Ingegneria Meccanica; Algebra lineare e Geometria 2008/2009

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Ingegneria Meccanica; Algebra lineare e Geometria 2008/2009"

Transcript

1 Capitolo Ingegneria Meccanica; Algebra lineare e Geometria 8/9. Esercii svolti su rette e piani Eserciio. Stabilire se le due rette r e s sono coincidenti oppure no: ( ( ( ( ( ( 7 r : = + t ; s : = + t y y 6 Ci sono tre metodi per risolvere l eserciio. Primo metodo: prendiamo il punto P della retta r e vediamo se appartiene all altra retta s; per questo dobbiamo scrivere: ( = ( t ( { =7 t =6 t { t = t = il sistema è soddisfatto; a questo punto dobbiamo confrontare i due vettori direttori e vedere se sono proporionali: ( ( = k si vede subito che risulta k = /. A questo punto possiamo affermare che le due rette sono coincidenti. Secondo metodo: visto che i P delle due rette sono diversi, è sufficiente vedere se ciascun P appartiene all altra retta; ora, dal primo metodo sappiamo che ciò è vero per il P della prima retta, quindi procediamo al calcolo dell altro P : ( ( ( { { 7 7=+t t = = + t 6 6= +t t = il sistema risulta soddisfatto. Le due rette coincidono dal momento che hanno due punti distinti in comune. Attenione: questo metodo è corretto se i due P sono distinti. Tero metodo: intersechiamo le due rette, arrivando al sistema lineare { +t =7 t +t =6 t { t +t = t +t = sistema indeterminato le due rette sono quindi coincidenti.

2 Ingegneria Meccanica; Algebra lineare e Geometria 8/9 Eserciio. Scrivere l equaione della retta s passante per il punto A di coordinate parallela alla retta r di equaione = + t. e Se prendiamo Q in modo tale che il vettore direttore della retta r sia uguale al vettore OQ, possiamo scrivere l equaione vettoriale della retta s: s : OP = OA + t OQ applicando F β ad entrambi i membri dell ultima equaione scritta arriviamo alla rappresentaione parametrica della retta s: s : = + t. Eserciio. Scrivere l equaione della retta r passante per i punti A di coordinate e B di coordinate. L equaione vettoriale della retta r è: OP = OA + t ( OB OA applicando F β ad entrambi i membri dell ultima equaione scritta arriviamo alla rappresentaione parametrica della retta r: r : = + t = + t. Eserciio. Scrivere l equaione della retta s passante per il punto A di coordinate e parallela alla retta r passante per i punti B di coordinate e C di coordinate. 6 L equaione vettoriale della retta s è: OP = OA + t ( OC OB applicando F β ad entrambi i membri dell ultima equaione scritta arriviamo alla rappresentaione parametrica della retta r: s : = + t = + t 6 6

3 . Esercii svolti su rette e piani Osservaione: se vogliamo che le coordinate del vettore direttore siano tutte intere, è sufficiente moltiplicarle per. L equaione così ottenuta risulta essere equivalente alla precedente: s : = + t 9. 6 Eserciio. Calcolare l interseione delle rette r : = + t e s : = + t. Per cercare l interseione delle due rette dobbiamo utiliare due parametri diversi, t e t : +t = t +t = +t t =+t t =6 t +t = +(6 t t =+(6 t t =6 t t = 7 t = 9 il sistema è impossibile, quindi le due rette non hanno interseione. Ci possiamo allora chiedere se sono parallele o sghembe. Vediamo se le rette sono parallele: basta confrontare i due vettori direttori e guardare se sono proporionali = k = k =k =k il sistema è impossibile; le rette sono quindi sghembe. k = k = k = Eserciio 6. Stabilire se il punto A di coordinate appartiene al piano π di equaione parametrica = + t + s. Per prima cosa verifichiamo che l equaione parametrica scritta rappresenta effettivamente un piano; per fare questo è sufficiente analiare i vettori di giacitura e stabilire che non sono proporionali: =k k = = k =k k = = k k = il sistema è impossibile, quindi i vettori di giacitura non sono proporionali l equaione scritta definisce correttamente un piano nello spaio.

4 Ingegneria Meccanica; Algebra lineare e Geometria 8/9 Per stabilire se il punto a π, dobbiamo risolvere il sistema lineare seguente: t = 9 7 = +t +s = t +s = +t s t +(t = t (t = s =t t = s =t il sistema è impossibile: il punto non appartiene al piano. Eserciio 7. Determinare l equaione del piano π passante per i punti A, B C. Scriviamo per prima cosa l equaione vettoriale del piano: OP = OA + t ( OB OA + s ( OC OA 7 e applicando F β ad entrambi i membri dell ultima equaione scritta arriviamo alla rappresentaione parametrica della retta r: = + t 7 + s l equaione del piano π risulta essere: = + t Eserciio 8. Stabilire se i punti A, B 6 + s. e C sono allineati. Possiamo procedere in due modi. Primo metodo: scriviamo la retta passante per i punti A e B e vediamo se il tero punto C appartiene a questa retta. La retta r passante per A e B ha equaione parametrica: 6 = + t a questo punto cerchiamo di risolvere il sistema seguente (stiamo guardando se C appartiene alla retta r: = 6t t = =+t t = = t t = il sistema è determinato i tre punti assegnati sono allineati.

5 . Esercii svolti su rette e piani Secondo metodo: si confrontano i vettori proporionali: OB OA = OC OA = ( OB OA i due vettori sono proporionali in quanto: 8 6 =( e = ( OC OA = 6 questo ci indica l allineamento dei tre punti assegnati A, B e C. Eserciio 9. Riesci a scrivere la retta r : = +t ; guardando se sono in modo del tutto equivalente ma utiliando altri numeri? E possibile procedere in questo modo: si assegna al parametro t un valore determinando così un punto che appartiene alla retta; questo punto sarà ilnuovop. Per quanto riguarda il vettore direttore basta moltiplicarlo per un numero k. Ad esempio, scelto t =ek = si ottiene una nuova equaione, ma equivalente a quella assegnata: 6 = + t. 6 Eserciio. Riesci a scrivere il piano π : = 9 + t 7 + s in modo del tutto equivalente ma utiliando altri numeri? E possibile procedere in modo analogo all eserciio precedente; attribuiamo ai due parametri i valori t = es = ed otteniamo un nuovo P : = 9 +( 7 + = per avere dei nuovi vettori di giacitura è possibile prendere t =,s = per un vettore e t =,s= per l altro (si osservi che le coppie (; e (; non sono proporionali: ι = 7 +( = 9 j = 7 + = 9 7

6 6 Ingegneria Meccanica; Algebra lineare e Geometria 8/9 in definitiva abbiamo questa nuova equaione parametrica (equivalente però a quella iniiale: = 9 + t 9 + s. 7 Eserciio. Determina l interseione (se esiste tra la retta r passante per i punti A e B ed il piano π di equaione = + t + s. Scriviamo prima di tutto l equaione parametrica della retta r: = + t per determinare l interseione della retta con il piano dobbiamo risolvere il sistema seguente: +t + s = t +t s = t +s =t t = s = t = il sistema è determinato: c è un unico punto di interseione E e, visto che siamo interessati alle sue coordinate, possiamo sostituire i parametri ottenuti al posto della retta e del piano. Per semplicità, ovviamente, conviene sostituire t = nell equaione parametrica della retta r: OE = = + = ; ovviamente troviamo lo stesso risultato sostituendo t = e s = nell equaione parametrica del piano π: ( OE = + + =. Eserciio. Scrivere l equaione cartesiana del piano π così definito: π : = + t + s Riscriviamo l equaione del piano sotto forma di sistema: =+t s y =+t s = t +s

7 . Esercii svolti su rette e piani 7 ricaviamoci il parametro t dalla prima equaione e sostituiamo l espressione di t nelle altre due equaioni; poi ci ricaviamo il parametro s dalla seconda e lo sostituiamo nella tera: t = +s t = +s y =+( +s s s = y = ( +s + s ( y = semplificando la tera equaione, nella quale non appaiono più i parametri, otteniamo l equaione cartesiana del piano: +y + 7 =. Verifichiamo se le coordinate del punto P soddisfano l equaione appena ricavata: = ; questo controllo però non è sufficiente per poter affermare di aver fatto tutto in modo corretto. Sostituiamo allora le coordinate del punto generico P nell equaione cartesiana del piano: +t s + ( + t s+ ( t +s 7 = =. Eserciio. Sia β = { ι ; j } una base di V O. Si calcoli le coordinate di ι j rispetto alla base β = { ι + j ; ι j }. E sufficiente impostare l equaione: svolgendo i calcoli otteniamo: ι j = ( ι + j +y ( ι j ι j =( +y ι +( y j uguagliando i coefficienti di ι edi j arriviamo al sistema lineare { = +y =. y = y = 7 ( ( ( ( ( a a Eserciio. Sono assegnate le rette r : = +t e s : = +t y a y stabilire per quali valori di a le due rette sono parallele. Analiiamo i vettori direttori e guardiamo per quali valori di a risultano proporionali: ( ( = k a ( ; a si trova subito che deve essere necessariamente a =. Questo ci assicura che le rette sono parallele? No, dobbiamo continuare la nostra analisi, in quanto potrebbero essere due rette coincidenti. Vediamo se il P della retta s appartiene alla retta r (ho sostituito a =: ( ( 8 = + t ( { = 8 + t = +t il sistema è impossibile: per a = le due rette sono parallele. t = t =

8 8 Ingegneria Meccanica; Algebra lineare e Geometria 8/9 Eserciio. Stabilire per quali valori di a la retta di equaione parametrica a = a + t è contenuta nel piano π di equaioni parametriche = + t + s. Ci conviene determinare l equaione cartesiana del piano esuccessivamente sostituire leequaioni della retta al posto di, y e. Vediamo allora l equaione cartesiana del piano: ( y =+t t = + =+t s y y =+s s = y s = y = t + s = t + y = ( + y + y arriviamo all equaione cartesiana + = a questo punto possiamo sostituire le equaioni della retta: at +( t = (a t = dal momento che la retta deve essere contenuta nel piano π, l ultima equaione scritta deve essere verificata per ogni t R; ma ciò non può accadere, dal momento che l equaione dovrebbe essere del tipo t =. Ne deduciamo che non esiste nessun valore di a per cui la retta è contenuta nel piano π; non solo, ma possiamo anche affermare che, se a =, la retta risulta parallela al piano (non ci sono interseioni con π; se invece a la retta interseca il piano in un solo punto. Eserciio 6. Scrivere l equaione parametrica di una retta contenuta nel piano dell eserciio precedente. E sufficiente considerare la retta = + t oppure la retta = + s. In generale, una retta contenuta nel piano ha equaione: = + t a + b dove (a; b (;.

9 . Esercii svolti su rette e piani 9 Eserciio 7. Scrivere le equaioni parametriche della retta interseione dei due piani di equaioni cartesiane y + = e + y +=. Ricaviamoci la da entrambe le equaioni considerando come parametro t, ottenendo: =y t + = y +t = t 7 y = t 7 l equaione parametrica cercata è: 7 = 7 + t. Eserciio 8. Determinare l equaione del piano contenente la retta di equaione = + t epassanteperilpuntoa. 6 Primo metodo: E sufficiente determinare il piano passante per tre punti, di cui due appartengono alla retta e il tero è proprio il punto A. Per ottenere le coordinate di due punti B, C sulla retta basta prendere t = et = (nonè l unica scelta: OB = ; OC = + = ; il piano passante per i tre punti ha equaione vettoriale: OP = ( ( OA + t OB OA + s OC OA applicando come al solito la trasformaione F β otteniamo: = + t + s Secondo metodo: Se indichiamo con OQ il vettore direttore della retta, il piano ha equaione vettoriale: OP = OA + t ( OQ + s OB OA passando alle coordinate abbiamo: = + t + s 6 7 l equaione trovata è diversa dalla precedente, ma è ad essa equivalente.

10 Ingegneria Meccanica; Algebra lineare e Geometria 8/9 Eserciio 9. Verificare che i tre punti A, B e C sono allineati e determinare 6 l equaione di tutti i piani che passano per essi. Verifichiamo per prima cosa l allineamento dei tre punti con la proporionalità dei due vettori: OB OA ; OC OA passando alle coordinate con l applicaione F β si ottiene: OB OA = = ; OC OA = 6 = si vede subito che risulta ( ( OC OA = OB OA. Passiamo ora alla determinaione dell equaione dei piani che passano per questi punti; questi piani devono contenere la retta passante per A e B, che ha equaione parametrica: = + t ; un piano che contiene questa retta ha equaione parametrica: a = + t + s b c dove il secondo vettore di giacitura non è proporionale all altro. Eserciio. Determinare l equaione cartesiana del piano = + t + s. Si nota subito che la coordinata y è uguale a indipendentemente dal valore dei parametri; prima però di affermare che l equaione è y = dobbiamo verificare che i due vettori di giacitura non sono proporionali: = k = k = k =k k = = k = il sistema è impossibile, quindi si tratta effettivamente di un piano; l equaione cercata è y =. Eserciio. Scrivere le equaioni parametriche del piano di equaione cartesiana +y 8=.

11 . Esercii svolti su rette e piani Ricaviamoci la considerando le altre variabili come parametri t e s: possiamo allora scrivere: = = s t +8 t s y +8 = In modo del tutto equivalente potevamo ricavarci la y: possiamo allora scrivere: = t s t +8 s y = s t +8 8 = + t + s. s t +8 = 8 + t + s ; in questo modo abbiamo un altra rappresentaione parametrica, diversa dalla precedente ma ad essa equivalente. Eserciio. Scrivi le equaioni cartesiane della retta = + t. Ricaviamoci il parametro t da tutte e tre le equaioni: t = t = y t = + uguagliando a due a due le equaioni arriviamo a scrivere le equaioni cartesiane della retta: = y { + y = y = +. y + = Eserciio. Scrivere le equaioni cartesiane della retta = + t. 7

12 Ingegneria Meccanica; Algebra lineare e Geometria 8/9 Questa volta non è possibile ricavare il parametro t da tutte e tre le equaioni; possiamo ricavarlo dalla prima e dalla tera, ottenendo: t = t = 7 uguagliando otteniamo: =. Manca un altra equaione; basta guardare l equaione 7 parametrica della retta e ci accorgiamo che la y è sempre uguale a, per cui l altra equaione è semplicemente y =. In definitiva, le equaioni cartesiane della retta risultano essere: = { = 7. y = y += Eserciio. Determina l interseione della retta = + t con il piano. Primo metodo: il piano ha equaione cartesiana y =, per cui è sufficiente risolvere l equaione t = t = OE =. Secondo metodo: scriviamo l equaione parametrica del piano : = + t + s e cerchiamo l interseione con la retta, risolvendo il sistema lineare +t = t t = +t = s t = t = s = sostituendo nelle equaioni della retta e del piano otteniamo OE =. Eserciio. Determina l equaione parametrica della retta interseione dei due piani π : = + t + s ; π : = + t + s

13 . Esercii svolti su rette e piani Primo metodo: Risolviamo il sistema lineare ( equaioni in incognite seguente: +t s = s t +s =+t +s t + s = +t + s ricaviamoci il parametro t in funione del parametro s : t =s + t s + s = s t = 6 t s = e sostituiamolo nell equaione parametrica del piano π : = +(s + + s = + s. Secondo metodo: scriviamo l equaione cartesiana del piano π e sostituiamo alle variabili, y e le equaioni parametriche del piano π. L equaione cartesiana del piano π è +y 7= sostituendo le equaioni parametriche del piano π otteniamo: ( s+(+t +s ( +t + s 7= ricavandoci il parametro t in funione del parametro s abbiamo: t =s + sostituendo nell equaione parametrica di π ricaviamo: = +(s + + s = + s. Tero metodo: scriviamo le equaioni cartesiane dei due piani: π : +y 7= ; π : + y = scriviamo il sistema lineare { +y 7= + y = { y =7 =7 (abbiamo considerato la come un parametro; possiamo allora scrivere: = 7 + t 7 non è difficile verificare che questa equaione è equivalente alle altre.

Ingegneria Meccanica; Algebra lineare e Geometria 2008/2009

Ingegneria Meccanica; Algebra lineare e Geometria 2008/2009 Ingegneria Meccanica Algebra lineare e Geometria 8/9. Esercii svolti sugli spai vettoriali Eserciio. Dopo aver dimostrato che l insieme R, determina le coordinate del vettore v = rispetto a tale base.

Dettagli

RETTE E PIANI NELLO SPAZIO

RETTE E PIANI NELLO SPAZIO VETTORI E GEOMETRIA ANALITICA 1 RETTE E PIANI NELLO SPAZIO Rette e piani in forma cartesiana e parametrica. Parallelismo e perpendicolarità, posizioni reciproche tra rette e piani, distanze. Esercizio

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 10: soluzioni 1 Geometria dello spazio Esercizio 1. Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2 = 0, determinare: a) Le equazioni parametriche

Dettagli

Sistema di due equazioni di primo grado in due incognite

Sistema di due equazioni di primo grado in due incognite Sistema di due equazioni di primo grado in due incognite Problema Un trapezio rettangolo di area cm ha altezza di 8 cm. Sapendo che il triplo della base minore è inferiore di cm al doppio della base maggiore

Dettagli

GEOMETRIA /2009 II

GEOMETRIA /2009 II Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA Edile e Edile-Architettura - a.a. 008/009 II Emisemestre - Settimana - Foglio 0 Docente: Prof. F. Flamini - Tutore:

Dettagli

Esercizi sulle superfici - aprile 2009

Esercizi sulle superfici - aprile 2009 Esercizi sulle superfici - aprile 009 Ingegneria meccanica 008/009 Esercizio 1. Scrivere l equazione della superficie ottenuta ruotando la retta s : x = y, y =z attorno alla retta r : x = y, x =3z. Soluzione:

Dettagli

Ingegneria Gestionale - Corso di Algebra lineare e Analisi II anno accademico 2009/2010 ESERCITAZIONE 4.4

Ingegneria Gestionale - Corso di Algebra lineare e Analisi II anno accademico 2009/2010 ESERCITAZIONE 4.4 Ingegneria Gestionale - Corso di Algebra lineare e Analisi II anno accademico 9/ ESERCITAZIONE. (Cognome) (Nome) (Numero di matricola) Proposizione Vera Falsa Per due punti distinti di R passa un unica

Dettagli

Sistemi di 1 grado in due incognite

Sistemi di 1 grado in due incognite Sistemi di 1 grado in due incognite Problema In un cortile ci sono polli e conigli: in totale le teste sono 7 e zampe 18. Quanti polli e quanti conigli ci sono nel cortile? Soluzione Indichiamo con e con

Dettagli

UNIVERSITA DEGLI STUDI LA SAPIENZA DI ROMA POLO DI RIETI FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA DELL AMBIENTE E DEL TERRITORIO

UNIVERSITA DEGLI STUDI LA SAPIENZA DI ROMA POLO DI RIETI FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA DELL AMBIENTE E DEL TERRITORIO UNIVERSITA DEGLI STUDI LA SAPIENZA DI ROMA POLO DI RIETI FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA DELL AMBIENTE E DEL TERRITORIO Geometria III esonero pariale A.A. 6 Cognome Nome Matricola Codice

Dettagli

Ricordiamo. 1. Tra le equazioni delle seguenti rette individua e disegna quelle parallele all asse delle ascisse:

Ricordiamo. 1. Tra le equazioni delle seguenti rette individua e disegna quelle parallele all asse delle ascisse: La retta Retta e le sue equazioni Equazioni di rette come luogo geometrico y = h h R equazione di una retta parallela all asse delle ascisse x = 0 equazione dell asse delle ordinate y = h h R equazione

Dettagli

1 Cambiamenti di riferimento nel piano

1 Cambiamenti di riferimento nel piano 1 Cambiamenti di riferimento nel piano Siano date due basi ortonormali ordinate di V : B = ( i, j) e B = ( i, j ) e supponiamo che i = a i + b j j = c i + d j allora per un generico vettore v V abbiamo

Dettagli

Geometria analitica: rette e piani

Geometria analitica: rette e piani Geometria analitica: rette e piani Equazioni del piano Intersezioni di piani. Rette nello spazio Fasci di piani e rette Intersezioni fra piani e rette Piani e rette ortogonali Piani di forma parametrica

Dettagli

LA GEOMETRIA ANALITICA DELLO SPAZIO

LA GEOMETRIA ANALITICA DELLO SPAZIO CPITL 6 [numeraione araba] [numeraione devanagari] [numeraione cinese] L GEMETRI NLITIC DELL SPI L MSC DI CRTESI Si narra che Cartesio, una sera d estate, mentre si rilassava e meditava sdraiato sul suo

Dettagli

Appunti sulla circonferenza

Appunti sulla circonferenza 1 Liceo Falchi Montopoli in Val d Arno - Classe 3 a I - Francesco Daddi - 16 aprile 010 Appunti sulla circonferenza In queste pagine sono trattati gli argomenti riguardanti la circonferenza nel piano cartesiano

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

1 Equazioni parametriche e cartesiane di sottospazi affini di R n

1 Equazioni parametriche e cartesiane di sottospazi affini di R n 2 Trapani Dispensa di Geometria, Equazioni parametriche e cartesiane di sottospazi affini di R n Un sottospazio affine Σ di R n e il traslato di un sottospazio vettoriale. Cioe esiste un sottospazio vettoriale

Dettagli

Capitolo 1 Vettori applicati e geometria dello spazio

Capitolo 1 Vettori applicati e geometria dello spazio Capitolo 1 Vettori applicati e geometria dello spazio Marco Robutti Facoltà di ingegneria Università degli studi di Pavia Tutorato di geometria e algebra lineare Anno accademico 2014-2015 Definizione (Vettore

Dettagli

Parte 10. Geometria dello spazio I

Parte 10. Geometria dello spazio I Parte 10. Geometria dello spazio I A. Savo Appunti del Corso di Geometria 2013-14 Indice delle sezioni 1 Lo spazio vettoriale V 3 O, 1 2 Dipendenza e indipendenza lineare in V 3 O, 2 3 Sistema di riferimento

Dettagli

x + b! y + c! Osservazione: poiché ci sono infiniti piani ai quali appartiene una retta r, le equazioni non sono univocamente determinate.

x + b! y + c! Osservazione: poiché ci sono infiniti piani ai quali appartiene una retta r, le equazioni non sono univocamente determinate. 4 La retta in R 3 4 Le equazioni cartesiane di una retta Dati due piani Γ :ax +by +cz +d = 0 e Γ!: a! x + b! y + c! z + d! = 0 non paralleli tra loro, il luogo geometrico dei punti di intersezione tra

Dettagli

Condizione di allineamento di tre punti

Condizione di allineamento di tre punti LA RETTA L equazione lineare in x e y L equazione: 0 con,,, e non contemporaneamente nulli, si dice equazione lineare nelle due variabili e. Ogni coppia ; tale che: 0 si dice soluzione dell equazione.

Dettagli

= (cioè le due terne di numeri direttori ( devono essere ) proporzionali). Tale uguaglianza non è verificata, poiché risulta ρ

= (cioè le due terne di numeri direttori ( devono essere ) proporzionali). Tale uguaglianza non è verificata, poiché risulta ρ Alcuni esercizi sullo spazio euclideo R Nel seguito R indicherà lo spazio euclideo tridimensionale standard, dotato del riferimento cartesiano naturale (pag 56-57 del libro Nota: gli esercizi proposti

Dettagli

LEZIONE 9. Figura 9.1.1

LEZIONE 9. Figura 9.1.1 LEZIONE 9 9.1. Equazioni cartesiane di piani. Abbiamo visto come rappresentare parametricamente un piano. Un altro interessante metodo di rappresentazione di un piano nello spazio è tramite la sua equazione

Dettagli

La retta nel piano cartesiano

La retta nel piano cartesiano La retta nel piano cartesiano Se proviamo a disporre, sul piano cartesiano, una retta vediamo che le sue possibili posizioni sono sei: a) Coincidente con l asse delle y; b) Coincidente con l asse delle

Dettagli

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0.

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0. . Rette in R ; circonferenze. In questo paragrafo studiamo le rette e le circonferenze in R. Ci sono due modi per descrivere una retta in R : mediante una equazione cartesiana oppure mediante una equazione

Dettagli

La circonferenza nel piano cartesiano

La circonferenza nel piano cartesiano 6 La circonferenza nel piano cartesiano onsideriamo la circonferenza in figura in cui il centro è ; e il raggio 5 r : se indichiamo con P ; un punto della circonferenza avremo, per definizione, che la

Dettagli

RETTE E PIANI. ove h R. Determinare i valori di h per cui (1) r h e α sono incidenti ed, in tal caso, determinare l angolo ϑ h da essi formato;

RETTE E PIANI. ove h R. Determinare i valori di h per cui (1) r h e α sono incidenti ed, in tal caso, determinare l angolo ϑ h da essi formato; RETTE E PIANI Esercizi Esercizio 1. Nello spazio con riferimento cartesiano ortogonale Oxyz si considerino la retta r h ed il piano α rispettivamente di equazioni x = 1 + t r h : y = 1 t α : x + y + z

Dettagli

Anno 2. Risoluzione di sistemi di primo grado in due incognite

Anno 2. Risoluzione di sistemi di primo grado in due incognite Anno Risoluzione di sistemi di primo grado in due incognite Introduzione In questa lezione impareremo alcuni metodi per risolvere un sistema di due equazioni in due incognite. Al termine di questa lezione

Dettagli

CAPITOLO 2. Rette e piani. y = 3x+1 y x+z = 0

CAPITOLO 2. Rette e piani. y = 3x+1 y x+z = 0 CAPITOLO Rette e piani Esercizio.1. Determinare l equazione parametrica e Cartesiana della retta del piano (a) Passante per i punti A(1,) e B( 1,). (b) Passante per il punto C(,) e parallela al vettore

Dettagli

Rette e piani nello spazio Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1

Rette e piani nello spazio Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1 ette e piani nello spazio Federico Lastaria, Analisi e Geometria 1 Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@polimi.it ette e piani nello spazio. 9 Gennaio

Dettagli

Geometria e Topologia I (U1-4) 2006-mag-10 61

Geometria e Topologia I (U1-4) 2006-mag-10 61 Geometria e Topologia I (U1-4) 2006-mag-10 61 (15.9) Teorema. Consideriamo il piano affine. Se A A 2 (K) è un punto e r una retta che non passa per A, allora esiste unica la retta per A che non interseca

Dettagli

Piano cartesiano e Retta

Piano cartesiano e Retta Piano cartesiano e Retta 1 Piano cartesiano e Retta 1. Richiami sul piano cartesiano 2. Richiami sulla distanza tra due punti 3. Richiami punto medio di un segmento 4. La Retta (funzione lineare) 5. L

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 8: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 8: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 8: soluzioni Esercizio 1. a) Disegnare la retta r di equazione cartesiana x 2y 4 = 0. b) Determinare l equazione cartesiana della retta r 1 passante per P

Dettagli

Circonferenze del piano

Circonferenze del piano Circonferenze del piano 1 novembre 1 Circonferenze del piano 1.1 Definizione Una circonferenza è il luogo dei punti equidistanti da un punto fisso, detto centro. La distanza di un qualunque punto della

Dettagli

1 Rette e piani in R 3

1 Rette e piani in R 3 POLITECNICO DI MILANO. FACOLTÀ DI INGEGNERIA INDUSTRIALE. Analisi e Geometria 1. Sez. D - G. Docenti: Federico G. Lastaria, Mauro Saita, Nadir Zanchetta,. 1 1 Rette e piani in R 3 Una retta parametrizzata

Dettagli

Prodotto scalare e ortogonalità

Prodotto scalare e ortogonalità Prodotto scalare e ortogonalità 12 Novembre 1 Il prodotto scalare 1.1 Definizione Possiamo estendere la definizione di prodotto scalare, già data per i vettori del piano, ai vettori dello spazio. Siano

Dettagli

Le equazioni e i sistemi di primo grado

Le equazioni e i sistemi di primo grado Le equazioni e i sistemi di primo grado prof. Roberto Boggiani Isiss Marco Minghetti 1 settembre 009 Sommario In questo documento verrà trattato in modo semplice e facilmente comprensibile la teoria delle

Dettagli

Svolgimento degli esercizi sulla circonferenza

Svolgimento degli esercizi sulla circonferenza Liceo Classico Galilei Pisa - Classe a A - Prof. Francesco Daddi - 1 ottobre 011 Svolgimento degli esercizi sulla circonferenza Esercizio 1. La circonferenza ha centro in C 4 ), 7, 7 ) e raggio + 7 57

Dettagli

Esercizi sulle coniche (prof.ssa C. Carrara)

Esercizi sulle coniche (prof.ssa C. Carrara) Esercizi sulle coniche prof.ssa C. Carrara Alcune parti di un esercizio possono ritrovarsi in un altro esercizio, insieme a parti diverse. È un occasione per affrontarle da un altra angolazione.. Determinare

Dettagli

Geometria analitica I supplementi sulle rette. (M.S. Bernabei & H. Thaler)

Geometria analitica I supplementi sulle rette. (M.S. Bernabei & H. Thaler) Geometria analitica I supplementi sulle rette (M.S. Bernabei & H. Thaler) Siano dati un vettore v = li + mj = (l, m) non nullo e un punto P 0 = x 0, y 0. Cerchiamo la retta r che passa per il punto P 0

Dettagli

Unità Didattica N 9 : La parabola

Unità Didattica N 9 : La parabola 0 Matematica Liceo \ Unità Didattica N 9 La parabola Unità Didattica N 9 : La parabola ) La parabola ad asse verticale ) La parabola ad asse orizzontale 5) Intersezione di una parabola con una retta 6)

Dettagli

LA RETTA. La retta è un insieme illimitato di punti che non ha inizio, né fine.

LA RETTA. La retta è un insieme illimitato di punti che non ha inizio, né fine. LA RETTA La retta è un insieme illimitato di punti che non ha inizio, né fine. Proprietà: Per due punti del piano passa una ed una sola retta. Nel precedente modulo abbiamo visto che ad ogni punto del

Dettagli

Geometria BATR-BCVR Esercizi 9

Geometria BATR-BCVR Esercizi 9 Geometria BATR-BCVR 2015-16 Esercizi 9 Esercizio 1. Per ognuna delle matrici A i si trovi una matrice ortogonale M i tale che Mi ta im sia diagonale. ( ) 1 1 2 3 2 A 1 = A 2 1 2 = 1 1 0 2 0 1 Esercizio

Dettagli

Liceo Scientifico Cassini Esercizi di matematica, classe 5F, foglio3, soluzioni. normale parallelo a quello direzionale della retta sarà quindi

Liceo Scientifico Cassini Esercizi di matematica, classe 5F, foglio3, soluzioni. normale parallelo a quello direzionale della retta sarà quindi Liceo Scientifico Cassini Esercizi di matematica, classe 5F, foglio3, soluzioni Problema1 x = y Dato il punto P(0,1,2), la retta r: y = z 2 ed il piano α: x 3y + z = 0 a) Trova il piano passante per P

Dettagli

1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano:

1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano: QUESITI 1 PIANO CARTESIANO 1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano: a) 6 b) 13/2 c) 12 d) 13 e) 78 2.

Dettagli

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni Corso di Geometria Ing. Informatica e Automatica Test : soluzioni k Esercizio Data la matrice A = k dipendente dal parametro k, si consideri il k sistema lineare omogeneo AX =, con X = x x. Determinare

Dettagli

15 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

15 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI 15 luglio 01 - Soluzione esame di geometria - Ing. gestionale - a.a. 01-01 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono

Dettagli

Esercizi sulle coniche (prof.ssa C. Carrara)

Esercizi sulle coniche (prof.ssa C. Carrara) Esercizi sulle coniche prof.ssa C. Carrara Alcune parti di un esercizio possono ritrovarsi in un altro esercizio, insieme a parti diverse. È un occasione per affrontarle più volte.. Stabilire il tipo di

Dettagli

(x B x A, y B y A ) = (4, 2) ha modulo

(x B x A, y B y A ) = (4, 2) ha modulo GEOMETRIA PIANA 1. Esercizi Esercizio 1. Dati i punti A(0, 4), e B(4, ) trovarne la distanza e trovare poi i punti C allineati con A e con B che verificano: (1) AC = CB (punto medio del segmento AB); ()

Dettagli

Trapani. Dispensa di Geometria, x 1 x 2.x n. (x 1 y 1 ) (x n y n ) 2.

Trapani. Dispensa di Geometria, x 1 x 2.x n. (x 1 y 1 ) (x n y n ) 2. 2006 Trapani Dispensa di Geometria, 1 Distanze Siano P e Q punti di R n con P di coordinate allora la distanza tra P e Q e P Q = x 1 x 2 x n (x 1 y 1 ) 2 + (x n y n ) 2 e Q di coordinate Siano Σ 1 e Σ

Dettagli

Rette e piani nello spazio

Rette e piani nello spazio Rette e piani nello spazio Equazioni parametriche di una retta in R 3 : x(t) = x 0 + at r(t) : y(t) = y 0 + bt t R, parametro z(t) = z 0 + ct ovvero r(t) : X(t) = P 0 + vt, t R}, dove: P 0 = (x 0, y 0,

Dettagli

PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010

PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010 PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010 1) PIANO CARTESIANO serve per indicare, identificare, chiamare... ogni PUNTO del piano (ente geometrico) con una coppia di valori numerici (detti COORDINATE).

Dettagli

Esercizi sui sistemi di equazioni lineari.

Esercizi sui sistemi di equazioni lineari. Esercizi sui sistemi di equazioni lineari Risolvere il sistema di equazioni lineari x y + z 6 x + y z x y z Si tratta di un sistema di tre equazioni lineari nelle tre incognite x, y e z Poichè m n, la

Dettagli

Ellisse. Come fa un giardiniere a creare un aiuola di forma ellittica?

Ellisse. Come fa un giardiniere a creare un aiuola di forma ellittica? Ellisse Come fa un giardiniere a creare un aiuola di forma ellittica? Pianta due chiodi, detti fuochi, nel terreno ad una certa distanza. Lega le estremità della corda, la cui lunghezza supera la distanza

Dettagli

Per le risposte utilizza gli spazi predisposti. Quando richiesto, il procedimento va esposto brevemente, ma in maniera comprensibile.

Per le risposte utilizza gli spazi predisposti. Quando richiesto, il procedimento va esposto brevemente, ma in maniera comprensibile. COGNOME............................... NOME..................................... Punti ottenuti Esame di geometria Scrivi cognome e nome negli spazi predisposti in ciascuno dei tre fogli. Per ogni domanda

Dettagli

Dipendenza e indipendenza lineare (senza il concetto di rango)

Dipendenza e indipendenza lineare (senza il concetto di rango) CAPITOLO 5 Dipendenza e indipendenza lineare (senza il concetto di rango) Esercizio 5.1. Scrivere un vettore w R 3 linearmente dipendente dal vettore v ( 1, 9, 0). Esercizio 5.2. Stabilire se i vettori

Dettagli

2. FUNZIONI REALI DI n VARIABILI REALI

2. FUNZIONI REALI DI n VARIABILI REALI FUNZIONI REALI DI n VARIABILI REALI Determinaione del dominio Y Sia D un sottoinsieme dell insieme R R indicato anche con R Graficamente possiamo pensare a D come ad una ona del piano cartesiano secondo

Dettagli

Nel caso particolare in cui il vertice si trovi nell'origine, la parabola assume la forma: y ˆ ax 2.

Nel caso particolare in cui il vertice si trovi nell'origine, la parabola assume la forma: y ˆ ax 2. LA PARABOLA Rivedi la teoria La parabola e la sua equazione La parabola eá il luogo dei punti del piano che hanno la stessa distanza da un punto fisso chiamato fuoco e da una retta fissa chiamata direttrice.

Dettagli

MATEMATICA LA CIRCONFERENZA GSCATULLO

MATEMATICA LA CIRCONFERENZA GSCATULLO MATEMATICA LA CIRCONFERENZA GSCATULLO La Circonferenza La circonferenza e la sua equazione Introduzione e definizione La circonferenza è una conica, ovvero quella figura ottenuta tagliando un cono con

Dettagli

CORREZIONE FORMATIVA 2 ( RETTA IN FORMA PARAMETRICA E FASCI)

CORREZIONE FORMATIVA 2 ( RETTA IN FORMA PARAMETRICA E FASCI) CORREZIONE FORMATIVA 2 ( RETTA IN FORMA PARAMETRICA E FASCI) D1 E' dato il fascio 2x+4y +k(8x+5y 6)=0 trovare le coordinate del centro... Risposta. Le rette base del fascio sono r1 : 2x+4y-=0 r2 : 8x+5y-6=0

Dettagli

Sistemi di equazioni di primo grado (sistemi lineari)

Sistemi di equazioni di primo grado (sistemi lineari) Sistemi di equazioni di primo grado (sistemi lineari) DEFINIZIONE Un sistema di equazioni è un insieme di due o più equazioni, tutte nelle stesse incognite, di cui cerchiamo soluzioni comuni. Esempi 1.

Dettagli

Algebra lineare Geometria 1 11 luglio 2008

Algebra lineare Geometria 1 11 luglio 2008 Algebra lineare Geometria 1 11 luglio 2008 Esercizio 1. Si considerino la funzione: { R f : 3 R 3 (α, β, γ) ( 2β α γ, (k 1)β + (1 k)γ α, 3β + (k 2)γ ) dove k è un parametro reale, e il sottospazio U =

Dettagli

UNITÀ DIDATTICA 5 LA RETTA

UNITÀ DIDATTICA 5 LA RETTA UNITÀ DIDATTICA 5 LA RETTA 5.1 - La retta Equazione generica della retta Dalle considerazioni emerse nel precedente capitolo abbiamo compreso come una funzione possa essere rappresentata da un insieme

Dettagli

Esercizi sulle affinità - aprile 2009

Esercizi sulle affinità - aprile 2009 Esercizi sulle affinità - aprile 009 Ingegneria meccanica 008/009 Esercizio Sono assegnate nel piano le sei rette r : =, s : =, t : =, r : =, s : =, t : = determinare l affinità che trasforma ordinatamente

Dettagli

Esercizi su esponenziali, coni, cilindri, superfici di rotazione

Esercizi su esponenziali, coni, cilindri, superfici di rotazione Esercizi su esponenziali, coni, cilindri, superfici di rotazione Esercizio 1. Risolvere exp (exp (z)) = i. Esercizio. Risolvere i exp(z)z 4 + i exp(z)(1 + i) z 4 i 1 = 0. Esercizio. Risolvere exp(z) =

Dettagli

Esercizi svolti. Geometria analitica: rette e piani

Esercizi svolti. Geometria analitica: rette e piani Esercizi svolti. Sistemi di riferimento e vettori. Dati i vettori v = i + j k, u =i + j + k determinare:. il vettore v + u ;. gli angoli formati da v e u;. i vettore paralleli alle bisettrici di tali angoli;

Dettagli

Mutue posizioni della parabola con gli assi cartesiani

Mutue posizioni della parabola con gli assi cartesiani Mutue posizioni della parabola con gli assi cartesiani L equazione di una parabola generica è data da: Consideriamo l equazione che definisce i punti di intersezione della parabola con l asse delle ascisse

Dettagli

Geometria analitica del piano II (M.S. Bernabei & H. Thaler)

Geometria analitica del piano II (M.S. Bernabei & H. Thaler) Geometria analitica del piano II (M.S. Bernabei & H. Thaler) Equazione della retta in forma esplicita Sia data una retta r ax + by + c = 0 con b 0. Svolgendo questa equazione per y otteniamo e ponendo

Dettagli

10 dicembre Soluzione esame di geometria - Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

10 dicembre Soluzione esame di geometria - Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... 10 dicembre 003 - Soluzione esame di geometria - Ingegneria gestionale - a.a. 003-004 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura 3 ore. ISTRUZIONI

Dettagli

Precorso di Matematica

Precorso di Matematica UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTA DI ARCHITETTURA Precorso di Matematica Anna Scaramuzza Anno Accademico 2005-2006 4-10 Ottobre 2005 INDICE 1. ALGEBRA................................. 3 1.1 Equazioni

Dettagli

Esercizio L1 L2 L3. Il numero 1152 scomposto in fattori primi si scrive [1] [2] [3] 7 31 [4] Risposta

Esercizio L1 L2 L3. Il numero 1152 scomposto in fattori primi si scrive [1] [2] [3] 7 31 [4] Risposta Il numero 1152 scomposto in fattori primi si scrive [1] 2 7 3 2 [2] 2 5 11 [3] 7 31 [4] 1152 Il numero 1152 termina con la cifra 2 e, di conseguenza, è divisibile per 2. Questo significa che ha il numero

Dettagli

1 Geometria analitica nel piano

1 Geometria analitica nel piano Lezioni di Geometria a.a. 2007-2008 cdl SIE prof. C. Franchetti 1 Geometria analitica nel piano 1.1 Distanza di due punti Siano P 1 = (x 1, y 1 ), P 2 = (x 2, y 2 ) due punti del piano, se d(p 1, P 2 )

Dettagli

CLASSIFICAZIONE DELLE CONICHE AFFINI

CLASSIFICAZIONE DELLE CONICHE AFFINI CLASSIFICAZIONE DELLE CONICHE AFFINI Pre-requisiti necessari. Elementi di geometria analitica punti e rette nel piano cartesiano, conoscenza delle coniche in forma canonica). Risoluzione di equazioni e

Dettagli

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1.

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1. Definizione di circonferenza e cerchio. Equazione della circonferenza centrata in O e di raggio R. Esercizi. La circonferenza e il cerchio Definizioni: dato un punto C nel piano cartesiano e dato un numero

Dettagli

Piano cartesiano e retta

Piano cartesiano e retta Piano cartesiano e retta Il punto, la retta e il piano sono concetti primitivi di cui non si da una definizione rigorosa, essi sono i tre enti geometrici fondamentali della geometria euclidea. Osservazione

Dettagli

Algebra Lineare (Matematica C.I.), 12.11.13. Sistemi di equazioni lineari. 1. Un equazione lineare in una incognita reale x e un equazione del tipo

Algebra Lineare (Matematica C.I.), 12.11.13. Sistemi di equazioni lineari. 1. Un equazione lineare in una incognita reale x e un equazione del tipo Algebra Lineare (Matematica C.I.), 12.11.13 Sistemi di equazioni lineari 1. Un equazione lineare in una incognita reale x e un equazione del tipo ax = b, dove a e b sono numeri reali dati; a e il coefficiente

Dettagli

Alcuni esercizi sulla diagonalizzazione di matrici. campo dei reali. Se lo è calcolare una base spettrale e la relativa forma diagonale di A.

Alcuni esercizi sulla diagonalizzazione di matrici. campo dei reali. Se lo è calcolare una base spettrale e la relativa forma diagonale di A. Alcuni esercii sulla diagonaliaione di matrici Eserciio Dire se la matrice A 4 8 è diagonaliabile sul 3 3 campo dei reali Se lo è calcolare una base spettrale e la relativa forma diagonale di A Svolgimento

Dettagli

Prodotto scalare, ortogonalitá e basi ortonormali

Prodotto scalare, ortogonalitá e basi ortonormali CAPITOLO 0 Prodotto scalare, ortogonalitá e basi ortonormali Esercizio 0.. Dati i seguenti vettori di R si calcoli il prodotto scalare (v i,v j per i,j =,,...,6: v = (6,3 v = (,0 v 3 = (, v 4 = (,0 v 5

Dettagli

MATEMATICA PRIMO COMPITINO SOLUZIONE DI ALCUNI ESERCIZI PRIMA PARTE. Esercizio 1. (Testo B) Determina, motivando la risposta, se la funzione f : R R

MATEMATICA PRIMO COMPITINO SOLUZIONE DI ALCUNI ESERCIZI PRIMA PARTE. Esercizio 1. (Testo B) Determina, motivando la risposta, se la funzione f : R R ANNO ACCADEMICO 25 6 SCIENZE GEOLOGICHE E SCIENZE NATURALI E AMBIENTALI MATEMATICA PRIMO COMPITINO SOLUZIONE DI ALCUNI ESERCIZI PROFF MARCO ABATE E MARGHERITA LELLI-CHIESA PRIMA PARTE Esercizio (Testo

Dettagli

A.A CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5.

A.A CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5. A.A. 2015-2016. CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5. Esercizio 5.1. Determinare le ultime tre cifre di n = 13 1625. (Suggerimento. Sfruttare il Teorema di Eulero-Fermat)

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Cognome Nome Matricola FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Ciarellotto, Esposito, Garuti Prova del 21 settembre 2013 Dire se è vero o falso (giustificare le risposte. Bisogna necessariamente rispondere

Dettagli

Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto

Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto La parabola Esercizi Esercizio 368.395 Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto 0 ;5 e raggio, e la parabola ha il suo vertice in 0 ;0.

Dettagli

Esercizi per Geometria II Geometria euclidea e proiettiva

Esercizi per Geometria II Geometria euclidea e proiettiva Esercizi per Geometria II Geometria euclidea e proiettiva Filippo F. Favale 8 aprile 014 Esercizio 1 Si consideri E dotato di un riferimento cartesiano ortonormale di coordinate (x, y) e origine O. Si

Dettagli

Parte 9. Geometria del piano

Parte 9. Geometria del piano Parte 9. Geometria del piano A. Savo Appunti del Corso di Geometria 2013-14 Indice delle sezioni 1 Vettori geometrici del piano, 1 2 Lo spazio vettoriale VO 2, 3 3 Sistemi di riferimento, 8 4 Equazioni

Dettagli

Equazione della circonferenza

Equazione della circonferenza Equazione della circonferenza Scrivi la circonferenza Γ di centro C(-,4) e raggio r=3. L equazione di Γ è: y 4 3 cioè y 4 9 sviluppiamo (ricordando che a b a ab b ): 4 4 y 8y 16 9 mettiamo tutto a primo

Dettagli

1 Ampliamento del piano e coordinate omogenee

1 Ampliamento del piano e coordinate omogenee 1 Ampliamento del piano e coordinate omogenee Vogliamo dare una idea, senza molte pretese, dei concetti che stanno alla base di alcuni calcoli svolti nella classificazione delle coniche. Supponiamo di

Dettagli

Geometria Analitica Domande e Risposte

Geometria Analitica Domande e Risposte Geometria Analitica Domande e Risposte A. Il Piano Cartesiano. Qual è la formula della distanza tra due punti nel piano cartesiano? Per calcolare la formula della distanza tra due punti nel piano cartesiano

Dettagli

Precorso di Matematica

Precorso di Matematica Precorso di Matematica Lezione 3 Andrea Susa OPERATORE DI PRODOTTO Π 2 1 Operatore di prodotto Π Consideriamo un insieme numerico ={ =1, }. Definiamo prodotto degli elementi in, = Esempio: ={ =1, =2, =3,

Dettagli

Corso di Laurea in Fisica. Geometria. a.a Canale 3 Prof. P. Piazza Magiche notazioni

Corso di Laurea in Fisica. Geometria. a.a Canale 3 Prof. P. Piazza Magiche notazioni Corso di Laurea in Fisica. Geometria. a.a. 23-4. Canale 3 Prof. P. Piazza Magiche notazioni Siano V e W due spazi vettoriali e sia T : V W un applicazione lineare. Fissiamo una base B per V ed una base

Dettagli

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ. ESERCIZI SVOLTI DI ALGEBRA LINEARE (Sono svolti alcune degli esercizi proposti nei fogli di esercizi su vettori linearmente dipendenti e vettori linearmente indipendenti e su sistemi lineari ) I. Foglio

Dettagli

I FACOLTÀ DI INGEGNERIA - POLITECNICO DI BARI Corso di Laurea in Ingegneria Meccanica (corso A) A.A. 2009-2010, Esercizi di Geometria analitica

I FACOLTÀ DI INGEGNERIA - POLITECNICO DI BARI Corso di Laurea in Ingegneria Meccanica (corso A) A.A. 2009-2010, Esercizi di Geometria analitica I FACOLTÀ DI INGEGNERIA - POLITECNICO DI BARI Corso di Laurea in Ingegneria Meccanica (corso A) A.A. 2009-2010, Esercizi di Geometria analitica Negli esercizi che seguono si suppone fissato nello spazio

Dettagli

Parte 11. Geometria dello spazio II

Parte 11. Geometria dello spazio II Parte 11. Geometria dello spazio II A. Savo Appunti del Corso di Geometria 2010-11 Indice delle sezioni 1 Il prodotto scalare, 1 2 Distanze, angoli, aree, 4 3 Il prodotto vettoriale, 6 4 Condizioni di

Dettagli

Soluzioni. 1. Calcolare la parte reale e immaginaria del numero complesso. z = i i. 3 (2 + i) = i i = i.

Soluzioni. 1. Calcolare la parte reale e immaginaria del numero complesso. z = i i. 3 (2 + i) = i i = i. 20 Roberto Tauraso - Analisi 2 Soluzioni 1. Calcolare la parte reale e immaginaria del numero complesso R. z = i + 3 2 i. z = i + 3 2 i 2 i = 6 5 + ( 1 + 3 5 3 (2 + i) = i + 2 4 + 1 ) i = 6 5 + 8 5 i.

Dettagli

LEZIONE 10. S(C,ρ) Figura 10.1

LEZIONE 10. S(C,ρ) Figura 10.1 LEZIONE 10 10.1. Sfere nello spazio. In questa lezione studieremo alcuni oggetti geometrici non lineari, circonferenze e sfere nello spazio A 3. Poiché le proprietà delle circonferenze nel piano sono del

Dettagli

Vettori e loro applicazioni

Vettori e loro applicazioni Argomento 11 Vettori e loro applicazioni Parte B - Applicazioni geometriche Utilizzando la nozione di vettore si possono agevolmente rappresentare analiticamente distanze, rette e piani nello spazio Supponiamo

Dettagli

Esercizi svolti sulla parabola

Esercizi svolti sulla parabola Liceo Classico Galilei Pisa - Classe a A - Prof. Francesco Daddi - 19 dicembre 011 Esercizi svolti sulla parabola Esercizio 1. Determinare l equazione della parabola avente fuoco in F(1, 1) e per direttrice

Dettagli

2 2 2 A = Il Det(A) = 2 quindi la conica è non degenere, di rango 3.

2 2 2 A = Il Det(A) = 2 quindi la conica è non degenere, di rango 3. Studio delle coniche Ellisse Studiare la conica di equazione 2x 2 + 4xy + y 2 4x 2y + 2 = 0. Per prima cosa dobbiamo classificarla. La matrice associata alla conica è: 2 2 2 A = 2 2 2 Il DetA = 2 quindi

Dettagli

GEOMETRIA PIANA. 1) sia verificata l uguaglianza di segmenti AC = CB (ossia C è punto medio del segmento AB);

GEOMETRIA PIANA. 1) sia verificata l uguaglianza di segmenti AC = CB (ossia C è punto medio del segmento AB); VETTORI E GEOMETRIA ANALITICA 1 GEOMETRIA PIANA Segmenti e distanza tra punti. Rette in forma cartesiana e parametrica. Posizioni reciproche di due rette, parallelismo e perpendicolarità. Angoli e distanze.

Dettagli

1. LA GEOMETRIA ANALITICA

1. LA GEOMETRIA ANALITICA LA GEOMETRIA ANALITICA IL PIANO CARTESIANO Coordinate cartesiane Due rette orientate nel piano perpendicolari tra loro, aventi come punto d intersezione il punto O, costituiscono un sistema di riferimento

Dettagli

b 2 4c. Stabiliamo se le seguenti equazioni rappresentano delle circonferenze e, in caso affermativo, determiniamone centro e raggio.

b 2 4c. Stabiliamo se le seguenti equazioni rappresentano delle circonferenze e, in caso affermativo, determiniamone centro e raggio. LA CIRCONFERENZA Rivedi la teoria L'equazione della circonferenza e le sue caratteristiche La circonferenza eá il luogo dei punti del piano che hanno la stessa distanza da un punto fisso chiamato centro;

Dettagli

Appunti: il piano cartesiano. Distanza tra due punti

Appunti: il piano cartesiano. Distanza tra due punti ppunti: il piano cartesiano Distanza tra due punti Come determinare la distanza tra i punti ( ; ) e ( ; ): Se i due punti e hanno la stessa ascissa = allora (-3;1) (-3; 5) d()= d()= 1 5 4 4 Se i due punti

Dettagli