

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prima prova di esonero TESTO E SOLUZIONI

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prima prova di esonero TESTO E SOLUZIONI UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a. 2017-2018 Prima prova di esonero TESTO E SOLUZIONI 1. Determinare, utilizzando esclusivamente operazioni elementari,

Dettagli

Geometria BAER A.A. Canale I Foglio esercizi 4

Geometria BAER A.A. Canale I Foglio esercizi 4 Geometria BAER A.A. Canale I Foglio esercizi 4 Esercizio. Si trovino basi degli spazi delle soluzioni dei seguenti sistemi lineari Soluzione: Sol(S ) = L[ x + 3x x 3 + 5x 4 = S : x + 3x x 3 + x 4 = S x

Dettagli

SISTEMI LINEARI MATRICI E SISTEMI 1

SISTEMI LINEARI MATRICI E SISTEMI 1 MATRICI E SISTEMI SISTEMI LINEARI Sistemi lineari e forma matriciale (definizioni e risoluzione). Teorema di Rouché-Capelli. Sistemi lineari parametrici. Esercizio Risolvere il sistema omogeneo la cui

Dettagli

Istituzioni di Matematica I. Esercizi su sistemi lineari. & % x + y " #z = "1 & '#x " y+ z =1

Istituzioni di Matematica I. Esercizi su sistemi lineari. & % x + y  #z = 1 & '#x  y+ z =1 Istituzioni di Matematica I Esercizi su sistemi lineari Esempio. Dire per quali valori di λ R il sistema x " y+ z = 2 % x + y " z = " x " y+ z = ha una sola soluzione, per quali nessuna, per quali infinite

Dettagli

Ingegneria Meccanica; Algebra lineare e Geometria 2008/2009

Ingegneria Meccanica; Algebra lineare e Geometria 2008/2009 Ingegneria Meccanica Algebra lineare e Geometria 8/9. Esercii svolti sugli spai vettoriali Eserciio. Dopo aver dimostrato che l insieme R, determina le coordinate del vettore v = rispetto a tale base.

Dettagli

1 Rette nel piano ordinario. Rette e piani nello spazio ordinario

1 Rette nel piano ordinario. Rette e piani nello spazio ordinario 1 Rette nel piano ordinario. Rette e piani nello spazio ordinario 1.1 Vettori applicati Nel seguito denotiamo con P l insieme dei punti del piano ordinario, e con S l insieme dei punti dello spazio ordinario.

Dettagli

Introduzione soft alla matematica per l economia e la finanza. Marta Cardin, Paola Ferretti, Stefania Funari

Introduzione soft alla matematica per l economia e la finanza. Marta Cardin, Paola Ferretti, Stefania Funari Introduzione soft alla matematica per l economia e la finanza Marta Cardin, Paola Ferretti, Stefania Funari Capitolo Sistemi di equazioni lineari.8 Il Teorema di Cramer Si consideri un generico sistema

Dettagli

Fondamenti di ALGEBRA LINEARE E GEOMETRIA

Fondamenti di ALGEBRA LINEARE E GEOMETRIA Fondamenti di ALGEBRA LINEARE E GEOMETRIA Corso di laurea in Ingegneria Gestionale 2011-2012 Michel Lavrauw Dipartimento di Tecnica e Gestione dei Sistemi Industriali Università di Padova Lezione 19 Capitolo

Dettagli

Note sui sistemi lineari

Note sui sistemi lineari Note sui sistemi lineari Sia K un campo e siano m e n due numeri interi positivi. Sia A M(m n, K) e sia b K m. Consideriamo il sistema lineare Ax = b nell incognita x K n (o, se preferite, nelle incognite

Dettagli

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria. Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo

Dettagli

2. Determinare le dimensioni dei seguenti sottospazi W ed esibirne due basi basi diverse, quando è possibile:

2. Determinare le dimensioni dei seguenti sottospazi W ed esibirne due basi basi diverse, quando è possibile: aa 5-6 Esercizi 5 Basi dimensione e coordinate Soluzioni Apostol: Sezione 5 Esercizi 6a 7 8 9 Determinare le dimensioni dei seguenti sottospazi W ed esibirne due basi basi diverse quando è possibile: i

Dettagli

1. (6 pt) Si considerino le matrici A = e B = (a) Determinare gli autovalori di A con le relative molteplicità algebriche e geometriche:

1. (6 pt) Si considerino le matrici A = e B = (a) Determinare gli autovalori di A con le relative molteplicità algebriche e geometriche: CORSO DI GEOMETRIA E ALGEBRA Cognome e Nome: Corso di Laurea: 22 settembre 26 Matricola: Anno di corso: (6 pt Si considerino le matrici A = ( ( 2 2 3 e B = 4 (a Determinare gli autovalori di A con le relative

Dettagli

Richiami di Algebra Lineare

Richiami di Algebra Lineare Appendice A Richiami di Algebra Lineare In questo capitolo sono presentati alcuni concetti di algebra lineare L algebra lineare è quella branca della matematica che si occupa dello studio di vettori, spazi

Dettagli

Pagine di Algebra lineare. di premessa al testo Pagine di Geometria di Sara Dragotti. Parte terza: SISTEMI LINEARI

Pagine di Algebra lineare. di premessa al testo Pagine di Geometria di Sara Dragotti. Parte terza: SISTEMI LINEARI Pagine di Algebra lineare di premessa al testo Pagine di Geometria di Sara Dragotti Parte terza: SISTEMI LINEARI 1. Definizioni Dato un campo K ed m 1 polinomi su K in n indeterminate di grado non superiore

Dettagli

Esercizio 1 (sistema omogeneo) Discutere al variare del parametro k reale il sistema:

Esercizio 1 (sistema omogeneo) Discutere al variare del parametro k reale il sistema: Leione - esercitaioni di lgebra e Geometria - nno accademico 9- Eserciio (sistema omogeneo) Discutere al variare del parametro reale il sistema: ) ( ) ( e risolverlo per. n, m La matrice incompleta del

Dettagli

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite 3 Sistemi lineari 3 Generalità Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite ovvero, in forma matriciale, a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x

Dettagli

Esercizi svolti. delle matrici

Esercizi svolti. delle matrici Esercizi svolti. astratti. Si dica se l insieme delle coppie reali (x, y) soddisfacenti alla relazione x + y è un sottospazio vettoriale di R La risposta è sì, perchè l unica coppia reale che soddisfa

Dettagli

GEOMETRIA 1 seconda parte

GEOMETRIA 1 seconda parte GEOMETRIA 1 seconda parte Cristina Turrini C. di L. in Fisica - 2014/2015 Cristina Turrini (C. di L. in Fisica - 2014/2015) GEOMETRIA 1 1 / 40 index Spazi vettoriali 1 Spazi vettoriali 2 Sottospazi 3 Sistemi

Dettagli

Soluzioni primi compitini - Geometria 1

Soluzioni primi compitini - Geometria 1 Soluzioni primi compitini - Geometria Caterina Vernieri Ottobre 7 Le soluzioni proposte non sono state riviste dai professori Soluzioni Primi Compitini - G I compitino 7//3 Esercizio Al variare di α R

Dettagli

Capitolo 8 Forme quadratiche e loro applicazioni Esercizi svolti Tutorato di geometria e algebra lineare. Marco Robutti

Capitolo 8 Forme quadratiche e loro applicazioni Esercizi svolti Tutorato di geometria e algebra lineare. Marco Robutti Capitolo 8 Forme quadratiche e loro applicazioni Esercizi svolti Tutorato di geometria e algebra lineare Marco Robutti 5 Ottobre 2017 1 Introduzione Gli esercizi di questo capitolo riguardano i seguenti

Dettagli

G. Parmeggiani, 28/4/2016 Algebra Lineare, a.a. 2015/2016, numero di MATRICOLA PARI. Svolgimento degli Esercizi per casa 7

G. Parmeggiani, 28/4/2016 Algebra Lineare, a.a. 2015/2016, numero di MATRICOLA PARI. Svolgimento degli Esercizi per casa 7 G. Parmeggiani, 8/4/6 Algebra Lineare, a.a. 5/6, Scuola di Scienze - Corsi di laurea: Studenti: Statistica per l economia e l impresa Statistica per le tecnologie e le scienze numero di MATRICOLA PARI

Dettagli

Terminiamo gli ultimi due esercizi della lezione 4 SPAZI E SOTTOSPAZI VETTORIALI

Terminiamo gli ultimi due esercizi della lezione 4 SPAZI E SOTTOSPAZI VETTORIALI Terminiamo gli ultimi due esercizi della lezione 4 SPAZI E SOTTOSPAZI VETTORIALI Dato un campo K e (V) gruppo abeliano se è definita la legge di composizione tra gli scalari λ di K e gli elementi v di

Dettagli

LEZIONE 3. a + b + 2c + e = 1 b + d + g = 0 3b + f + 3g = 2. a b c d e f g

LEZIONE 3. a + b + 2c + e = 1 b + d + g = 0 3b + f + 3g = 2. a b c d e f g LEZIONE 3 3.. Matrici fortemente ridotte per righe. Nella precedente lezione abbiamo introdotto la nozione di soluzione di un sistema di equazioni lineari. In questa lezione ci poniamo il problema di descrivere

Dettagli

2x + y 2 = 0 2x z 1 = 0 π : x 2y + 2z 1 = 0

2x + y 2 = 0 2x z 1 = 0 π : x 2y + 2z 1 = 0 SCRIVERE IN MODO LEGGIBILE NOME E COGNOME! CORSO DI GEOMETRIA E ALGEBRA Cognome: Nome: luglio 8 Matricola: Corso di Laurea:. (8 pt Si consideri la matrice A = ( 3 3 6 4 9 4 5 (a Determinare il polinomio

Dettagli

Rango di una matrice e teorema di Rouché-Capelli

Rango di una matrice e teorema di Rouché-Capelli Rango di una matrice e teorema di Rouché-Capelli Sappiamo che a una matrice m n, A, è associata l applicazione lineare L A : R n R m, L A (X) = AX, X R n. Definizione 1. Lo spazio nullo di A, N (A), è

Dettagli

SPAZI VETTORIALI. Esercizi Esercizio 1. Sia V := R 3. Stabilire quale dei seguenti sottoinsiemi di V sono suoi sottospazi:

SPAZI VETTORIALI. Esercizi Esercizio 1. Sia V := R 3. Stabilire quale dei seguenti sottoinsiemi di V sono suoi sottospazi: SPAZI VETTORIALI Esercizi Esercizio. Sia V := R 3. Stabilire quale dei seguenti sottoinsiemi di V sono suoi sottospazi: V := { (a, a, a) V a R }, V 2 := { (a, b, a) V a, b R }, V 3 := { (a, 2a, a + b)

Dettagli