Capitolo 1 Vettori applicati e geometria dello spazio

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Capitolo 1 Vettori applicati e geometria dello spazio"

Transcript

1 Capitolo 1 Vettori applicati e geometria dello spazio Marco Robutti Facoltà di ingegneria Università degli studi di Pavia Tutorato di geometria e algebra lineare Anno accademico

2 Definizione (Vettore applicato) Un vettore applicato nel punto O e avente il secondo estremo nel punto P viene indicato con la scrittura v = OP. Un vettore è caratterizzato da: una direzione; un verso; un modulo ( v ); Figura: Un vettore.

3 Definizione (Somma tra vettori ) Figure: La somma di due vettori OA e OB non aventi la stessa direzione si ottiene costruendo il parallelogramma OACB che ha per lati OA e OB; il vettore somma corrisponde a OC, ossia alla diagonale del parallelogramma con un estremo in O.

4 Definizione (Moltiplicazione vettore scalare) Il segmento orientato w = OS = α OP = αv, con α R, ha la stessa direzione di OP e verso concorde a quest ultimo se α > 0.

5 Definizione (Vettore differenza) Il vettore differenza w = OB OA si ottiene costruendo il parallelogramma avente per lati i vettori OB e OA. Se trasliamo A di un vettore pari a w, ossia AB, troviamo B; in altre parole, B = A + w.

6 Definizione (Span di un vettore) Fissato un vettore non nullo u E 3 O, possiamo considerare l insieme di tutti i vettori applicati che si ottengono moltiplicando u per un numero reale, indichiamo tale insieme con: Span (u) = { } v E 3 O v = αu, α R

7 Definizione (Vettori linearmente indipendenti) Due vettori u e v di E 3 O sono detti: linearmente indipendenti, se v / span (u) o viceversa; linearmente dipendenti, se v span (u) o viceversa; Figure: Vettori linearmente dipendenti (a sinistra) e indipendenti (a destra).

8 Definizione (Equazioni parametriche di una retta) Una retta r in forma parametrica in E 3 O è l insieme di tutti e soli i punti P che possono essere descritti mediante una scrittura del tipo: P = P 0 + tv, t R detta equazione parametrica vettoriale per la retta r. x x 0 v 1 [P] = y, [P 0 ] = y 0, [v] = v 2, z z 0 v 3 x x 0 v 1 x = x 0 + tv 1 y = y 0 + t v 2 = y = y 0 + tv 2 z z 0 v 3 z = z 0 + tv 3

9 Figura: Una retta passante per il punto P 0 e avente come vettore direttore v.

10 Definizione (Equazioni parametriche di una retta passante per due punti dati) Dati due punti P 0 e P 1, l equazione parametrica della retta r passante per P 0 e P 1 è data da: P = P 0 + tv, t R, v = P 1 P 0 x [P] = y, [P 0 ] = z x 0 y 0 z 0 x1, [P 1 ] =, x x 0 x 1 x 0 x = x 0 + t (x 1 x 0 ) y = y 0 + t y 1 y 0 = y = y 0 + t (y 1 y 0 ) z z 0 z 1 z 0 z = z 0 + t (z 1 z 0 ) y 1 z 1

11 Figura: Una retta passante per i punti P 0 e P 1.

12 Definizione (Equazioni parametriche di un piano) Un piano π in E 3 O è l insieme di tutti e soli i punti P che si possono descrivere nel seguente modo, che chiameremo rappresentazione (o equazione) parametrica vettoriale del piano: P = P 0 + αu + βv, α, β R, x x 0 u 1 [P] = y, [P 0 ] = y 0, [u] = u 2, [v] = z z 0 u 3 v 1 v 2, v 3 x x 0 u 1 v 1 x = x 0 + αu 1 + βv 1 y = y 0 + α u 2 + β v 2 = y = y 0 + αu 2 + βv 2 z z 0 u 3 v 3 z = z 0 + αu 3 + βv 3

13 Figura: Un piano avente vettori direttori u e v.

14 Definizione (Equazioni parametriche di un piano contenente 3 punti dati) Dati tre punti P 0, P 1 e P 2, le equazioni parametriche del piano π contenente i punti dati sono date da: P = P 0 + αu + βv, α, β R, u = P 1 P 0, v = P 2 P 0 x x 0 x 1 x 2 [P] = y, [P 0 ] = y 0, [P 1 ] = y 1, [P 2 ] = y 2 z z 0 z 1 z 2 x y = z x 0 x 1 x 0 x 2 x 0 y 0 + α y 1 y 0 + β y 2 y 0 = z 0 z 1 z 0 z 2 z 0

15 Definizione (Equazioni parametriche di un piano contenente 3 punti dati) x = x 0 + α (x 1 x 0 ) + β (x 2 x 0 ) = y = y 0 + α (y 1 y 0 ) + β (y 2 y 0 ) z = z 0 + α (z 1 z 0 ) + β (z 2 z 0 )

16 Figura: Un piano passante per i punti P 0, P 1, P 2.

17 Definizione (Equazioni cartesiane di una retta) Una retta scritta sotto forma di equazioni cartesiane è vista come l intersezione tra due piani distinti contenenti la stessa retta: r : { a1 x + b 1 y + c 1 z + d 1 = 0 a 2 x + b 2 y + c 2 z + d 2 = 0

18 Definizione (Equazione cartesiana di un piano) L equazione cartesiana di un piano si ottiene considerando il piano come l insieme dei punti dello spazio che soddisfa la seguente condizione: π = {P ε OP OP0, n = 0} x P = y, P o = z x 0 y 0 z 0 a, n = b, vettore normale c In tal caso il piano può essere scritto equivalentemente in due modi: a (x x 0 ) + b (y y 0 ) + c (z z 0 ) = 0

19 Definizione (Prodotto scalare) Il prodotto scalare tra due vettori u e v è definito come: u, v = u v cos θ oppure, in coordinate: x u = y, v = z x y z u, v = xx + yy + zz

20 Definizione (Proiezione ortogonale di un vettore su un altro) Dati due vettori u e v, la proiezione ortogonale di v su u è data dal vettore w così definito: w = u, v u, u u

21 Figura: La proiezione ortogonale del vettore v sul vettore u.

22 Definizione (Norma di un vettore) Dato un vettore v = xî + yĵ + zˆk è definita come: v = v, v = x 2 + y 2 + z 2

23 Definizione (Distanza tra due punti) La distanza tra due punti A e B è uguale alla norma del vettore differenza B A: d(a, B) = (x B x A ) 2 + (y B y A ) 2 + (z B z A ) 2

24 Definizione (Distanza punto-piano) Dati un punto A = x A y A z A la distanza tra il punto e il piano è pari a: e un piano π : ax + by + cz + d = 0, d (A, π) = ax A + by A + cz A + d a 2 + b 2 + c 2

25 Definizione (Fascio proprio di piani) E dato dall insieme Ϝ r dei piani contenenti una data retta r. I piani appartenenti al fascio sono tutti e soli quelli la cui equazione può essere scritta nella forma: λ (a 1 x + b 1 y + c 1 z + d 1 ) + µ (a 2 x + b 2 y + c 2 z + d 2 ) = 0 (λ, µ) (0, 0) dove a 1 x + b 1 y + c 1 z + d 1 = 0 e a 2 x + b 2 y + c 2 z = 0 rappresentano due piani π 1 e π 2 distinti appartenenti al fascio.

26 Definizione (Fascio improprio di piani) E dato dall insieme Ϝ n dei piani aventi la stessa direzione normale n. I piani appartenenti al piano sono tutti e soli quelli la cui equazione può essere scritta nella forma: a 0 x + b 0 y + c 0 z + d = 0, a 0 0 dove [n] = b 0 0, d R c 0 0

27 Definizione (Posizione reciproca tra piani) Dati due piani: π 1 : ax + by + cz = d π : a x + b y + c z = d i due piani possono essere tra loro: paralleli; coincidenti; incidenti.

28 Definizione (Piani paralleli) I piani π e π sono paralleli se e solo se hanno la stessa retta normale per O. Ciò avviene se e solo se i vettori n e n generano la stessa retta, ovvero se e solo se n Span (n). Quindi esiste un numero reale non nullo k tale che: a = ka, b = kb, c = kc

29 Figura: Due piani paralleli hanno vettori normali linearmente dipendenti tra loro.

30 Definizione (Piani coincidenti) I piani π e π sono coincidenti se e solo se sono paralleli e se d = kd. Ovvero se: a = ka, b = kb, c = kc, d = kd

31 Definizione (Piani incidenti) I piani π e π sono incidenti se non sono paralleli e non sono coincidenti; allora la loro intersezione è una retta: r = π π e nessuna delle condizioni precedenti si verifica.

32 Figura: Due piani incidenti hanno vettori normali linearmente indipendenti tra loro e definiscono una retta in E 3 O.

33 Definizione (Posizione reciproca tra rette) Due rette r 1 e r 2 aventi rispettivamente i vettori direttori v 1 e v 2 E 3 O possono essere tra loro: parallele; incidenti; sghembe; complanari.

34 Definizione (Rette parallele) Le rette r 1 e r 2 sono parallele se e solo se hanno la stessa direzione, se e solo se i loro vettori direttori generano la stessa retta, cioè v 2 Span (v 1 ).

35 Figura: Due rette parallele hanno vettori direttori linearmente dipendenti tra loro.

36 Definizione (Rette incidenti) Le rette r 1 e r 2 sono incidenti se e solo se si intersecano in un unico punto r 1 r 2 = {P}. Esistono due metodi per poter determinare il punto di intersezione P.

37 Figura: Due rette incidenti hanno un solo punto in comune. Se hanno più di un punto in comune, allora sono coincidenti.

38 Algoritmo - Metodo 1 Avendo le equazioni cartesiane di r 1 e r 2,basta metterle a sistema: { (equazioni cartesiane di r1 ) (equazioni cartesiane di r 2 ) se il sistema ammette una soluzione, allora le due rette sono incidenti; se il sistema ammette infinite soluzioni, allora le due rette sono coincidenti; se il sistema non ammette soluzioni, allora le due rette non sono incidenti;

39 Algoritmo - Metodo 2 Avendo le equazioni parametriche di r 1 e l equazione cartesiana di r 2, si effettuano i seguenti passi: Considero un generico punto P 1 = P 01 + t 1 appartenente x alla retta r 1 e lo sostituisco al posto delle coordinate y z nelle equazioni cartesiane di r 2 : { a1 x P1 + b 1 y P1 + c 1 z P1 + d 1 = 0 a 2 x P1 + b 2 y P1 + c 2 z P1 + d 2 = 0 Risolvo il sistema considerando il parametro t 1 come variabile;

40 Algoritmo - Metodo 2 Se il sistema è risolubile, allora le due rette sono incidenti e il punto di intersezione P può essere trovato determinandone le coordinate dalla equazioni parametriche di r 1, dando al parametro il valore t 1 = t, dove t è la soluzione del sistema; se invece il sistema non è risolubile, allora vuol dire che le due rette non sono incidenti.

41 Definizione (Rette sghembe) Le rette r 1 e r 2 sono sghembe se non sono parallele e non sono incidenti. In altre parole se non vi nessun piano che le contenga entrambe: n 1 / span (n 2 ) r 1 r 2 =

42 Figura: Due rette sghembe hanno come intersezione l insieme vuoto.

43 Definizione (Rette complanari) Le rette r 1 e r 2 sono complanari se sono parallele o incidenti.

44 Figura: Due rette parallele (come in figura) o incidenti sono complanari.

45 Definizione (Posizione reciproca retta-piano) Una retta r avente vettore direttore v e un piano avente vettore normale n e giacitura {u 1, u 2 } possono essere reciprocamente nelle seguenti posizioni: incidenti; perpendicolari (la retta r è perpendicolare al piano π); paralleli; la retta r è contenuta nel piano π.

46 Definizione (Retta e piano incidenti) Una retta r e un piano π sonon incidenti se e solo se si intersecano in un unico punto: r π = {P} Esistono tre metodi per poter determinare il punto di intersezione P.

47 Figura: Una retta e un piano sono incidenti se hanno un punto in comune.

48 Algoritmo - Metodo 1 Avendo le equazioni parametriche di r e le equazioni parametriche di π, si ha che la retta e il piano sono incidenti se e solo se: v / Span (u 1, u 2 ), cioè se e solo se: v, n 0 Questo metodo è il più comodo per poter determinare se una retta e un piano sono incidenti.

49 Algoritmo - Metodo 2 Avendo le equazioni cartesiane di r e π,basta metterle a sistema: { (equazioni cartesiane di r) (equazione cartesiana di π) se il sistema ammette una soluzione, allora il piano e la retta sono incidenti; se il sistema ammette infinite soluzioni, allora la retta è contenuta nel piano; se il sistema non ammette soluzioni, allora la retta e il piano sono paralleli;

50 Algoritmo - Metodo 3 Avendo le equazioni parametriche di r e l equazione cartesiana di π, si effettuano i seguenti passi: Considero un generico punto P 1 = P 01 + t 1 appartenente x alla retta r 1 e lo sostituisco al posto delle coordinate y z nell equazione cartesiana di π: ax P1 + by P1 + cz P1 + d = 0 Risolvo l equazione considerando il parametro t 1 come variabile;

51 Algoritmo - Metodo 3 Se il sistema è risolubile, allora retta e piano sono incidenti e il punto di intersezione P può essere trovato determinandone le coordinate dalla equazioni parametriche di r 1, dando al parametro il valore t 1 = t, dove t è la soluzione dell equazione; se invece il sistema non è risolubile, allora vuol dire che le due rette non sono incidenti.

52 Definizione (Retta perpendicolare al piano) La retta r è perpendicolare al piano π se e solo se la direzione di r coincide con la direzione normale al piano, cioè: v Span (n) Esistono tre metodi per poter determinare il punto di intersezione P.

53 Figura: Una retta è perpendicolare ad un piano se il vettore direttore della prima è linearmente dipendente al vettore normale del secondo (nella figura vettore direttore e normale sono stati disegnati rispettivamente sulla retta e sul piano per ragioni di chiarezza espositiva: in realtà si trovano tutti nell origine O!)

54 Definizione (Retta e piano paralleli) La retta r e il piano π sono paralleli se e solo se: v Span (u 1, u 2 ) r π = La prima condizione equivale a dire che: v n = v, n = 0

55 Figura: Una retta e un piano sono paralleli se non hanno punti in comune e se il prodotto scalare tra il vettore direttore della retta e il vettore normale del piano è nullo (è da notare che in questa figura il vettore direttore e quello normale sono posti correttamente nell origine!).

56 Definizione (Retta contenuta nel piano) La retta r è contenuta nel piano π se e solo se: v Span (u 1, u 2 ) r π

57 Figura: Una retta è contenuta in un piano se il suo vettore direttore appartiene allo Span dei vettori generatori del piano e se esiste almeno un punto che appartiene sia alla retta che al piano.

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA FOGLIO DI ESERCIZI 1 GEOMETRIA 2009/10 Esercizio 1.1 (2.2). Determinare l equazione parametrica e Cartesiana della retta dello spazio (a) Passante per i

Dettagli

RETTE E PIANI NELLO SPAZIO

RETTE E PIANI NELLO SPAZIO VETTORI E GEOMETRIA ANALITICA 1 RETTE E PIANI NELLO SPAZIO Rette e piani in forma cartesiana e parametrica. Parallelismo e perpendicolarità, posizioni reciproche tra rette e piani, distanze. Esercizio

Dettagli

= (cioè le due terne di numeri direttori ( devono essere ) proporzionali). Tale uguaglianza non è verificata, poiché risulta ρ

= (cioè le due terne di numeri direttori ( devono essere ) proporzionali). Tale uguaglianza non è verificata, poiché risulta ρ Alcuni esercizi sullo spazio euclideo R Nel seguito R indicherà lo spazio euclideo tridimensionale standard, dotato del riferimento cartesiano naturale (pag 56-57 del libro Nota: gli esercizi proposti

Dettagli

Geometria analitica: rette e piani

Geometria analitica: rette e piani Geometria analitica: rette e piani Equazioni del piano Intersezioni di piani. Rette nello spazio Fasci di piani e rette Intersezioni fra piani e rette Piani e rette ortogonali Piani di forma parametrica

Dettagli

Prodotto scalare e ortogonalità

Prodotto scalare e ortogonalità Prodotto scalare e ortogonalità 12 Novembre 1 Il prodotto scalare 1.1 Definizione Possiamo estendere la definizione di prodotto scalare, già data per i vettori del piano, ai vettori dello spazio. Siano

Dettagli

Argomenti Capitolo 1 Richiami

Argomenti Capitolo 1 Richiami Argomenti Capitolo 1 Richiami L insieme dei numeri reali R si rappresenta geometricamente con l insieme dei punti di una retta orientata su cui sia stato fissato un punto 0 e un segmento unitario. L insieme

Dettagli

Esercizi geometria analitica nello spazio. Corso di Laurea in Informatica. Docente: Andrea Loi. Correzione

Esercizi geometria analitica nello spazio. Corso di Laurea in Informatica. Docente: Andrea Loi. Correzione Esercizi geometria analitica nello spazio Corso di Laurea in Informatica Docente: Andrea Loi Correzione 1. Denotiamo con P 1, P 13, P 3, P 1, P, P 3, P i simmetrici di un punto P rispetto ai piani coordinati

Dettagli

x + b! y + c! Osservazione: poiché ci sono infiniti piani ai quali appartiene una retta r, le equazioni non sono univocamente determinate.

x + b! y + c! Osservazione: poiché ci sono infiniti piani ai quali appartiene una retta r, le equazioni non sono univocamente determinate. 4 La retta in R 3 4 Le equazioni cartesiane di una retta Dati due piani Γ :ax +by +cz +d = 0 e Γ!: a! x + b! y + c! z + d! = 0 non paralleli tra loro, il luogo geometrico dei punti di intersezione tra

Dettagli

Rette e piani nello spazio Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1

Rette e piani nello spazio Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1 ette e piani nello spazio Federico Lastaria, Analisi e Geometria 1 Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@polimi.it ette e piani nello spazio. 9 Gennaio

Dettagli

Ingegneria Gestionale - Corso di Algebra lineare e Analisi II anno accademico 2009/2010 ESERCITAZIONE 4.4

Ingegneria Gestionale - Corso di Algebra lineare e Analisi II anno accademico 2009/2010 ESERCITAZIONE 4.4 Ingegneria Gestionale - Corso di Algebra lineare e Analisi II anno accademico 9/ ESERCITAZIONE. (Cognome) (Nome) (Numero di matricola) Proposizione Vera Falsa Per due punti distinti di R passa un unica

Dettagli

Rette e piani in R 3

Rette e piani in R 3 Rette e piani in R 3 In questa dispensa vogliamo introdurre in modo elementare rette e piani nello spazio R 3 (si faccia riferimento anche al testo Algebra Lineare di S. Lang). 1 Rette in R 3 Vogliamo

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 10: soluzioni 1 Geometria dello spazio Esercizio 1. Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2 = 0, determinare: a) Le equazioni parametriche

Dettagli

1 Rette e piani in R 3

1 Rette e piani in R 3 POLITECNICO DI MILANO. FACOLTÀ DI INGEGNERIA INDUSTRIALE. Analisi e Geometria 1. Sez. D - G. Docenti: Federico G. Lastaria, Mauro Saita, Nadir Zanchetta,. 1 1 Rette e piani in R 3 Una retta parametrizzata

Dettagli

GEOMETRIA /2009 II

GEOMETRIA /2009 II Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA Edile e Edile-Architettura - a.a. 008/009 II Emisemestre - Settimana - Foglio 0 Docente: Prof. F. Flamini - Tutore:

Dettagli

ESERCIZI SVOLTI SU: GEOMETRIA TRIDIMENSIONALE. 2. Fissato un sistema di riferimento cartesiano dello spazio euclideo O, i, j, k,

ESERCIZI SVOLTI SU: GEOMETRIA TRIDIMENSIONALE. 2. Fissato un sistema di riferimento cartesiano dello spazio euclideo O, i, j, k, ESERCIZI SVOLTI SU: GEOMETRIA TRIDIMENSIONALE 1. Fissato un sistema di riferimento cartesiano dello spazio euclideo O, i, j, k, determinare un equazione omogenea del piano parallelo al vettore v = i+j,

Dettagli

Parte 10. Geometria dello spazio I

Parte 10. Geometria dello spazio I Parte 10. Geometria dello spazio I A. Savo Appunti del Corso di Geometria 2013-14 Indice delle sezioni 1 Lo spazio vettoriale V 3 O, 1 2 Dipendenza e indipendenza lineare in V 3 O, 2 3 Sistema di riferimento

Dettagli

GEOMETRIA LINEARE E CONICHE - GIUGNO 2002. 1. Nello spazio ordinario, assegnato un riferimento ortonormale si considerino le rette: x = z 2 y = z

GEOMETRIA LINEARE E CONICHE - GIUGNO 2002. 1. Nello spazio ordinario, assegnato un riferimento ortonormale si considerino le rette: x = z 2 y = z GEOMETRIA LINEARE E CONICHE - GIUGNO 2002 1. Nello spazio ordinario, assegnato un riferimento ortonormale si considerino le rette: r : x = z y = 0 x = z 2, s : y = z. Dopo aver provato che r ed s sono

Dettagli

Rette e piani nello spazio

Rette e piani nello spazio Rette e piani nello spazio Equazioni parametriche di una retta in R 3 : x(t) = x 0 + at r(t) : y(t) = y 0 + bt t R, parametro z(t) = z 0 + ct ovvero r(t) : X(t) = P 0 + vt, t R}, dove: P 0 = (x 0, y 0,

Dettagli

Politecnico di Torino Facoltà di Architettura. Raccolta di esercizi proposti nelle prove scritte

Politecnico di Torino Facoltà di Architettura. Raccolta di esercizi proposti nelle prove scritte Politecnico di Torino Facoltà di Architettura Raccolta di esercizi proposti nelle prove scritte relativi a: algebra lineare, vettori e geometria analitica Esercizio. Determinare, al variare del parametro

Dettagli

RETTE E PIANI. ove h R. Determinare i valori di h per cui (1) r h e α sono incidenti ed, in tal caso, determinare l angolo ϑ h da essi formato;

RETTE E PIANI. ove h R. Determinare i valori di h per cui (1) r h e α sono incidenti ed, in tal caso, determinare l angolo ϑ h da essi formato; RETTE E PIANI Esercizi Esercizio 1. Nello spazio con riferimento cartesiano ortogonale Oxyz si considerino la retta r h ed il piano α rispettivamente di equazioni x = 1 + t r h : y = 1 t α : x + y + z

Dettagli

Esercizi di Geometria e Algebra Lineare C.d.L. Ingegneria Meccanica

Esercizi di Geometria e Algebra Lineare C.d.L. Ingegneria Meccanica Esercizi di Geometria e Algebra Lineare C.d.L. Ingegneria Meccanica 1) Dati i vettori a = (2, 4), b = (1, 2), c = ( 1, 1), d = (3, 6), stabilire se c e d appartengono a Span(a, b}). 2) Nello spazio vettoriale

Dettagli

Esercitazione di Analisi Matematica II

Esercitazione di Analisi Matematica II Esercitazione di Analisi Matematica II Barbara Balossi 06/04/2017 Esercizi di ripasso Esercizio 1 Sia data l applicazione lineare f : R 3 R 3 definita come f(x, y, z) = ( 2x + y z, x 2y + z, x y). a) Calcolare

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Cognome Nome Matricola FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Ciarellotto, Esposito, Garuti Prova del 21 settembre 2013 Dire se è vero o falso (giustificare le risposte. Bisogna necessariamente rispondere

Dettagli

Geometria BATR-BCVR Esercizi 9

Geometria BATR-BCVR Esercizi 9 Geometria BATR-BCVR 2015-16 Esercizi 9 Esercizio 1. Per ognuna delle matrici A i si trovi una matrice ortogonale M i tale che Mi ta im sia diagonale. ( ) 1 1 2 3 2 A 1 = A 2 1 2 = 1 1 0 2 0 1 Esercizio

Dettagli

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette Annalisa Amadori e Benedetta Pellacci amadori@uniparthenope.it pellacci@uniparthenope.it Università di Napoli Parthenope Contenuti Nel Piano

Dettagli

Appunti sul corso di Complementi di Matematica (modulo Analisi)

Appunti sul corso di Complementi di Matematica (modulo Analisi) Appunti sul corso di Complementi di Matematica (modulo Analisi) prof. B.Bacchelli. 04 - Vettori topologia in R n : Riferimenti: R.Adams, Calcolo Differenziale 2. Cap. 1.2: In R n : vettori, somma, prodotto

Dettagli

Vettori e loro applicazioni

Vettori e loro applicazioni Argomento 11 Vettori e loro applicazioni Parte B - Applicazioni geometriche Utilizzando la nozione di vettore si possono agevolmente rappresentare analiticamente distanze, rette e piani nello spazio Supponiamo

Dettagli

Parte 11. Geometria dello spazio II

Parte 11. Geometria dello spazio II Parte 11. Geometria dello spazio II A. Savo Appunti del Corso di Geometria 2010-11 Indice delle sezioni 1 Il prodotto scalare, 1 2 Distanze, angoli, aree, 4 3 Il prodotto vettoriale, 6 4 Condizioni di

Dettagli

10 dicembre Soluzione esame di geometria - Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

10 dicembre Soluzione esame di geometria - Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... 10 dicembre 003 - Soluzione esame di geometria - Ingegneria gestionale - a.a. 003-004 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura 3 ore. ISTRUZIONI

Dettagli

Esercitazione di Geometria I 13 dicembre Esercizio 1. Esercizio 2. Esercizio 3

Esercitazione di Geometria I 13 dicembre Esercizio 1. Esercizio 2. Esercizio 3 Esercitazione di Geometria I 13 dicembre 2008 a. Completa la seguente definizione: i vettori v 1, v 2,..., v n del K-spazio vettoriale V si dicono linearmente dipendenti se... b. Siano w 1, w 2, w 3 vettori

Dettagli

Geometria Analitica nello Spazio

Geometria Analitica nello Spazio Geometria Analitica nello Spazio Andrea Damiani 4 marzo 2015 Equazione della retta - forma parametrica Se sono dati il punto A(x 0, y 0, z 0 ) e il vettore v (v x, v y, v z ), il generico punto P (x, y,

Dettagli

Corso di Geometria Lezione II: Spazi vettoriali

Corso di Geometria Lezione II: Spazi vettoriali .. Corso di Geometria Lezione II: Spazi vettoriali F. Baldassarri 8 ottobre 2013 Definizione di spazio vettoriale Uno spazio vettoriale su un campo C (ad es. Q,R,C,{0, 1}) è un insieme V dotato di due

Dettagli

Esercizi svolti. Geometria analitica: rette e piani

Esercizi svolti. Geometria analitica: rette e piani Esercizi svolti. Sistemi di riferimento e vettori. Dati i vettori v = i + j k, u =i + j + k determinare:. il vettore v + u ;. gli angoli formati da v e u;. i vettore paralleli alle bisettrici di tali angoli;

Dettagli

Note di geometria analitica nel piano

Note di geometria analitica nel piano Note di geometria analitica nel piano e-mail: maurosaita@tiscalinet.it Versione provvisoria. Novembre 2015. 1 Indice 1 Punti e vettori spiccati dall origine 3 1.1 Coordinate......................................

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 8: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 8: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 8: soluzioni Esercizio 1. a) Disegnare la retta r di equazione cartesiana x 2y 4 = 0. b) Determinare l equazione cartesiana della retta r 1 passante per P

Dettagli

GEOMETRIA PIANA. 1) sia verificata l uguaglianza di segmenti AC = CB (ossia C è punto medio del segmento AB);

GEOMETRIA PIANA. 1) sia verificata l uguaglianza di segmenti AC = CB (ossia C è punto medio del segmento AB); VETTORI E GEOMETRIA ANALITICA 1 GEOMETRIA PIANA Segmenti e distanza tra punti. Rette in forma cartesiana e parametrica. Posizioni reciproche di due rette, parallelismo e perpendicolarità. Angoli e distanze.

Dettagli

LEZIONE 9. Figura 9.1.1

LEZIONE 9. Figura 9.1.1 LEZIONE 9 9.1. Equazioni cartesiane di piani. Abbiamo visto come rappresentare parametricamente un piano. Un altro interessante metodo di rappresentazione di un piano nello spazio è tramite la sua equazione

Dettagli

Esame di Geometria - 9 CFU (Appello del 14 gennaio A)

Esame di Geometria - 9 CFU (Appello del 14 gennaio A) Esame di Geometria - 9 CFU (Appello del 4 gennaio 24 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. Si considerino le rette s : { x x 2 2x 3 = 2 3x x 2 =, { x + x s 2 : 2 x 3 = x 2 =.. Stabilire

Dettagli

Soluzione. a) Per la bilinearità e la simmetria del prodotto scalare, b) Si sfruttano la bilinearità e la simmetria del prodotto scalare.

Soluzione. a) Per la bilinearità e la simmetria del prodotto scalare, b) Si sfruttano la bilinearità e la simmetria del prodotto scalare. Esercizi svolti 4 Problemi guida 117 IL PRODOTTO SCALARE Problema 41 a) Dimostra che (v + w) (v w) = v 2 w 2 b) Dimostra che v w = 1 4 [ v + w 2 v w 2 ] Soluzione a) Per la bilinearità e la simmetria del

Dettagli

Esercitazione: 16 novembre 2009 SOLUZIONI

Esercitazione: 16 novembre 2009 SOLUZIONI Esercitazione: 16 novembre 009 SOLUZIONI Esercizio 1 Scrivere [ ] equazione vettoriale, parametrica [ ] e cartesiana della retta passante 1 per il punto P = e avente direzione d =. 1 x 1 Soluzione: Equazione

Dettagli

Trapani. Dispensa di Geometria, x 1 x 2.x n. (x 1 y 1 ) (x n y n ) 2.

Trapani. Dispensa di Geometria, x 1 x 2.x n. (x 1 y 1 ) (x n y n ) 2. 2006 Trapani Dispensa di Geometria, 1 Distanze Siano P e Q punti di R n con P di coordinate allora la distanza tra P e Q e P Q = x 1 x 2 x n (x 1 y 1 ) 2 + (x n y n ) 2 e Q di coordinate Siano Σ 1 e Σ

Dettagli

Unità Didattica N 9 : La parabola

Unità Didattica N 9 : La parabola 0 Matematica Liceo \ Unità Didattica N 9 La parabola Unità Didattica N 9 : La parabola ) La parabola ad asse verticale ) La parabola ad asse orizzontale 5) Intersezione di una parabola con una retta 6)

Dettagli

Geometria analitica dello spazio

Geometria analitica dello spazio Geometria analitica dello spazio Note per l insegnamento di Matematica per Scienze Naturali e Ambientali e Scienze Geologiche Marco Abate Dipartimento di Matematica, Università di Pisa Largo Pontecorvo

Dettagli

Elementi di Algebra Lineare Spazi Vettoriali

Elementi di Algebra Lineare Spazi Vettoriali Elementi di Algebra Lineare Spazi Vettoriali Antonio Lanteri e Cristina Turrini UNIMI - 2015/2016 Antonio Lanteri e Cristina Turrini (UNIMI - 2015/2016) Elementi di Algebra Lineare 1 / 37 index Spazi vettoriali

Dettagli

Esercizi di Geometria Affine

Esercizi di Geometria Affine Esercizi di Geometria Affine Sansonetto Nicola dicembre 01 Geometria Affine nel Piano Esercizio 1. Nel piano affine standard A (R) dotato del riferimento canonico, si consideri la retta τ di equazione

Dettagli

1.[25 punti] Risolvere il seguente sistema di equazioni lineari al variare del parametro reale λ: X +Y +Z = 2. X 2Y +λz = 2

1.[25 punti] Risolvere il seguente sistema di equazioni lineari al variare del parametro reale λ: X +Y +Z = 2. X 2Y +λz = 2 Università di Modena e Reggio Emilia Facoltà di Scienze MM.FF.NN. PROVA SCRITTA DI GEOMETRIA A del 27 giugno 2011 ISTRUZIONI PER LO SVOLGIMENTO. Scrivere cognome, nome, numero di matricola in alto a destra

Dettagli

La retta nel piano. Supponiamo che la retta r sia assegnata attraverso un suo punto P 0 (x 0, y 0 ) e un vettore v (l, m) che ne indichi la direzione.

La retta nel piano. Supponiamo che la retta r sia assegnata attraverso un suo punto P 0 (x 0, y 0 ) e un vettore v (l, m) che ne indichi la direzione. La retta nel piano Equazioni vettoriale e parametriche di una retta Supponiamo che la retta r sia assegnata attraverso un suo punto P 0 (x 0, y 0 ) e un vettore v (l, m) che ne indichi la direzione. Condizione

Dettagli

15 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

15 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI 15 luglio 01 - Soluzione esame di geometria - Ing. gestionale - a.a. 01-01 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono

Dettagli

Geometria analitica del piano pag 25 Adolfo Scimone. Equazione della retta perpendicolare ad una retta data passante per un punto

Geometria analitica del piano pag 25 Adolfo Scimone. Equazione della retta perpendicolare ad una retta data passante per un punto Geometria analitica del piano pag 5 Adolfo Scimone Equazione della retta perpendicolare ad una retta data passante per un punto Consideriamo una retta r di equazione r: ax by sia P ( x y), un punto del

Dettagli

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi)

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi) Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006 Matematica 2 (Analisi) Nome:................................. N. matr.:.................................

Dettagli

( ) e B( x 2. ( ) 2 + ( y 2. ( ), B( x 2

( ) e B( x 2. ( ) 2 + ( y 2. ( ), B( x 2 1 Il punto in R 3 La geometria analitica nello spazio: punti, vettori, rette e piani sintesi e integrazione prof D Benetti Un punto P nello spazio è associato a una terna ordinata di numeri reali numero

Dettagli

Esercizi per il corso di Algebra e Geometria L.

Esercizi per il corso di Algebra e Geometria L. Esercizi per il corso di Algebra e Geometria L AA 2006/2007 1 Foglio 1 In tutti gli esercizi che seguiranno lo spazio ambiente sarà il piano cartesiano a valori nel campo dei numeri reali, dove supporremo

Dettagli

EQUAZIONE DELLA RETTA

EQUAZIONE DELLA RETTA EQUAZIONE DELLA RETTA EQUAZIONE DEGLI ASSI L equazione dell asse x è 0. L equazione dell asse y è 0. EQUAZIONE DELLE RETTE PARALLELE AGLI ASSI L equazione di una retta r parallela all asse x è cioè è uguale

Dettagli

ESERCIZI sui VETTORI

ESERCIZI sui VETTORI ESERCIZI sui VETTORI 1. Calcolare la somma di v 1 (2, 3) e v 2 (1, 4). 2. Calcolare la somma di v 1 (1, 5, 4) e v 2 (6, 8, 2). 3. Calcolare il prodotto di α = 2 e v 1 (1, 4). 4. Calcolare il prodotto di

Dettagli

REGISTRO DELLE ESERCITAZIONI

REGISTRO DELLE ESERCITAZIONI UNIVERSITA DEGLI STUDI DI GENOVA FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI REGISTRO DELLE ESERCITAZIONI del Corso UFFICIALE di GEOMETRIA A tenute dal prof. Domenico AREZZO nell anno accademico

Dettagli

Condizione di allineamento di tre punti

Condizione di allineamento di tre punti LA RETTA L equazione lineare in x e y L equazione: 0 con,,, e non contemporaneamente nulli, si dice equazione lineare nelle due variabili e. Ogni coppia ; tale che: 0 si dice soluzione dell equazione.

Dettagli

Per le risposte utilizza gli spazi predisposti. Quando richiesto, il procedimento va esposto brevemente, ma in maniera comprensibile.

Per le risposte utilizza gli spazi predisposti. Quando richiesto, il procedimento va esposto brevemente, ma in maniera comprensibile. COGNOME............................... NOME..................................... Punti ottenuti Esame di geometria Scrivi cognome e nome negli spazi predisposti in ciascuno dei tre fogli. Per ogni domanda

Dettagli

Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria II assegnati da dicembre 2000 a dicembre 2003

Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria II assegnati da dicembre 2000 a dicembre 2003 Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria assegnati da dicembre 2000 a dicembre 2003 11/12/2000 n R 4 sono assegnati i punti A(3, 0, 1, 0), B(0, 0, 1, 0), C(2, 1, 0,

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 8 SETTEMBRE 2015 VERSIONE A

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 8 SETTEMBRE 2015 VERSIONE A FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 8 SETTEMBRE 015 VERSIONE A DOCENTE: MATTEO LONGO 1. Domande. Esercizi Esercizio 1 (8 punti). Al variare del parametro a R, considerare

Dettagli

Soluzioni agli Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento)

Soluzioni agli Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento) Soluzioni agli Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento) Relazioni 1) Quali delle seguenti relazioni sono di equivalenza? x, y R {0} xry x/y Q x, y Z xry x + y è divisibile

Dettagli

Algebra lineare Geometria 1 11 luglio 2008

Algebra lineare Geometria 1 11 luglio 2008 Algebra lineare Geometria 1 11 luglio 2008 Esercizio 1. Si considerino la funzione: { R f : 3 R 3 (α, β, γ) ( 2β α γ, (k 1)β + (1 k)γ α, 3β + (k 2)γ ) dove k è un parametro reale, e il sottospazio U =

Dettagli

PIANI E RETTE NELLO SPAZIO / ESERCIZI SVOLTI

PIANI E RETTE NELLO SPAZIO / ESERCIZI SVOLTI M.GUIDA, S.ROLANDO, 01 1 PIANI E RETTE NELLO SPAZIO / ESERCIZI SVOLTI L asterisco contrassegna gli esercizi meno basilari (perché più difficili o di approfondimento). Sarà sempre sottinteso che nello spazio

Dettagli

Geometria analitica I supplementi sulle rette. (M.S. Bernabei & H. Thaler)

Geometria analitica I supplementi sulle rette. (M.S. Bernabei & H. Thaler) Geometria analitica I supplementi sulle rette (M.S. Bernabei & H. Thaler) Siano dati un vettore v = li + mj = (l, m) non nullo e un punto P 0 = x 0, y 0. Cerchiamo la retta r che passa per il punto P 0

Dettagli

GEOMETRIA ANALITICA

GEOMETRIA ANALITICA GEOMETRIA ANALITICA matematica@blogscuola.it LE COORDINATE CARTESIANE Quando si vuole fissare un sistema di coordinate cartesiane su una retta r, è necessario considerare: un punto O detto origine; un

Dettagli

Istituto Villa Flaminia - IV Scientifico Prova Orale di Matematica (221) 16 Marzo 2015

Istituto Villa Flaminia - IV Scientifico Prova Orale di Matematica (221) 16 Marzo 2015 Nome e Cognome: Istituto Villa Flaminia - IV Scientifico Prova Orale di Matematica (221) 16 Marzo 2015 1. La retta r : x = 1 + t y = 2 3t z = t A. sono paralleli B. sono sghembi C. sono perpendicolari

Dettagli

Soluzione facsimile 2 d esame di geometria - Ingegneria gestionale - a.a ISTRUZIONI

Soluzione facsimile 2 d esame di geometria - Ingegneria gestionale - a.a ISTRUZIONI Soluzione facsimile d esame di geometria - Ingegneria gestionale - a.a. 00-004 COGNOME......................................... NOME......................................... N. MATRICOLA................

Dettagli

Geometria e Topologia I (U1-4) 2006-mag-10 61

Geometria e Topologia I (U1-4) 2006-mag-10 61 Geometria e Topologia I (U1-4) 2006-mag-10 61 (15.9) Teorema. Consideriamo il piano affine. Se A A 2 (K) è un punto e r una retta che non passa per A, allora esiste unica la retta per A che non interseca

Dettagli

Corso di Laurea in Management e Marketing Esercizi di Algebra Lineare (1)

Corso di Laurea in Management e Marketing Esercizi di Algebra Lineare (1) Corso di Laurea in Management e Marketing Esercizi di Algebra Lineare (1) 1) Si stabilisca se ciascuno dei seguenti sottoinsiemi di R 2 è costituito da vettori linearmente indipendenti. Si determini la

Dettagli

(x B x A, y B y A ) = (4, 2) ha modulo

(x B x A, y B y A ) = (4, 2) ha modulo GEOMETRIA PIANA 1. Esercizi Esercizio 1. Dati i punti A(0, 4), e B(4, ) trovarne la distanza e trovare poi i punti C allineati con A e con B che verificano: (1) AC = CB (punto medio del segmento AB); ()

Dettagli

LEZIONE 9. k, tenendo conto delle formule che permettono di calcolare il prodotto scalare ed il prodotto vettoriale, otteniamo

LEZIONE 9. k, tenendo conto delle formule che permettono di calcolare il prodotto scalare ed il prodotto vettoriale, otteniamo LEZIONE 9 9.1. Prodotto misto. Siano dati i tre vettori geometrici u, v, w V 3 (O) definiamo prodotto misto di u, v e w il numero u, v w. Fissiamo un sistema di riferimento O ı j k in S 3. Se u = u x ı

Dettagli

Parte 9. Geometria del piano

Parte 9. Geometria del piano Parte 9. Geometria del piano A. Savo Appunti del Corso di Geometria 2013-14 Indice delle sezioni 1 Vettori geometrici del piano, 1 2 Lo spazio vettoriale VO 2, 3 3 Sistemi di riferimento, 8 4 Equazioni

Dettagli

Esercizi di Algebra Lineare. Claretta Carrara

Esercizi di Algebra Lineare. Claretta Carrara Esercizi di Algebra Lineare Claretta Carrara Indice Capitolo. Operazioni tra matrici e n-uple. Soluzioni 3 Capitolo. Rette e piani 5. Suggerimenti 9. Soluzioni 0 Capitolo 3. Gruppi, spazi e sottospazi

Dettagli

Ingegneria Meccanica; Algebra lineare e Geometria 2008/2009

Ingegneria Meccanica; Algebra lineare e Geometria 2008/2009 Capitolo Ingegneria Meccanica; Algebra lineare e Geometria 8/9. Esercii svolti su rette e piani Eserciio. Stabilire se le due rette r e s sono coincidenti oppure no: ( ( ( ( ( ( 7 r : = + t ; s : = + t

Dettagli

Soluzione facsimile 1 d esame di geometria - Ingegneria gestionale - a.a ISTRUZIONI

Soluzione facsimile 1 d esame di geometria - Ingegneria gestionale - a.a ISTRUZIONI Soluzione facsimile 1 d esame di geometria - Ingegneria gestionale - a.a. 003-004 COGNOME......................................... NOME......................................... N. MATRICOLA................

Dettagli

Esercizi Riepilogativi Svolti. = 1 = Or(v, w)

Esercizi Riepilogativi Svolti. = 1 = Or(v, w) Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia FORMULE DI GEOMETRIA IN R TRASFORMAZIONI DI R CIRCONFERENZE Docente: Prof F Flamini

Dettagli

Spazi vettoriali euclidei.

Spazi vettoriali euclidei. Spazi vettoriali euclidei Prodotto scalare, lunghezza e ortogonalità in R n Consideriamo lo spazio vettoriale R n = { =,,, n R}, n con la somma fra vettori e il prodotto di un vettore per uno scalare definiti

Dettagli

Esercizi sulle superfici - aprile 2009

Esercizi sulle superfici - aprile 2009 Esercizi sulle superfici - aprile 009 Ingegneria meccanica 008/009 Esercizio 1. Scrivere l equazione della superficie ottenuta ruotando la retta s : x = y, y =z attorno alla retta r : x = y, x =3z. Soluzione:

Dettagli

CORSO DI LAUREA IN INGEGNERIA.

CORSO DI LAUREA IN INGEGNERIA. CORSO DI LAUREA IN INGEGNERIA. FOGLIO DI ESERCIZI 4 GEOMETRIA E ALGEBRA LINEARE 2010/11 Esercizio 4.1 (2.2). Determinare l equazione parametrica e Cartesiana della retta dello spazio (a) Passante per i

Dettagli

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0.

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0. . Rette in R ; circonferenze. In questo paragrafo studiamo le rette e le circonferenze in R. Ci sono due modi per descrivere una retta in R : mediante una equazione cartesiana oppure mediante una equazione

Dettagli

Appunti: il piano cartesiano. Distanza tra due punti

Appunti: il piano cartesiano. Distanza tra due punti ppunti: il piano cartesiano Distanza tra due punti Come determinare la distanza tra i punti ( ; ) e ( ; ): Se i due punti e hanno la stessa ascissa = allora (-3;1) (-3; 5) d()= d()= 1 5 4 4 Se i due punti

Dettagli

Vettori applicati. Capitolo Richiami teorici. Definizione 1.1 Un sistema di vettori applicati Σ è un insieme

Vettori applicati. Capitolo Richiami teorici. Definizione 1.1 Un sistema di vettori applicati Σ è un insieme Capitolo 1 Vettori applicati 1.1 Richiami teorici Definizione 1.1 Un sistema di vettori applicati Σ è un insieme {(P i,v i ), P i E, v i V, i = 1,...,N}, (1.1) dove P i è detto punto di applicazione del

Dettagli

Vettori e geometria analitica in R 3 1 / 25

Vettori e geometria analitica in R 3 1 / 25 Vettori e geometria analitica in R 3 1 / 25 Sistemi di riferimento in R 3 e vettori 2 / 25 In fisica, grandezze fondamentali come forze, velocità, campi elettrici e magnetici vengono convenientemente descritte

Dettagli

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

x 1 Fig.1 Il punto P = P =

x 1 Fig.1 Il punto P = P = Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi

Dettagli

Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria A.A ESERCIZI DA CONSEGNARE prof.

Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria A.A ESERCIZI DA CONSEGNARE prof. Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria A.A. 2015-2016 ESERCIZI DA CONSEGNARE prof. Cigliola Consegna per Martedì 6 Ottobre Esercizio 1. Una matrice quadrata A si

Dettagli

Matematica per Analisi dei Dati,

Matematica per Analisi dei Dati, Matematica per Analisi dei Dati, 230209 1 Spazio vettoriale R n Sia n un intero positivo fissato Lo spazio vettoriale R n e l insieme delle n ple ordinate di numeri reali, che rappresenteremo sempre come

Dettagli

Applicazioni ed esercitazioni

Applicazioni ed esercitazioni Applicazioni ed esercitazioni Università Mediterranea di Reggio Calabria Facoltà di Architettura Corso di DISEGNO Modulo 1 Prof. Franco Prampolini Unità didattica n. 5 Fondamenti di Geometria Descrittiva

Dettagli

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni Corso di Geometria Ing. Informatica e Automatica Test : soluzioni k Esercizio Data la matrice A = k dipendente dal parametro k, si consideri il k sistema lineare omogeneo AX =, con X = x x. Determinare

Dettagli

Liceo Scientifico Cassini Esercizi di matematica, classe 5F, foglio3, soluzioni. normale parallelo a quello direzionale della retta sarà quindi

Liceo Scientifico Cassini Esercizi di matematica, classe 5F, foglio3, soluzioni. normale parallelo a quello direzionale della retta sarà quindi Liceo Scientifico Cassini Esercizi di matematica, classe 5F, foglio3, soluzioni Problema1 x = y Dato il punto P(0,1,2), la retta r: y = z 2 ed il piano α: x 3y + z = 0 a) Trova il piano passante per P

Dettagli

I VERIFICA DI GEOMETRIA 1 CORSO DI LAUREA IN MATEMATICA - 4 DICEMBRE 2007

I VERIFICA DI GEOMETRIA 1 CORSO DI LAUREA IN MATEMATICA - 4 DICEMBRE 2007 A I VERIFICA DI GEOMETRIA 1 CORSO DI LAUREA IN MATEMATICA - 4 DICEMBRE 2007 ESERCIZIO 1. Si consideri il seguente sistema di equazioni lineari x + y + 2z = 1 2x + ky + 4z = h 2x 2y + kz = 0 (a) Determinare,

Dettagli

Esercizi di geometria analitica negli spazi affini Giorgio Ottaviani

Esercizi di geometria analitica negli spazi affini Giorgio Ottaviani Esercizi di geometria analitica negli spazi affini Giorgio Ottaviani Percorse a cavallo duemila chilometri di steppa russa, superó gli Urali, entró in Siberia, viaggió per quaranta giorni fino a raggiungere

Dettagli

(VX) (F) Se A e B sono due matrici simmetriche n n allora anche A B è una matrice simmetrica.

(VX) (F) Se A e B sono due matrici simmetriche n n allora anche A B è una matrice simmetrica. 5 luglio 010 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

LEZIONE 8. Figura 8.1.1

LEZIONE 8. Figura 8.1.1 LEZIONE 8 8.1. Equazioni parametriche di rette. In questo paragrafo iniziamo ad applicare quanto spiegato sui vettori geometrici per dare una descrizione delle rette nel piano e nello spazio. Sia r S 3

Dettagli

20 gennaio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

20 gennaio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... 0 gennaio 010 - Soluzione esame di geometria - 1 crediti Ingegneria gestionale - a.a. 009-010 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore.

Dettagli

MATEMATICA PRIMO COMPITINO SOLUZIONE DI ALCUNI ESERCIZI PRIMA PARTE. Esercizio 1. (Testo B) Determina, motivando la risposta, se la funzione f : R R

MATEMATICA PRIMO COMPITINO SOLUZIONE DI ALCUNI ESERCIZI PRIMA PARTE. Esercizio 1. (Testo B) Determina, motivando la risposta, se la funzione f : R R ANNO ACCADEMICO 25 6 SCIENZE GEOLOGICHE E SCIENZE NATURALI E AMBIENTALI MATEMATICA PRIMO COMPITINO SOLUZIONE DI ALCUNI ESERCIZI PROFF MARCO ABATE E MARGHERITA LELLI-CHIESA PRIMA PARTE Esercizio (Testo

Dettagli

Capitolo XI GEOMETRIA LINEARE AFFINE EUCLIDEA

Capitolo XI GEOMETRIA LINEARE AFFINE EUCLIDEA Capitolo XI GEOMETRIA LINEARE AFFINE EUCLIDEA 1. Spazi affini euclidei Se, in luogo dello spazio affine costruito a partire dallo spazio vettoriale R n, si considera quello associato allo spazio euclideo

Dettagli

Geometria Analitica Domande e Risposte

Geometria Analitica Domande e Risposte Geometria Analitica Domande e Risposte A. Il Piano Cartesiano. Qual è la formula della distanza tra due punti nel piano cartesiano? Per calcolare la formula della distanza tra due punti nel piano cartesiano

Dettagli

GEOMETRIA ANALITICA Prof. Erasmo Modica

GEOMETRIA ANALITICA Prof. Erasmo Modica ISTITUTO PROVINCIALE DI CULTURA E LINGUE NINNI CASSARÀ SEZIONE DISTACCATA DI CEFALÙ CLASSE V C GEOMETRIA ANALITICA Prof. Erasmo Modica LE COORDINATE CARTESIANE Quando si vuole fissare un sistema di coordinate

Dettagli

Esercizi di Geometria Affine ed Euclidea del Piano e dello Spazio

Esercizi di Geometria Affine ed Euclidea del Piano e dello Spazio Esercizi di Geometria Affine ed Euclidea del Piano e dello Spazio Sansonetto Nicola 15 aprile 2016 Geometria Affine nel Piano Esercizio 1. Nel piano affine standard A 2 (R) dotato del riferimento canonico,

Dettagli

Ricordiamo. 1. Tra le equazioni delle seguenti rette individua e disegna quelle parallele all asse delle ascisse:

Ricordiamo. 1. Tra le equazioni delle seguenti rette individua e disegna quelle parallele all asse delle ascisse: La retta Retta e le sue equazioni Equazioni di rette come luogo geometrico y = h h R equazione di una retta parallela all asse delle ascisse x = 0 equazione dell asse delle ordinate y = h h R equazione

Dettagli