C I R C O N F E R E N Z A...

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "C I R C O N F E R E N Z A..."

Transcript

1 C I R C O N F E R E N Z A... ESERCITAZIONI SVOLTE 3 Equazione della circonferenza di noto centro C e raggio r... 3 Equazione della circonferenza di centro C passante per un punto A... 3 Equazione della circonferenza conoscendo un suo diametro di estremi A e B... 3 Equazione della circonferenza di centro C e tangente all asse delle ascisse... 4 Equazione della circonferenza di centro C e tangente all asse delle ordinate... 4 Equazione della circonferenza di centro C e tangente a una data retta... 5 Determinazione delle coordinate del centro e del raggio di una circonferenza... 5 Determinazione delle coordinate del centro e del raggio di una circonferenza... 5 Tangenti ad una circonferenza... 6 Tangenti ad una circonferenza passanti per un punto... 6 Tangenti ad una circonferenza parallele ad una data retta... 7 Tangenti ad una circonferenza perpendicolari ad una data retta... 8 ESERCIZI SULLA CIRCONFERENZA 9 Equazione della circonferenza, dato centro e raggio... 9 Coordinate del centro e il raggio della circonferenza... 9 Circonferenza passante per i punti... 9 Circonferenza noto centro e un suo punto... 9 Circonferenza noto centro e retta tangente... 9 Circonferenza noti estremi del diametro... 0 Tangenti alla circonferenza per un punto... 0 Tangenti alla circonferenza parallele ad una retta... 0 Tangenti alla circonferenza perpendicolari ad una retta... 0 Risolvi i seguenti esercizi... 0 Circonferenza contenente un parametro... DCR Circonferenza Pagina di

2 C I R C O N F E R E N Z A DEFINIZIONE: Si dice circonferenza il luogo geometrico dei punti del piano equidistanti da un punto detto centro. EQUAZIONI DELLA CIRCONFERENZA y r y Centro della circonferenza: C; Raggio della circonferenza: Relazioni fra le due equazioni della circonferenza r a by c 0 a, b, e c r a, b e r a b 4 c ALTRE FORMULE UTILI Distanza fra due punti d y y Punto medio m y m y y Distanza punto retta a0 by0 c d a b Fascio di rette di centro A ; y y y m Fascio di rette parallele y m k con m coefficiente angolare noto Coefficiente angolare della retta passante per due punti m y y DCR Circonferenza Pagina di

3 ESERCITAZIONI SVOLTE Equazione della circonferenza di noto centro C e raggio r Scrivere l equazione della circonferenza di centro C; e r. Utilizzando la y r valori si ha y circonferenza cercata è y 4 y 0. ricordando che è C; e sostituendo i corrispondenti da cui 4 4 y y 4, l equazione della Oppure ricordando che a, b, e c r si ricava a 4, b, e c 4 4, sostituendo in y a by c 0, si ottiene l equazione della circonferenza cercata che è y 4 y 0. Equazione della circonferenza di centro C passante per un punto A Scrivere l equazione della circonferenza di centro C ; e passante per il punto A3; 4 Ricordando che per scrivere l equazione di un circonferenza occorre conoscere centro e raggio, che in questo caso manca, per calcolarlo, ricordando che la circonferenza passa per il punto A il raggio è proprio la distanza fra A e C d y y ovvero r essendo a, b, e c r si ricava a, b, e c 5 3, sostituendo in y a by c 0, si ottiene l equazione della circonferenza cercata che è y y 3 0. Equazione della circonferenza conoscendo un suo diametro di estremi A e B Scrivere l equazione della circonferenza conoscendo un suo diametro che ha per estremi i punti A 3 ; e B5; 3 Ricordando che il diametro e il doppio della lunghezza del raggio e che il centro della circonferenza è il punto medio del segmento che fa per estremi punti A e B si ricava no facilmente raggio e DCR Circonferenza Pagina 3 di

4 coordinate del centro della circonferenza. Ricordando che la distanza fra due punti si calcola con d y y e il punto medio con m e y m y y, facilmente si ottiene il raggio r * 7 7 e le coordinate del centro m 5 3 y y e ym 3. Ricordando le relazioni a, b, e c r si ricava a, b 4, e c 4 7, sostituendo in y a by c 0, si ottiene l equazione della circonferenza cercata che è y 4y 0. Equazione della circonferenza di centro C e tangente all asse delle ascisse Scrivere l equazione della circonferenza di centro C 3 ; e tangente all asse delle ascisse Sapendo che la circonferenza è tangente all asse delle ascisse si ricava facilmente la lunghezza del raggio che coincide con il valore assoluto dell ordinata del centro; ovvero: r 3 3. Ricordando le relazioni a, b, e c r si ricava a 4, b 6, e c , sostituendo in y a by c 0, si ottiene l equazione della circonferenza cercata che è y 4 6y 4 0 Equazione della circonferenza di centro C e tangente all asse delle ordinate Scrivere l equazione della circonferenza di centro C 4; e tangente all asse delle ordinate Sapendo che la circonferenza è tangente all asse delle ordinate si ricava facilmente la lunghezza del raggio che coincide con il valore assoluto dell ascissa del centro ovvero: r 4 4. Ricordando le relazioni a, b, e c r si ricava a 8, b, e c 6 6, sostituendo in y a by c 0, si ottiene l equazione della circonferenza cercata che è y 8 y 0 DCR Circonferenza Pagina 4 di

5 Equazione della circonferenza di centro C e tangente a una data retta Scrivere l equazione della circonferenza di centro C ; e tangente alla retta di equazione y 3 4 Sapendo che la circonferenza è tangente alla retta la lunghezza del raggio è uguale alla distanza tra centro della circonferenze e retta tangente, applicando la formula per il calcolo della distanza punto retta, si ottiene: a0 by0 c 3 * d r. a b 3 Ricordando le relazioni a, b, e c r si ricava a, b 4, e c 4, sostituendo in y a by c 0, si ottiene l equazione della circonferenza cercata che è y 4y 0 0 Determinazione delle coordinate del centro e del raggio di una circonferenza Determinare le coordinate del centro e il raggio della circonferenza di equazione y 4 6y 7 0 a Ricordando che 4 b 6, 3 e r a b 4c * 4 * 5 5 ottenendo coordinate del centro e raggio della circonferenza C;3 e r 5 Determinazione delle coordinate del centro e del raggio di una circonferenza Determinare le coordinate del centro e il raggio della circonferenza di equazione y 8 7y 5 0 Si procede come per l esercizio precedente dopo aver ridotto l equazione delle circonferenza a forma normale, dividendo tutti i termini dell equazione per y 8 7y 5 y y y 4 y 0 DCR Circonferenza Pagina 5 di

6 a Ricordando che 4 b 7, * 7 4 e r a b c ottenendo coordinate del centro e raggio della circonferenza C; e r Tangenti ad una circonferenza Determinare le equazioni delle tangenti alla circonferenza di equazione y 4y 5 0 nel suo punto di ordinata uno e ascissa positiva Per trovare i punti della circonferenza di ordinata si risolve il sistema y 4y e poiché l ascissa deve y y y essere positiva si considera solo il punto A4;. Poiché la tangente alla circonferenza nel punto A4; è perpendicolare al raggio AC dove C il centro della circonferenza. Il coefficiente angolare della tangente è il reciproco ed opposto al coefficiente angolare m AC y y ; è 4, il coefficiente angolare della retta tangente in 3 A 4; sarà m m AC 3 e la sua equazione: y y0 m 0 y 3 4 y 3 Tangenti ad una circonferenza passanti per un punto Determinare le equazioni delle tangenti alla circonferenza di equazione y 4 6y 3 0 passanti per il punto A 6; Si trovano centro e raggio della circonferenza C ; 3.. e.. r 4. Calcolata la distanza tra centro e punto A si ottiene AC 65, da cui si deduce che essendo il segmento AC r cioè maggiore del raggio il punto A è esterno alla circonferenza. Per tale punto si possono condurre due tangenti alla circonferenza. L equazione del fascio di rette passanti per A 6 ; è DCR Circonferenza Pagina 6 di

7 y y0 m 0 y m 6 m y 6m 0 per la condizione di tangenza si deve avere che la distanza del centro C; 3 della circonferenza alle rette tangente deve essere uguale al raggio.r 4. Ricordando come si calcola la distanza a0 by0 c punto retta si ottiene d a b m 3 6m m dalla quale 4 8m 4 m 64m 6m 6m 48m 6m Risolta l equazione di secondo grado si ottengono m.. e.. m che sostituiti 4 nell equazione del fascio di rette y y m 0 0 porta alle due seguenti equazioni di rette tangenti alla circonferenza e passanti per il punto A 6; 5 y e y 6 0. Tangenti ad una circonferenza parallele ad una data retta Determinare le equazioni delle tangenti alla circonferenza di equazione y 4y 0 parallele alla retta 3 4y 0 L equazione del fascio di rette alla retta data è 3 4y k 0. Il centro e il raggio della circonferenza sono rispettivamente C ;.. e.. r. Per la condizione di tangenza la distanza centro circonferenza rette tangente sarà pari al raggio, a0 by0 c per cui dalla relazione distanza punto retta si ottiene d a b 3 8 k 9 6 k 5 0 k 5 0. Risolta la precedente equazione si ottiene k dalla quale 5.. e.. k 5 che sostituiti nell equazione del fascio di rette 3 4y k 0 porta alle due seguenti equazioni di rette tangenti alla circonferenza e parallele ad una retta data 3 4y e y 5 0. DCR Circonferenza Pagina 7 di

8 Tangenti ad una circonferenza perpendicolari ad una data retta Determinare le equazioni delle tangenti alla circonferenza di equazione y 4y 0 perpendicolari alla retta 3y 7 0 L equazione del fascio di rette alla retta data è 3 y k 0. Il centro e il raggio della circonferenza sono rispettivamente C ; 4.. e.. r 3. Per la condizione di tangenza la distanza centro circonferenza rette tangente sarà pari al raggio, a0 by0 c per cui dalla relazione distanza punto retta si ottiene d a b 3 8 k k 3 k 5 3. Risolta la precedente equazione si ottiene k dalla quale.. e.. k 4 che sostituiti nell equazione del fascio di rette 3 y k 0 porta alle due seguenti equazioni di rette tangenti alla circonferenza e parallele ad una retta data 3 y 0... e... 3 y 4 0. DCR Circonferenza Pagina 8 di

9 ESERCIZI SULLA CIRCINFERENZA Equazione della circonferenza, dato centro e raggio ) ; C, r ) C4; 3, r 6 3) C4; 3, r 5 4) C5; 3, r 6 5) C;, r 6) C ; 3, r 3 7) C; 6, r 4. 8) C8;, r 7. 9) C ; 5, r 7 0) C;, r 3 Coordinate del centro e il raggio della circonferenza ) y 4 y 4 0 ) y 6 4y 3 0 3) y 6y 3 0 4) y 0 3y 3 0 5) y 8y 8 0 6) y 8 6y 0 7) y 4 y 4 0 8) y 6 y 0 Circonferenza passante per i punti 9) A3;, B7;, C4; 0) A0;, B3; 0, C5; 0 ) A3;, B 3 ;, C 3; 4 ) A;, B0; 3, C; 4 3) A 0,0, B 0;, C 0; 3 4) A ;0, B 0;, C 0; Circonferenza noto centro e un suo punto 5) C3; 0 A4; 3 6) C5; A4; 0 7) C0; 3 A4; 0 8) C 5; 3 A ;4 Circonferenza noto centro e retta tangente 9) C 3 30) C3 3 3) C5 7 3) C 3 ; y 5 ; 0 ; y 0 ; y 5 33) C; 3 y 34) C4 3 ; y 35) C ;3 y ) 5; 4 C 0 37) C ; 3 y 4 0 DCR Circonferenza Pagina 9 di

10 Circonferenza noti estremi del diametro 38) A4; 6 B6; 39) A; 3 B8; 5 40) A 0;3 B 7; 4) A 3; 8 B 7; 5 Tangenti alla circonferenza per un punto O 0;0 4) y 0y 0 0 A 3;0 43) y 8 6y ) y 8 4y 6 0 A; 45) y 4 4y 4 0 A4; 6 46) y 0y 0 A; 3 Tangenti alla circonferenza parallele ad una retta 47) y 4y 4 0 y 3 48) y 4y y 0 49) y 4 0y 3 0 y 8 Tangenti alla circonferenza perpendicolari ad una retta 50) y 6 4y 0 y 5) y 4y y 0 5) y 4 0y 3 0 y 8 Risolvi i seguenti esercizi 53) Scrivere l equazione della circonferenza di centro C; 3 e passante per il punto di intersezione delle rette y 5 e y. 54) Scrivere l equazione della retta passante per il centro della circonferenza y 0 4y 0 e parallela alla retta y 55) Determinare il valore del parametro K in modo che la retta y k risulti tangente alla circonferenza di centro C 3; e raggio r 3. DCR Circonferenza Pagina 0 di

11 56) Scrivere le equazioni delle rette tangenti alla circonferenza 57) Scrivi l equazione della circonferenza che passa l origine degli assi, per il punto A 3;0 e per il punto 0;5 B. y 3 5y 0 58) Scrivi le equazione della circonferenza passante per i punti A 4;6 e 6;3 B e che ha il centro sulla retta di equazione y 4. [L ordinata del centro è 4. Per trovare l ascissa del centro basta osservare che AC =BC e usare la formula che permette di calcolare la distanza fra due punti. Note le coordinate del centro è possibile conoscere il raggio e quindi l equazione richiesta è y 8y 96 0 ] 59) Scrivi l equazione della circonferenza che ha raggio uguale a 7 e centro nel punto di intersezione fra le rette di equazione 3y 6 0 e y 0. y 4y 45 60) Scrivi l equazione della circonferenza che passa per il punto ; 3 circonferenza di equazione y y ed è concentrica alla y y 3 0 6) Scrivi l equazione della circonferenza di centro C ; 3 e raggio uguale a 5. Determina, quindi, le coordinate dei punti d intersezione della circonferenza con gli assi. y 4 6y 6) Scrivi l equazione della retta parallela a quella di equazione 4 3y 5, passante per il centro della circonferenza di equazione y 4 y y ) Scrivi l equazione della circonferenza di raggio 5e centro d intersezione fra le rette di equazione y 7 0 e 3y 6 0 y 6 8y 0 64) Scrivi l equazione della circonferenza che passa per il punto P 3;5 e interseca l asse y nei punti di ordinata - e 4 3 3y 6 6y 4 65) Dati i punti A ; e B 5;3 verifica che il luogo dei punti y P ; del piano tali che il segmento PA risulta perpendicolare al segmento PB è la circonferenza di diametro AB. [Ponendo uguale a - il prodotto de coefficiente angolare di PA per il coefficiente angolare di PB si trova l equazione che è anche l equazione della circonferenza di diametro AB] y 6 4y ) Determina l equazione del luogo dei punti P ; y del piano tali che la somma dei quadrati delle distanze di P 3 /5;0 e B 3/5;0 sia uguale a. 5 5y 6 0 S DCR Circonferenza Pagina di

12 Circonferenza contenente un parametro 67) Fra le infinite circonferenze di equazione y 6 ky 0 individua quella passante per il punto 3 ;5 68) Fra le infinite circonferenze di equazione y k y 0 passante per il punto ;, determinandone poi centro e raggio. Individua quella 69) Fra le infinite circonferenze di equazione y ky 3ky 0 ne esiste una passante per il punto 6 ;? E per il punto 6 ;? 70) Fra le infinite circonferenze di equazione y ky 3ky 0 individua quella passante per il punto ;8, determinandone centro e raggio. 7) Verifica che i centri delle infinite circonferenze di equazione y k ky 0 appartengono alla retta di equazione y 0. 7) Verifica che i centri delle infinite circonferenze di equazione y 6ky 4ky 0 appartengono alla retta di equazione 3y 0, il raggio di queste circonferenze dipende dal valore della variabile k : al raggio di lunghezza 53, corrispon di k. Determina quali, e, per entrambi, le coordinate del centro. 73) Verifica che i centri delle infinite circonferenze di equazione y ky ky 0 appartengono alla retta y 0. determina poi a quali valori di k corrispondono circonferenze di raggio 0 e, per ciascuno di tali valori, quali sono le coordinate del centro. 74) Fra le infinite circonferenze di equazione y a b 3 0 determina quella passante per P ;0 e Q 0;5 75) Fra le infinite circonferenze di equazione y a by 0 passante per P 0;3 e Q 3 ;0 determina quella DCR Circonferenza Pagina di

Esercizi svolti sulla parabola

Esercizi svolti sulla parabola Liceo Classico Galilei Pisa - Classe a A - Prof. Francesco Daddi - 19 dicembre 011 Esercizi svolti sulla parabola Esercizio 1. Determinare l equazione della parabola avente fuoco in F(1, 1) e per direttrice

Dettagli

Le coniche: circonferenza, parabola, ellisse e iperbole.

Le coniche: circonferenza, parabola, ellisse e iperbole. Le coniche: circonferenza, parabola, ellisse e iperbole. Teoria in sintesi Queste curve si chiamano coniche perché sono ottenute tramite l intersezione di una superficie conica con un piano. Si possono

Dettagli

Circonferenze del piano

Circonferenze del piano Circonferenze del piano 1 novembre 1 Circonferenze del piano 1.1 Definizione Una circonferenza è il luogo dei punti equidistanti da un punto fisso, detto centro. La distanza di un qualunque punto della

Dettagli

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si PROBLEMA Determinare il punto simmetrico di P( ;) rispetto alla retta x y =0 Soluzione Il simmetrico di P rispetto ad una retta r è il punto P che appartiene alla retta passante per P, perpendicolare ad

Dettagli

Iperbole. L iperbole è il luogo dei punti per i quali la differenza delle distanze da due punti fissi detti fuochi rimane costante.

Iperbole. L iperbole è il luogo dei punti per i quali la differenza delle distanze da due punti fissi detti fuochi rimane costante. Iperbole L iperbole è il luogo dei punti per i quali la differenza delle distanze da due punti fissi detti fuochi rimane costante. Vedi figura: Figura 1 Iperbole equilatera. Se i fuochi si trovano sull

Dettagli

2. Determina l equazione della circonferenza passante per i punti A ( 2; 4), B ( 1; 3) ed avente centro sulla retta di equazione 2x 3y + 2 = 0.

2. Determina l equazione della circonferenza passante per i punti A ( 2; 4), B ( 1; 3) ed avente centro sulla retta di equazione 2x 3y + 2 = 0. CLASSE 3^ C LICEO SCIENTIFICO Novembre 01 La circonferenza 1. Ricava l equazione di ciascuna delle circonferenze rappresentate, spiegando in maniera esauriente il procedimento che seguirai, prima di svolgere

Dettagli

La circonferenza nel piano cartesiano

La circonferenza nel piano cartesiano La circonferenza nel piano cartesiano 1. Definizione ed equazione. Si chiama circonferenza C, di centro C( α, β ) e raggio r, l insieme di tutti e soli i punti del piano che hanno distanza r da C. L equazione

Dettagli

Problemi sulla circonferenza verso l esame di stato

Problemi sulla circonferenza verso l esame di stato Problemi sulla circonferenza verso l esame di stato * * * n. 0 pag. 06 a) Scrivi l equazione della circonferenza γ 1 di centro P ; ) e passante per il punto A0; 1). b) Scrivi l equazione della circonferenza

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

LA CIRCONFERENZA. Ricaviamola. Tutti i punti P che stanno sulla circonferenza hanno la proprietà comune che

LA CIRCONFERENZA. Ricaviamola. Tutti i punti P che stanno sulla circonferenza hanno la proprietà comune che LA CIRCONFERENZA La circonferenza è il luogo geometrico dei punti equidistanti da un punto C, detto centro. Si ottiene tagliando un cono con un piano perpendicolare al suo asse. La distanza fra ognuno

Dettagli

2. APPUNTI SUI FASCI DI CIRCONFERENZE (raccolti dal prof. G. Traversi)

2. APPUNTI SUI FASCI DI CIRCONFERENZE (raccolti dal prof. G. Traversi) 2. APPUNTI SUI FASCI DI CIRCONFERENZE (raccolti dal prof. G. Traversi) La circonferenza è la curva di 2^ grado che viene individuata univocamente da tre punti non allineati e possiede la seguente proprietà:

Dettagli

LA CIRCONFERENZA E LA SUA EQUAZIONE

LA CIRCONFERENZA E LA SUA EQUAZIONE LA CIRCONFERENZA E LA SUA EQUAZIONE LA CIRCONFERENZA COME LUOGO GEOMETRICO DEFINIZIONE Assegnato nel piano un punto C, detto centro, si chiama circonferenza la curva piana luogo geometrico dei punti equidistanti

Dettagli

La retta nel piano cartesiano

La retta nel piano cartesiano La retta nel piano cartesiano Se proviamo a disporre, sul piano cartesiano, una retta vediamo che le sue possibili posizioni sono sei: a) Coincidente con l asse delle y; b) Coincidente con l asse delle

Dettagli

1. Scrivi l equazione dell ellisse avente per fuochi i punti ( 2 7;3) e (2 7;3) e passante per il punto (2 6;4).

1. Scrivi l equazione dell ellisse avente per fuochi i punti ( 2 7;3) e (2 7;3) e passante per il punto (2 6;4). . Scrivi l equazione dell ellisse avente per fuochi i punti ( 7;3) e ( 7;3) e passante per il punto ( 6;). Determino il centro di simmetria dell ellisse, O, punto medio dei due fuochi, ovvero (0;3), perciò

Dettagli

Mutue posizioni della parabola con gli assi cartesiani

Mutue posizioni della parabola con gli assi cartesiani Mutue posizioni della parabola con gli assi cartesiani L equazione di una parabola generica è data da: Consideriamo l equazione che definisce i punti di intersezione della parabola con l asse delle ascisse

Dettagli

Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto

Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto La parabola Esercizi Esercizio 368.395 Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto 0 ;5 e raggio, e la parabola ha il suo vertice in 0 ;0.

Dettagli

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1.

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1. Definizione di circonferenza e cerchio. Equazione della circonferenza centrata in O e di raggio R. Esercizi. La circonferenza e il cerchio Definizioni: dato un punto C nel piano cartesiano e dato un numero

Dettagli

Equazione cartesiana della parabola con asse di simmetria parallelo all'asse delle ordinate Siano F(x F; y

Equazione cartesiana della parabola con asse di simmetria parallelo all'asse delle ordinate Siano F(x F; y LEZIONI PARABOLA Definizione Si definisce parabola il luogo geometrico dei punti del piano equidistanti da un punto fisso,, detto fuoco, e da una retta fissa, d, detta direttrice. La definizione data mette

Dettagli

EQUAZIONE DELLA RETTA

EQUAZIONE DELLA RETTA EQUAZIONE DELLA RETTA EQUAZIONE DEGLI ASSI L equazione dell asse x è 0. L equazione dell asse y è 0. EQUAZIONE DELLE RETTE PARALLELE AGLI ASSI L equazione di una retta r parallela all asse x è cioè è uguale

Dettagli

Testi verifiche 3 C 3 I a. s. 2008/2009

Testi verifiche 3 C 3 I a. s. 2008/2009 Testi verifiche 3 C 3 I a. s. 2008/2009 1) Sono assegnati i punti A(- 1; 3) C(3; 0) M ;1 a) Ricavare le coordinate del simmetrico di A rispetto a M e indicarlo con B. Verificare che il segmento congiungente

Dettagli

LA CIRCONFERENZA La circonferenza è il luogo geometrico dei punti equidistanti da un punto C, detto centro.

LA CIRCONFERENZA La circonferenza è il luogo geometrico dei punti equidistanti da un punto C, detto centro. Geometria Analitica Le coniche Queste curve si chiamano coniche perché sono ottenute tramite l'intersezione di una superficie conica con un piano. Si possono definire tutte come luoghi geometrici e, di

Dettagli

LA PARABOLA. Parabola con asse di simmetria coincidente con l asse y e passante per l origine. Equazione canonica Vertice V ( 0,0) Fuoco

LA PARABOLA. Parabola con asse di simmetria coincidente con l asse y e passante per l origine. Equazione canonica Vertice V ( 0,0) Fuoco LA PARABOLA La parabola è il luogo geometrico dei punti del piano equidistanti da un punto fisso F detto fuoco e da una retta fissa detta direttrice. Parabola con asse di simmetria coincidente con l asse

Dettagli

(x B x A, y B y A ) = (4, 2) ha modulo

(x B x A, y B y A ) = (4, 2) ha modulo GEOMETRIA PIANA 1. Esercizi Esercizio 1. Dati i punti A(0, 4), e B(4, ) trovarne la distanza e trovare poi i punti C allineati con A e con B che verificano: (1) AC = CB (punto medio del segmento AB); ()

Dettagli

GEOMETRIA ANALITICA: LE CONICHE

GEOMETRIA ANALITICA: LE CONICHE DIPARTIMENTO DI INGEGNERIA CIVILE PRECORSO DI MATEMATICA ANNO ACCADEMICO 2013-2014 ESERCIZI DI GEOMETRIA ANALITICA: LE CONICHE Esercizio 1: Fissato su un piano un sistema di riferimento cartesiano ortogonale

Dettagli

Appunti: il piano cartesiano. Distanza tra due punti

Appunti: il piano cartesiano. Distanza tra due punti ppunti: il piano cartesiano Distanza tra due punti Come determinare la distanza tra i punti ( ; ) e ( ; ): Se i due punti e hanno la stessa ascissa = allora (-3;1) (-3; 5) d()= d()= 1 5 4 4 Se i due punti

Dettagli

Compito in classe del 29/01/2013 LA CIRCONFERENZA per il Liceo Scientifico

Compito in classe del 29/01/2013 LA CIRCONFERENZA per il Liceo Scientifico www.matematicamente.it Compito sulla circonferenza 1 Compito in classe del 29/01/2013 LA CIRCONFERENZA per il Liceo Scientifico 1. Determina e rappresenta graficamente l equazione della circonferenza di

Dettagli

Calcolo letterale. 1. Quale delle seguenti affermazioni è vera?

Calcolo letterale. 1. Quale delle seguenti affermazioni è vera? Calcolo letterale 1. Quale delle seguenti affermazioni è vera? (a) m.c.m.(49a b 3 c, 4a 3 bc ) = 98a 3 b 3 c (b) m.c.m.(49a b 3 c, 4a 3 bc ) = 98a 3 b 3 c (XX) (c) m.c.m.(49a b 3 c, 4a 3 bc ) = 49a bc

Dettagli

Geometria Analitica Domande e Risposte

Geometria Analitica Domande e Risposte Geometria Analitica Domande e Risposte A. Il Piano Cartesiano. Qual è la formula della distanza tra due punti nel piano cartesiano? Per calcolare la formula della distanza tra due punti nel piano cartesiano

Dettagli

Note di geometria analitica nel piano

Note di geometria analitica nel piano Note di geometria analitica nel piano e-mail: maurosaita@tiscalinet.it Versione provvisoria. Novembre 2015. 1 Indice 1 Punti e vettori spiccati dall origine 3 1.1 Coordinate......................................

Dettagli

CORSI I.D.E.I. - LA PARABOLA CLASSI QUARTE Prof. E. Modica

CORSI I.D.E.I. - LA PARABOLA CLASSI QUARTE Prof. E. Modica ISTITUTO PROVINCIALE DI CULTURA E LINGUE NINNI CASSARÀ SEDE DI VIA FATTORI CORSI I.D.E.I. - LA PARABOLA CLASSI QUARTE Prof. E. Modica erasmo@galois.it DEFINIZIONI Definizione. Dicesi parabola il luogo

Dettagli

Svolgimento degli esercizi sulla circonferenza

Svolgimento degli esercizi sulla circonferenza Liceo Classico Galilei Pisa - Classe a A - Prof. Francesco Daddi - 1 ottobre 011 Svolgimento degli esercizi sulla circonferenza Esercizio 1. La circonferenza ha centro in C 4 ), 7, 7 ) e raggio + 7 57

Dettagli

CORSO DI RECUPERO DI MATEMATICA PER ALUNNI CLASSI TERZE CON GIUDIZIO SOSPESO

CORSO DI RECUPERO DI MATEMATICA PER ALUNNI CLASSI TERZE CON GIUDIZIO SOSPESO CORSO DI RECUPERO DI MATEMATICA PER ALUNNI CLASSI TERZE CON GIUDIZIO SOSPESO ESERCIZI PROPOSTI 1. DATI I PUNTI A(3,-) E B(-5,): A. RAPPRESENTARLI SUL PIANO; B. CALCOLARE LA LORO DISTANZA; C. CALCOLARE

Dettagli

La circonferenza nel piano cartesiano

La circonferenza nel piano cartesiano 6 La circonferenza nel piano cartesiano onsideriamo la circonferenza in figura in cui il centro è ; e il raggio 5 r : se indichiamo con P ; un punto della circonferenza avremo, per definizione, che la

Dettagli

MATEMATICA LA CIRCONFERENZA GSCATULLO

MATEMATICA LA CIRCONFERENZA GSCATULLO MATEMATICA LA CIRCONFERENZA GSCATULLO La Circonferenza La circonferenza e la sua equazione Introduzione e definizione La circonferenza è una conica, ovvero quella figura ottenuta tagliando un cono con

Dettagli

UNITÀ DIDATTICA 5 LA RETTA

UNITÀ DIDATTICA 5 LA RETTA UNITÀ DIDATTICA 5 LA RETTA 5.1 - La retta Equazione generica della retta Dalle considerazioni emerse nel precedente capitolo abbiamo compreso come una funzione possa essere rappresentata da un insieme

Dettagli

Corso di Matematica II

Corso di Matematica II Corso di Matematica II Università degli Studi della Basilicata Dipartimento di Scienze Corso di laurea in Chimica e in Scienze Geologiche A.A. 2014/15 dott.ssa Vita Leonessa Elementi di geometria analitica

Dettagli

D4. Circonferenza - Esercizi

D4. Circonferenza - Esercizi D4. Circonferenza - Esercizi Trasformare l equazione della circonferenza nell altra forma e rappresentare graficamente la circonferenza trovandone prima centro e raggio. 1) + --=0 [(-1) +(-1) =, C(1;1),

Dettagli

b 2 4c. Stabiliamo se le seguenti equazioni rappresentano delle circonferenze e, in caso affermativo, determiniamone centro e raggio.

b 2 4c. Stabiliamo se le seguenti equazioni rappresentano delle circonferenze e, in caso affermativo, determiniamone centro e raggio. LA CIRCONFERENZA Rivedi la teoria L'equazione della circonferenza e le sue caratteristiche La circonferenza eá il luogo dei punti del piano che hanno la stessa distanza da un punto fisso chiamato centro;

Dettagli

2 di quello dela circonferenza data. Scrivere le

2 di quello dela circonferenza data. Scrivere le PROBLEMA. Raccolta di problemi sulla circonferenza Scritta l equazione della circonferenza con centro in ( ) C e passante per l origine O, si conducano per O la retta a di equazione + y indicando con A

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 10: soluzioni 1 Geometria dello spazio Esercizio 1. Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2 = 0, determinare: a) Le equazioni parametriche

Dettagli

Esercitazione per la prova di recupero del debito formativo

Esercitazione per la prova di recupero del debito formativo LEZIONI ED ESERCITAZIONI DI MATEMATICA Prof. Francesco Marchi 1 Esercitazione per la prova di recupero del debito formativo 24 febbraio 2010 1 Per altri materiali didattici o per contattarmi: Blog personale:

Dettagli

Appunti sulla circonferenza

Appunti sulla circonferenza 1 Liceo Falchi Montopoli in Val d Arno - Classe 3 a I - Francesco Daddi - 16 aprile 010 Appunti sulla circonferenza In queste pagine sono trattati gli argomenti riguardanti la circonferenza nel piano cartesiano

Dettagli

Carlo Sintini, Problemi di maturità, 1948 Luglio, matematicamente.it Luglio 1948, primo problema

Carlo Sintini, Problemi di maturità, 1948 Luglio, matematicamente.it Luglio 1948, primo problema Luglio 1948, primo problema In un cerchio di raggio r è condotta una corda AB la cui distanza dal centro è r/. Inscrivere nel segmento circolare che non contiene il centro, un triangolo ABC in modo che

Dettagli

Esercizi e problemi sulla parabola

Esercizi e problemi sulla parabola Esercizi e problemi sulla parabola Esercizio 1. Si consideri l'insieme di parabole: con k R, k 1. Γ k : y = (k + 1)x x + k 4 (a) Determinare, per quali k, la parabola passa per l'origine. (b) Determinare,

Dettagli

1 Geometria analitica nel piano

1 Geometria analitica nel piano Lezioni di Geometria a.a. 2007-2008 cdl SIE prof. C. Franchetti 1 Geometria analitica nel piano 1.1 Distanza di due punti Siano P 1 = (x 1, y 1 ), P 2 = (x 2, y 2 ) due punti del piano, se d(p 1, P 2 )

Dettagli

Rappresenta nel piano cartesiano l insieme dei punti P(x; y) le cui coordinate soddisfano le seguenti condizioni:

Rappresenta nel piano cartesiano l insieme dei punti P(x; y) le cui coordinate soddisfano le seguenti condizioni: ultima modifica /0/0 ESERCIZI PROPOSTI IL PIANO CARTESIANO LE COORDINATE DI UN PUNTO NEL PIANO CARTESIANO A Quali sono le coordinate dei punti indicati in figura? B Quali sono le coordinate dei punti indicati

Dettagli

GEOMETRIA ANALITICA. (*) ax+by+c=0 con a,b,c numeri reali che è detta equazione generale della retta.

GEOMETRIA ANALITICA. (*) ax+by+c=0 con a,b,c numeri reali che è detta equazione generale della retta. EQUAZIONE DELLA RETTA Teoria in sintesi GEOMETRIA ANALITICA Dati due punti A e B nel piano, essi individuano (univocamente) una retta. La retta è rappresentata da un equazione di primo grado in due variabili:

Dettagli

Punti nel piano cartesiano

Punti nel piano cartesiano Punti nel piano cartesiano In un piano consideriamo due rette perpendicolari che chiamiamo x e. Solitamente, disegniamo la retta x (ascisse) orizzontalmente e orientata da sinistra a destra, la retta e

Dettagli

Macerata 24 marzo 2015 classe 3M COMPITO DI RECUPERO ASSENTI. k <, mentre se. x = e. x = che sono le soluzioni dell equazione, 3 9

Macerata 24 marzo 2015 classe 3M COMPITO DI RECUPERO ASSENTI. k <, mentre se. x = e. x = che sono le soluzioni dell equazione, 3 9 Macerata 4 marzo 015 classe M COMPITO DI RECUPERO ASSENTI Problema 1 y = k x + 5k x 4 + k E dato il fascio di parabole di equazione ( ) ( ). SI ha quindi la concavità rivolta k = si ha la parabola degenere

Dettagli

Problemi sull ellisse

Problemi sull ellisse 1 equazione dell ellisse Determina l equazione di un ellisse che ha i fuochi sull asse delle ascisse, semiasse maggiore lungo 6 e distanza focale uguale a 6 + yy Scrivi l equazione dell ellisse con i fuochi

Dettagli

GEOMETRIA ANALITICA

GEOMETRIA ANALITICA GEOMETRIA ANALITICA matematica@blogscuola.it LE COORDINATE CARTESIANE Quando si vuole fissare un sistema di coordinate cartesiane su una retta r, è necessario considerare: un punto O detto origine; un

Dettagli

1 Nozioni utili sul piano cartesiano

1 Nozioni utili sul piano cartesiano Nozioni utili sul piano cartesiano Nozioni utili sul piano cartesiano Il piano cartesiano è un sistema di riferimento costituito da due rette perpendicolari (una orizzontale detta asse delle ascisse x

Dettagli

D3. Parabola - Esercizi

D3. Parabola - Esercizi D3. Parabola - Esercizi Traccia il grafico delle seguenti parabole e trova i punti d incontro con l asse e con l asse graficamente e/o algebricamente. 1) = ++ (0;)] ) = -+1 ( + 3 ;0), ( 3 ;0), (0;1)] 3)

Dettagli

LE COORDINATE CARTESIANE

LE COORDINATE CARTESIANE CORSO ZERO DI MATEMATICA per Ing. Chimica e Ing. delle Telecomunicazioni GEOMETRIA ANALITICA Prof. Erasmo Modica erasmo@galois.it LE COORDINATE CARTESIANE Quando si vuole fissare un sistema di coordinate

Dettagli

MATEMATICA LA PARABOLA GSCATULLO

MATEMATICA LA PARABOLA GSCATULLO MATEMATICA LA PARABOLA GSCATULLO La Parabola Introduzione e definizione Prima di affrontare la parabola e la sua analisi matematica, appare opportuno definirla nelle sue caratteristiche essenziali. Anzitutto

Dettagli

ESERCITAZIONE SULLE RETTE CON DERIVE

ESERCITAZIONE SULLE RETTE CON DERIVE ESERCITAZIONE SULLE RETTE CON DERIVE Dati i punti : A (,) B (6,-) C (-3,-3) determinare:. il perimetro del triangolo avente come vertici i punti A,B,C. l area del triangolo avente come vertici i punti

Dettagli

In un triangolo un lato è maggiore della differenza degli altri due, pertanto dal triangolo si ha > dividendo per =1.

In un triangolo un lato è maggiore della differenza degli altri due, pertanto dal triangolo si ha > dividendo per =1. L iperbole L iperbole è il luogo geometrico dei punti del piano per i quali è costante la differenza delle distanze da due punti fissi detti fuochi. Come si evince del grafico, la differenza delle distanze

Dettagli

LA PARABOLA E LA SUA EQUAZIONE

LA PARABOLA E LA SUA EQUAZIONE LA PARABOLA E LA SUA EQUAZIONE Prof. Giovanni Ianne CHE COS È LA PARABOLA DEFINIZIONE Parabola Scegliamo sul piano un punto F e una retta d. Possiamo tracciare sul piano i punti equidistanti da F e da

Dettagli

e) A10, ( 1;B6,2 ) ( ) f) A3,42;B12,2

e) A10, ( 1;B6,2 ) ( ) f) A3,42;B12,2 7. ESERCIZI SULLA DISTANZA FRA DUE PUNTI ) Calcola le distanze fra le seguenti coppie di punti: a) A;B6 ( ) ( ) A( 8 ); B( 7 5) c) A ( ;B ) ( 7) d) A( ); B e) A ( ;B6 ) ( ) f) A4;B ( ) ( ) g) A ; B 6 h)

Dettagli

PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010

PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010 PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010 1) PIANO CARTESIANO serve per indicare, identificare, chiamare... ogni PUNTO del piano (ente geometrico) con una coppia di valori numerici (detti COORDINATE).

Dettagli

Geometria analitica del piano

Geometria analitica del piano Geometria analitica del piano dott.ssa Vita Leonessa Università degli Studi della Basilicata (27 marzo 2008) (Analisi) Matematica 2 CdL in Chimica, Biotecnologie, Scienze Geologiche Rette Fissato un sistema

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 8: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 8: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 8: soluzioni Esercizio 1. a) Disegnare la retta r di equazione cartesiana x 2y 4 = 0. b) Determinare l equazione cartesiana della retta r 1 passante per P

Dettagli

1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano:

1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano: QUESITI 1 PIANO CARTESIANO 1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano: a) 6 b) 13/2 c) 12 d) 13 e) 78 2.

Dettagli

esercizi 107 Problemi sulla retta

esercizi 107 Problemi sulla retta esercizi 107 Problemi sulla retta Es. 1 Detto C il punto in cui l asse del segmento di estremi A( 3, 3) e B(1, 5) incontra l asse x, calcolare le coordinate del punto D equidistante da A, B e C. Determinare

Dettagli

Geometria analitica del piano II (M.S. Bernabei & H. Thaler)

Geometria analitica del piano II (M.S. Bernabei & H. Thaler) Geometria analitica del piano II (M.S. Bernabei & H. Thaler) Equazione della retta in forma esplicita Sia data una retta r ax + by + c = 0 con b 0. Svolgendo questa equazione per y otteniamo e ponendo

Dettagli

il discriminante uguale a zero; sviluppando i calcoli si ottiene che deve essere

il discriminante uguale a zero; sviluppando i calcoli si ottiene che deve essere Macerata maggio 0 classe M COMPITO DI MATEMATICA RECUPERO ASSENTI QUESITO Considera il fascio di curve di equazione: x y (.) = k + k 6 a) Trova per quali valori di k si hanno delle ellissi. Deve essere

Dettagli

Anno 3 Rette e circonferenze

Anno 3 Rette e circonferenze Anno 3 Rette e circonferenze 1 Introduzione In questa lezione esamineremo le reciproche posizioni che possono sussistere tra retta e circonferenza o tra due circonferenze. Al termine della lezione sarai

Dettagli

asse fuoco vertice direttrice Fig. D3.1 Parabola.

asse fuoco vertice direttrice Fig. D3.1 Parabola. D3. Parabola D3.1 Definizione di parabola come luogo di punti Definizione: una parabola è formata dai punti equidistanti da un punto detto fuoco e da una retta detta direttrice. L equazione della parabola

Dettagli

Si dice parabola il luogo geometrico dei punti del piano, equidistanti da un punto fisso, detto fuoco, e da una retta fissa, detta direttrice.

Si dice parabola il luogo geometrico dei punti del piano, equidistanti da un punto fisso, detto fuoco, e da una retta fissa, detta direttrice. LA PARABOLA Definizione: Si dice parabola il luogo geometrico dei punti del piano, equidistanti da un punto fisso, detto fuoco, e da una retta fissa, detta direttrice. Dimostrazione della parabola con

Dettagli

Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04/11/ 13

Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04/11/ 13 Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04// 3 Esercizio. Si consideri la funzione ) se 0 f) e se 0. e si verifichi che non è continua in 0. Che tipo di discontinuità presenta in

Dettagli

Piano cartesiano e Retta

Piano cartesiano e Retta Piano cartesiano e Retta 1 Piano cartesiano e Retta 1. Richiami sul piano cartesiano 2. Richiami sulla distanza tra due punti 3. Richiami punto medio di un segmento 4. La Retta (funzione lineare) 5. L

Dettagli

Nome Cognome. Classe 3D 25 Febbraio Verifica di matematica

Nome Cognome. Classe 3D 25 Febbraio Verifica di matematica Nome Cognome. Classe D Febbraio Verifica di matematica ) Data l equazione: k 6 a) Scrivi per quali valori di k rappresenta un ellisse, precisando per quali valori è una circonferenza b) Scrivi per quali

Dettagli

LA PARABOLA E LE SUE APPLICAZIONI Problema 1 Determinare l'equazione della parabola di vertice V( 2;0) e passante per P(0;4).

LA PARABOLA E LE SUE APPLICAZIONI Problema 1 Determinare l'equazione della parabola di vertice V( 2;0) e passante per P(0;4). LA PARABOLA E LE SUE APPLICAZIONI Prolema 1 Determinare l'equazione della paraola di vertice V( 2;0) e passante per P(0;4). y = ax 2 + x + c 1)l'appartenenza del punto P alla paraola, 2)l'appartenenza

Dettagli

Ricordiamo. 1. Tra le equazioni delle seguenti rette individua e disegna quelle parallele all asse delle ascisse:

Ricordiamo. 1. Tra le equazioni delle seguenti rette individua e disegna quelle parallele all asse delle ascisse: La retta Retta e le sue equazioni Equazioni di rette come luogo geometrico y = h h R equazione di una retta parallela all asse delle ascisse x = 0 equazione dell asse delle ordinate y = h h R equazione

Dettagli

Quadro riassuntivo di geometria analitica

Quadro riassuntivo di geometria analitica Quadro riassuntivo di geometria analitica IL PIANO CARTESIANO (detta ascissa o coordinata x) e y quella dall'asse x (detta ordinata o coordinata y). Le coordinate di un punto P sono: entrambe positive

Dettagli

Piano cartesiano e retta

Piano cartesiano e retta Piano cartesiano e retta Il punto, la retta e il piano sono concetti primitivi di cui non si da una definizione rigorosa, essi sono i tre enti geometrici fondamentali della geometria euclidea. Osservazione

Dettagli

04 LA CIRCONFERENZA ESERCIZI. 1 Determina il luogo geometrico costituito dai punti del piano aventi distanza 2 dal punto C(1; 3).

04 LA CIRCONFERENZA ESERCIZI. 1 Determina il luogo geometrico costituito dai punti del piano aventi distanza 2 dal punto C(1; 3). 04 LA CIRCONFERENZA ESERCIZI 1. LA CIRCONFERENZA E LA SUA EQUAZIONE 1 Determina il luogo geometrico costituito dai punti del piano aventi distanza dal punto C(1; 3). x + y x 6y + 6 = 0 Indica se le seguenti

Dettagli

Soluzioni 28 a Gara Città di Padova (6 Aprile 2013)

Soluzioni 28 a Gara Città di Padova (6 Aprile 2013) Soluzioni 28 a Gara Città di Padova (6 Aprile 2013) 1.- Sia K il valore comune delle somme degli elementi della prima riga, di quelli della seconda e di quelli della colonna. Sia X il numero messo nella

Dettagli

Lezione 24 - Esercitazioni di Algebra e Geometria - Anno accademico

Lezione 24 - Esercitazioni di Algebra e Geometria - Anno accademico CONICHE in A ~ (C) Punti propri (x P,y P ) hanno coordinate omogenee [(x P,y P, )], Punti impropri hanno coordinate omogenee [(l,m, )]. L equazione di una conica in coordinate non omogenee (x,y) C: a,

Dettagli

Unità Didattica N 9 : La parabola

Unità Didattica N 9 : La parabola 0 Matematica Liceo \ Unità Didattica N 9 La parabola Unità Didattica N 9 : La parabola ) La parabola ad asse verticale ) La parabola ad asse orizzontale 5) Intersezione di una parabola con una retta 6)

Dettagli

Condizione di allineamento di tre punti

Condizione di allineamento di tre punti LA RETTA L equazione lineare in x e y L equazione: 0 con,,, e non contemporaneamente nulli, si dice equazione lineare nelle due variabili e. Ogni coppia ; tale che: 0 si dice soluzione dell equazione.

Dettagli

Problema ( ) = 0,!

Problema ( ) = 0,! Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente

Dettagli

LAVORO ESTIVO di MATEMATICA Classi Terze Scientifico Moderno N.B. DA CONSEGNARE ALLA PRIMA LEZIONE DI MATEMATICA DI SETTEMBRE

LAVORO ESTIVO di MATEMATICA Classi Terze Scientifico Moderno N.B. DA CONSEGNARE ALLA PRIMA LEZIONE DI MATEMATICA DI SETTEMBRE LAVORO ETIVO di MATEMATICA Classi Terze cientifico Moderno N.B. A CONEGNARE ALLA PRIMA LEZIONE I MATEMATICA I ETTEMBRE PROBLEMI I ALGEBRA APPLICATA ALLA GEOMETRIA ) In un cerchio di raggio r si determini

Dettagli

PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi

PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi PIANO CARTESIANO Il piano cartesiano è individuato da due rette perpendicolari (ortogonali) che si incontrano in un punto O detto origine del piano cartesiano. Si fissa sulla retta orizzontale il verso

Dettagli

Test su geometria. 1. una circonferenza. 2. un iperbole. 3. una coppia di iperboli. 4. una coppia di rette. 5. una coppia di circonferenze

Test su geometria. 1. una circonferenza. 2. un iperbole. 3. una coppia di iperboli. 4. una coppia di rette. 5. una coppia di circonferenze Test su geometria Domanda 1 Fissato nel piano un sistema di assi cartesiani ortogonali Oxy, il luogo dei punti le cui coordinate (x; y) soddisfano l equazione x y = 1 è costituita da una circonferenza.

Dettagli

Esercizi di Geometria Analitica

Esercizi di Geometria Analitica Esercizi di Geometria Analitica Lucia Perissinotto I.T.I.S. V.Volterra San Donà di Piave Beatrice Hitthaler I.T.I.S. V.Volterra San Donà di Piave 10 settembre 2012 Capitolo 1 Esercizi di geometria analitica

Dettagli

GEOMETRIA ANALITICA 1 IL PIANO CARTESIANO

GEOMETRIA ANALITICA 1 IL PIANO CARTESIANO GEOMETRI NLITIC 1 IL PINO CRTESINO Il piano cartesiano è costituito da due rette orientate e tra loro perpendicolari chiamate assi cartesiani, generalmente una orizzontale e l altra verticale, sulle quali

Dettagli

GEOMETRIA ANALITICA 2

GEOMETRIA ANALITICA 2 GEOMETRIA ANALITICA CONICHE Dopo le rette, che come abbiamo visto sono rappresentate da equazioni di primo grado nelle variabili x e y (e ogni equazione di primo grado rappresenta una retta), le curve

Dettagli

f(x) = sin cos α = k2 2 k

f(x) = sin cos α = k2 2 k 28 Maggio 2015 Il punteggio viene attribuito in base alla correttezza e completezza nella risoluzione dei quesiti, nonché alle caratteristiche dell esposizione: chiarezza, ordine ed organicità. La sufficienza

Dettagli

Equazioni e disequazioni algebriche. Soluzione. Si tratta del quadrato di un binomio. Si ha pertanto. (x m y n ) 2 = x 2m 2x m y n + y 2n

Equazioni e disequazioni algebriche. Soluzione. Si tratta del quadrato di un binomio. Si ha pertanto. (x m y n ) 2 = x 2m 2x m y n + y 2n Si tratta del quadrato di un binomio. Si ha pertanto (x m y n ) 2 = x 2m 2x m y n + y 2n 4. La divisione (x 3 3x 2 + 5x 2) : (x 2) ha Q(x) = x 2 x + 3 e R = 4 Dalla divisione tra i polinomi risulta (x

Dettagli

CLASSE 3^ A LICEO SCIENTIFICO 31 Agosto 2015 Recupero MATEMATICA

CLASSE 3^ A LICEO SCIENTIFICO 31 Agosto 2015 Recupero MATEMATICA CLASSE 3^ A LICEO SCIENTIFICO 3 Agosto 205 Recupero MATEMATICA. Scrivi l equazione della circonferenza passante per i punti ;2 e 2;5 e avente il centro sulla retta di equazione = 2 2. L asse del segmento

Dettagli

GEOMETRIA LINEARE E CONICHE - GIUGNO 2002. 1. Nello spazio ordinario, assegnato un riferimento ortonormale si considerino le rette: x = z 2 y = z

GEOMETRIA LINEARE E CONICHE - GIUGNO 2002. 1. Nello spazio ordinario, assegnato un riferimento ortonormale si considerino le rette: x = z 2 y = z GEOMETRIA LINEARE E CONICHE - GIUGNO 2002 1. Nello spazio ordinario, assegnato un riferimento ortonormale si considerino le rette: r : x = z y = 0 x = z 2, s : y = z. Dopo aver provato che r ed s sono

Dettagli

Nel caso particolare in cui il vertice si trovi nell'origine, la parabola assume la forma: y ˆ ax 2.

Nel caso particolare in cui il vertice si trovi nell'origine, la parabola assume la forma: y ˆ ax 2. LA PARABOLA Rivedi la teoria La parabola e la sua equazione La parabola eá il luogo dei punti del piano che hanno la stessa distanza da un punto fisso chiamato fuoco e da una retta fissa chiamata direttrice.

Dettagli

ESERCIZI DI GEOMETRIA ANALITICA

ESERCIZI DI GEOMETRIA ANALITICA ESERCIZI DI GEOMETRIA ANALITICA 0.1. EQUAZIONE DELLA CIRCONFERENZA 0.1. EQUAZIONE DELLA CIRCONFERENZA Exercise 0.1.1. Si scriva l'equazione della circonferenza che passa per i punti O 0; 0) e A 7; 0)

Dettagli

Questo paragrafo e quello successivo trattano gli stessi argomenti del capitolo B6 relativo alla soluzione grafica dei sistemi di primo grado.

Questo paragrafo e quello successivo trattano gli stessi argomenti del capitolo B6 relativo alla soluzione grafica dei sistemi di primo grado. D1. Retta D1.1 Equazione implicita ed esplicita Ogni equazione di primo grado in due incognite rappresenta una retta sul piano cartesiano (e viceversa). Si può scrivere un equazione di primo grado in due

Dettagli

Precorso di Matematica

Precorso di Matematica Precorso di Matematica Lezione 3 Andrea Susa OPERATORE DI PRODOTTO Π 2 1 Operatore di prodotto Π Consideriamo un insieme numerico ={ =1, }. Definiamo prodotto degli elementi in, = Esempio: ={ =1, =2, =3,

Dettagli

quindi, applicando la legge di annullamento del prodotto, si ottiene l insieme delle soluzioni: x x da cui:

quindi, applicando la legge di annullamento del prodotto, si ottiene l insieme delle soluzioni: x x da cui: ) Risolvi le seguenti equazioni e scrivi le soluzioni reali in ordine crescente, indicando se sono multiple e quante sono le eventuali soluzioni non reali: ( ) ( ) per risolvere questa equazione si applica

Dettagli

Equazione della circonferenza

Equazione della circonferenza Equazione della circonferenza Scrivi la circonferenza Γ di centro C(-,4) e raggio r=3. L equazione di Γ è: y 4 3 cioè y 4 9 sviluppiamo (ricordando che a b a ab b ): 4 4 y 8y 16 9 mettiamo tutto a primo

Dettagli

DERIVATE E LORO APPLICAZIONE

DERIVATE E LORO APPLICAZIONE DERIVATE E LORO APPLICAZIONE SIMONE ALGHISI 1. Applicazione del calcolo differenziale 1 Abbiamo visto a lezione che esiste un importante legame tra la continuità di una funzione y = f(x) in un punto x

Dettagli

SISTEMI DI RIFERIMENTO SU UNA RETTA E SU UN PIANO

SISTEMI DI RIFERIMENTO SU UNA RETTA E SU UN PIANO DIPARTIMENTO DI INGEGNERIA CIVILE PRECORSO DI MATEMATICA ANNO ACCADEMICO 013-014 ESERCIZI RELATIVI A SISTEMI DI RIFERIMENTO SU UNA RETTA E SU UN PIANO Esercizio 1: Fissato su una retta un sistema di riferimento

Dettagli