Dim. Usare la chiusura rispetto al prodotto esterno (vedi appunti lezione o libri di testo).

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Dim. Usare la chiusura rispetto al prodotto esterno (vedi appunti lezione o libri di testo)."

Transcript

1 ESERCIZI PER CASA di GEOMETRIA per il Corso di Laurea di Scienze dei Materiali, Facoltà di Scienze MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rende, 28 maggio 29 Sottospazi di uno spazio vettoriale, sistemi di generatori, basi e dimensione. Sia K un campo, che, per semplicità, possiamo supporre uguale al campo dei numeri reali R o al campo dei numeri complessi C, e sia V uno spazio vettoriale su K. Definizione. Un sottospazio vettoriale U di V é un sottoinsieme non vuoto U V che é uno spazio vettoriale rispetto alle operazioni di somma e prodotto esterno definite su V. Lemma. Un sottoinsieme non vuoto U di V é un sottospazio vettoriale se e solo se sono verificate le seguenti due proprietà:. Per ogni coppia di vettori u, v U, si ha che u + v U. (chiusura rispetto alla somma) 2. Per ogni scalare λ K e per ogni vettore v V, si ha λv V. (chiusura rispetto al prodotto esterno) Lemma. Se U V é un sottospazio vettoriale di V allora U. Dim. Usare la chiusura rispetto al prodotto esterno (vedi appunti lezione o libri di testo). ESERCIZIO. Si pensi a C come spazio vettoriale reale. Si mostri che il sottoinsieme U C definito da U = {z C tali che z = z} é un sottospazio vettoriale di C. Si mostri, infine, che, se si considera C come spazio vettoriale complesso, allora U non é un sottospazio vettoriale di C. Proposizione. Sia ( ) un sistema lineare di m equazioni in n incognite. Allora, l insieme S delle soluzioni di ( ) é un sottospazio vettoriale di K n se e solo se b = b 2 =... = b m =. Dim. É stato dimostrato in classe che, se il sistema ( ) é omogeneo, allora il suo insieme delle soluzioni S K n é un sottospazio vettoriale. Per mostrare che, se S é un sottospazio vettoriale di K n, allora il sistema lineare ( ) é omogeneo, si osservi che, se ( ) non é omogeneo allora / S. Proposizione 2. Sia ( )

2 un sistema lineare di m equazioni in n incognite e sia a x a n x n = a 2 x a 2n x n = ( ) a m x a mn x n = il sistema omogeneo associato a ( ). Allora, se S é il sottospazio vettoriale delle soluzioni di ( ) e v é una soluzione di ( ), l insieme S delle soluzioni di ( ) é dato da S = {v + w, w S }. Definizione. L insieme delle soluzioni S di un sistema lineare ( ) di m equazioni in n incognite a coefficienti in K, si dice un sottospazio affine di K n e le equazioni di ( ) si chiamano equazioni cartesiane di S. Si scrive S : Inoltre, se S é il sottospazio delle soluzioni del sistema lineare omogeneo ( ) associato a ( ) si dice che S é la giacitura di S. Osservazione. Dimostreremo che ogni sottospazio vettoriale di K n é lo spazio delle soluzioni di un sistema lineare omogeneo. Perció, per la Proposizione 2, i sottospazi vettoriali di K n, possono considerarsi casi particolari di sottospazi affini. Proposizione 3. Dati due sottospazi U e W di uno spazio vettoriale V su K, la loro intersezione U W é pure un sottospazio di V. A differenza dell intersezione, l unione U W di due sottospazi vettoriali U e W di uno spazio vettoriale V non é un sottospazio vettoriale di V. Ci si puó peró chiedere quale sia il piú piccolo sottospazio di V che contiene U W. Definizione 2. Dati due sottospazi vettoriali U e W di uno spazio vettoriale V su K, la somma di U e W e il sottoinsieme U + W di V definito da U + W = {u + w, u U e w W}.

3 La somma U + W di U e W si dice diretta se U W = e si scrive U + W = U W. Lemma 2. La somma U + W di due sottospazi vettoriali U e W di uno spazio vettoriale V su K é un sottospazio vettoriale di V e gode della seguente proprietà: (a) per ogni sottospazio vettoriale T di V tale che U T e W T, si ha U + W T. In virtù della proprietà (a), possiamo dire che U + W é il piú piccolo sottospazio vettoriale di V che contiene U W. Si dice anche che U + W é lo spazio vettoriale generato da U e W. Siano v,..., v k vettori di uno spazio vettoriale V. Indichiamo con < v,..., v k > il sottoinsieme di V definito da < v,..., v k >= {λ v λ k v k, λ,..., λ k K}. Lemma 3. < v,..., v k > é un sottospazio vettoriale di V detto il sottospazio generato da v,...,v k. Definizione 3. Siano dati vettori v,..., v k di un sottospazio U di uno spazio vettoriale V. Diciamo che l insieme di vettori {v,..., v k } é un sistema di generatori di U se U =< v,..., v k >. Lemma 4. Siano U e W due sottospazi vettoriali di uno spazio vettoriale V tale che U =< v,..., v k > e W =< w,..., w r >. Allora, si ha Dim. Vedi appunti lezione. U + W =< v,..., v k, w,..., w r >. ESERCIZIO 2. Dati i sottospazi U = x y = λ 3, λ R R3 z e W R 3 di equazione W : x z =, calcolare W U e trovare un sistema di generatori di W + U. Infine, si rappresentino graficamente W e U. Definizione 4. Siano v,..., v k vettori di uno spazio vettoriale V su K. Diciamo che v,..., v k sono linearmente indipendenti se, per ogni k-upla di scalari λ,..., λ k tali che si ha λ v λ k v k =, () λ = λ 2 =... = λ k =. Altrimenti, i vettori si dicono linearmente dipendenti.

4 In altre parole, k vettori v,..., v k sono linearmente indipendenti se l unica k-upla di scalari λ,..., λ k tale che la () é verificata é λ = λ 2 =... = λ k =. Lemma 6. Siano dati n vettori v,..., v n in V. Se v,..., v n vettori linearmente indipendenti, allora v,..., v k vettori linearmente indipendenti per ogni k n. Se invece esiste k < n tale che i vettori v,..., v k sono linearmente dipendenti, allora i vettori v,..., v n sono linearmente dipendenti. Dim. Vedi appunti lezione. Definizione 5. Una base finita {v,..., v k } di un sottospazio U di V é il dato di un numero finito di vettori v,..., v k di U tali che a) {v,..., v k } é un sistema di generatori di U; b) i vettori v,..., v k sono linearmente indipendenti. Esempio. I vettori e =,..., e n = costituiscono una base di Kn detta base canonica. Lemma 6. Sia {v,..., v k } vettori linearmente indipendenti di V. Supponiamo esistano scalari a,..., a k e b,..., b k tali che a v a k v k = b v b k v k. Allora a = b,..., b k = a k. In particolare, per ogni vettore v < v,..., v k >= U esistono e sono unici scalari λ,..., λ k tali che v = λ v λ k v k. Si dice che gli scalari λ,..., λ k sono le coordinate di v rispetto alla base {v,..., v k }, e si scrive λ v = rispetto alla base {v,..., v k } di U. Infine, se U sottospazio di K n e λ k v v k v =,..., v k =, v n v nk allora le equazioni x v v k = λ λ k, λ,...λ k K, x n v n v nk si dicono equazioni parametriche di U.

5 ESERCIZIO 3. Si verifichi che v = 2, v 2 =, v 3 = 5 3 é una base di R 3 e si trovino le coordinate di v = rispetto a tale base. ESERCIZIO 4. Si consideri il sottospazio U di R 3 di equazione U : 3x 6y + z =. Si verifichi che il vettore base di U. appartiene a U e si scriva v in coordinate rispetto alla seguente 9 v = 3, v 2 = Teorema. Sia {v,..., v k } una base finita di un sottospazio U di V. Allora, comunque si scelgano r > k vettori w,..., w r in U, questi sono linearmente dipendenti. In particolare, il numero di vettori in una base finita di U non dipende dalla scelta della base. Dim. Vedi appunti lezione o libro di testo [T4], pag. 58, 59. Definizione 6. Sia V uno spazio vettoriale con base finita. Allora, il numero di vettori in una base di V si chiama dimensione di V e si indica con dim(v ). Lemma 7. Dati n vettori v,..., v n in uno spazio vettoriale V su K questi sono linearmente indipendenti se e solo se v j+ / < v,..., v j > per ogni j n. Dim. Si suggerisce di dimostrarlo prima per tre vettori e poi, nel caso di n > 3 vettori, di iterare il ragionamento. (Vedi appunti lezione). Corollario. Sia V uno spazio vettoriale su K di dimensione finita pari a dim(v ) = n. Allora, ogni sottospazio U di V ha dimensione finita k n. Inoltre, k = se e solo se U = {}, mentre k = n se e solo se U = V. Dim. Vedi corollario 4.7, libro di testo [T4]. Definizione 7. Sia S K n un sottospazio affine di K n e S il sottospazio vettoriale di K n giacitura di S. Allora, la dimensione di S é, per definizione, la dimensione di S. I sottospazi affini di K n di dimensione si chiamano rette, mentre, i sottospazi affini di K n di dimensione 2 si chiamano piani. ESERCIZIO 5. Usando il Lemma 7, si costruisca una base di C 3 che contenga il vettore i. + i 2

6 Teorema 2. Siano U e W due sottospazi di uno spazio vettoriale V di dimensione finita n. Allora, si ha dim(u + W ) = dim(u) + dim(w ) dim(u W ) (formula di Grasmann). In particolare, U + W = U W se e solo se dim(u W ) = dim(u) + dim(w ). ESERCIZIO 6. Trovare dimensione ed equazioni parametriche dei seguenti sottospazi vettoriali di R 3 : { x + y + z = x + y + z = x 5y + z = U : x y z =, W : x z =, T : x 5y + z =, Ω : x z =. 3x + 2y + z = x + y + z = ESERCIZIO 7. Siano U e W i sottospazi di R 4 di equazioni U : { x x 2 + x 4 = x 2 x 3 x 4 =, e x x W : 2 = λ x + λ 3 2, λ, λ 2 K. x 4 Trovare basi e dimensione di U W e U + W e dire se la somma di U e W e diretta. (Si suggerisce di usare la formula di Grasmann). ESERCIZIO 8. Dimostrare che R[x] 2 = {p R[x] d(p) 2}; é un sottospazio di dimensione finita di R[x]. Calcolarne base e dimensione.

7 Matrici. ESERCIZIO 9. Determinare una base e calcolare la dimensione dello spazio vettoriale M(n, m; K) delle matrici n m a coefficienti in K. (Si suggerisce prima di svolgere l esercizio per n = m = 2). ESERCIZIO. Nello spazio vettoriale M(2, 2; K) delle matrici 2 2 a coefficienti in K, si consideri l insieme {( ) } a a U = 2 a a 2 a + a 22 =. 22 Si dimostri che U é un sottospazio vettoriale di M(2, 2; K). Si determini una base di U e si calcoli, infine, la sua dimensione. ( ) ( ) 3 ESERCIZIO. Siano A, B, C e D le matrici definite da A =, B =, 2 2 C = ( ) e D = 3 4. Calcolare le matrici A + C, BD, AC, CB, 2A e 2D. ESERCIZIO 2. Se A, B C e D sono le matrici dell esercizio precedente, quali dei seguenti prodotti CA, BC, DB, B 2, A 2 sono ben definiti? LIBRI DI TESTO [T] Calcolo - Volume II - Geometria di T. M. Apostol, edito da Bollati Boringhieri. [T2] Geometria analitica del piano e dello spazio di S. Abeasis, edito da Zanichelli. [T4] Geometria I di E. Sernesi, edito da Bollati-Boringhieri.

Definizione 1. Una matrice n m a coefficienti in K é una tabella del tipo. ... K m, detto vettore riga i-esimo, ed a im

Definizione 1. Una matrice n m a coefficienti in K é una tabella del tipo. ... K m, detto vettore riga i-esimo, ed a im APPUNTI ed ESERCIZI su matrici, rango e metodo di eliminazione di Gauss Corso di Laurea in Chimica, Facoltà di Scienze MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rende, 23 Aprile 2010 Matrici, rango e metodo

Dettagli

ESERCIZI VARI su SPAZI VETTORIALI. Si giustifichi la risposta ad ogni esercizio ( o parte di esercizio ) posto in forma di domanda.

ESERCIZI VARI su SPAZI VETTORIALI. Si giustifichi la risposta ad ogni esercizio ( o parte di esercizio ) posto in forma di domanda. ESERCIZI VARI su SPAZI VETTORIALI Si giustifichi la risposta ad ogni esercizio ( o parte di esercizio ) posto in forma di domanda. Esercizio. Dimostrare che i vettori in R sono linearmente indipendenti

Dettagli

Esempi. In R 2, le coppia (2, 5) è combinazione lineare dei vettori (0, 1) e (1, 1). Infatti:

Esempi. In R 2, le coppia (2, 5) è combinazione lineare dei vettori (0, 1) e (1, 1). Infatti: Combinazioni lineari [Abate, 4.2] Sia V uno spazio vettoriale e v 1, v 2,..., v n dei vettori di V. Diremo che un vettore w V è combinazione lineare dei vettori v 1,..., v n se esistono a 1, a 2,..., a

Dettagli

Esercizi di MATEMATICA PER RCHITETTURA prima parte: Algebra Lineare e Geometria

Esercizi di MATEMATICA PER RCHITETTURA prima parte: Algebra Lineare e Geometria Esercizi di MATEMATICA PER RCHITETTURA prima parte: Algebra Lineare e Geometria Avvertenze In quanto segue tutti i vettori hanno il medesimo punto d origine O l origine dello spazio cartesiano. Possiamo

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 4: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 4: soluzioni Corso di Geometria - BIAR, BSIR Esercizi : soluzioni Esercizio. Sono dati i seguenti sistemi lineari omogenei nelle incognite x, y, z: { x + y z = x + y z = x + y z = S : x y + z =, S :, S 3 : x 3y =,

Dettagli

Rango di una matrice e teorema di Rouché-Capelli

Rango di una matrice e teorema di Rouché-Capelli Rango di una matrice e teorema di Rouché-Capelli Sappiamo che a una matrice m n, A, è associata l applicazione lineare L A : R n R m, L A (X) = AX, X R n. Definizione 1. Lo spazio nullo di A, N (A), è

Dettagli

Esame di Geometria - 9 CFU (Appello del 26 gennaio A)

Esame di Geometria - 9 CFU (Appello del 26 gennaio A) Esame di Geometria - 9 CFU (Appello del 26 gennaio 25 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. In R 3, siano dati il punto P = (, 2, 3) e la retta r : (,, ) + t(, 2), t R.. Determinare

Dettagli

Esempio. L immagine di f è l insieme dei vettori w = (w 1, w 2 ) R 2 che hanno w 1 = w 2. Quindi:

Esempio. L immagine di f è l insieme dei vettori w = (w 1, w 2 ) R 2 che hanno w 1 = w 2. Quindi: Nucleo, immagine e loro proprietà [Abate, 5.2] Data una applicazione lineare f : V W, chiamiamo nucleo di f l insieme N(f) := { v V : f(v) = 0 W } Se S V è un sottoinsieme del dominio, indichiamo con f(s)

Dettagli

Spazi Vettoriali ed Applicazioni Lineari

Spazi Vettoriali ed Applicazioni Lineari Spazi Vettoriali ed Applicazioni Lineari 1. Sottospazi Definizione. Sia V uno spazio vettoriale sul corpo C. Un sottoinsieme non vuoto W di V è un sottospazio vettoriale di V se è chiuso rispetto alla

Dettagli

Prima prova in itinere di Geometria (Corso di laurea in Fisica, Canali A-C e D-O) Prof. Barucci e Piccinni 29 novembre 2011

Prima prova in itinere di Geometria (Corso di laurea in Fisica, Canali A-C e D-O) Prof. Barucci e Piccinni 29 novembre 2011 Prima prova in itinere di Geometria (Corso di laurea in Fisica, Canali A-C e D-O) Prof Barucci e Piccinni 29 novembre 2011 a Scrivere subito canale, cognome e nome b Utilizzare questi fogli per le risposte

Dettagli

Esame di geometria e algebra

Esame di geometria e algebra Laurea Ing. 26 febbraio 2007 Traccia I COG 1 In R 3 sono assegnati i vettori: u 1 = (2, h, 0), u 2 = (1, 0, h), u 3 = (h, 1, 2). Stabilire se esistono valori reali del parametro h per cui S = {u 1, u 2,

Dettagli

Esame di Geometria - 9 CFU (Appello del 26 gennaio 2016)

Esame di Geometria - 9 CFU (Appello del 26 gennaio 2016) Esame di Geometria - 9 CFU (Appello del 26 gennaio 206) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. Al variare del parametro α R, si considerino la retta { x + y z = r : 2x + αy + z = 0 ed

Dettagli

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n NOTE DI ALGEBRA LINEARE 2- MM 9 NOVEMBRE 2 Combinazioni lineari e generatori Sia K un campo e V uno spazio vettoriale su K Siano v,, v n vettori in V Definizione Un vettore v V si dice combinazione lineare

Dettagli

CORSO DI MATEMATICA II Prof. Paolo Papi ESERCIZI. 1). Stabilire quali dei seguenti sottoinsiemi di V sono sottospazi vettoriali. (a) V = R 3.

CORSO DI MATEMATICA II Prof. Paolo Papi ESERCIZI. 1). Stabilire quali dei seguenti sottoinsiemi di V sono sottospazi vettoriali. (a) V = R 3. CORSO DI MATEMATICA II Prof Paolo Papi ESERCIZI ) Stabilire quali dei seguenti sottoinsiemi di V sono sottospazi vettoriali (a) V = R 3 () W = {(x,,x 3 ) x,x 3 R} (2) W 2 = {(x,,x 3 ) x,x 3 R} (3) W 3

Dettagli

Geometria e Topologia I 18 maggio

Geometria e Topologia I 18 maggio Geometria e Topologia I 18 maggio 2005 64 17 Mappe affini (17.1) Definizione. Siano X e Y due spazi affini sullo stesso campo K. Una funzione f : X Y si dice affine (anche, mappa affine o trasformazione

Dettagli

Geometria e Topologia I (U1-4) 2006-mag-10 61

Geometria e Topologia I (U1-4) 2006-mag-10 61 Geometria e Topologia I (U1-4) 2006-mag-10 61 (15.9) Teorema. Consideriamo il piano affine. Se A A 2 (K) è un punto e r una retta che non passa per A, allora esiste unica la retta per A che non interseca

Dettagli

Esame di geometria e algebra

Esame di geometria e algebra Laurea Ing. 9 febbraio 2007 Traccia I 1 In R 3 si consideri il sottoinsieme H = {(a, b, 2a + b) a, b R}. Stabilire se H è un sottospazio vettoriale di R 3 e, in caso affermativo, determinarne la dimensione

Dettagli

1 Indipendenza lineare e scrittura unica

1 Indipendenza lineare e scrittura unica Geometria Lingotto. LeLing7: Indipendenza lineare, basi e dimensione. Ārgomenti svolti: Indipendenza lineare e scrittura unica. Basi e dimensione. Coordinate. Ēsercizi consigliati: Geoling. Indipendenza

Dettagli

Geometria BAER A.A. Canale I Foglio esercizi 4

Geometria BAER A.A. Canale I Foglio esercizi 4 Geometria BAER A.A. Canale I Foglio esercizi 4 Esercizio. Si trovino basi degli spazi delle soluzioni dei seguenti sistemi lineari Soluzione: Sol(S ) = L[ x + 3x x 3 + 5x 4 = S : x + 3x x 3 + x 4 = S x

Dettagli

LEZIONE 12. v = α 1 v α n v n =

LEZIONE 12. v = α 1 v α n v n = LEZIONE 12 12.1. Combinazioni lineari. Definizione 12.1.1. Sia V uno spazio vettoriale su k = R, C e v 1,..., v n V vettori fissati. Un vettore v V si dice combinazione lineare di v 1,..., v n se esistono

Dettagli

Geometria I 2009-mag

Geometria I 2009-mag Geometria I 2009-mag-06 124 17 Mappe affini Cfr: Nacinovich, Cap V, 3 [3]. (17.1) Definizione. Siano X e Y due spazi affini sullo stesso campo K. Una funzione f : X Y si dice affine (anche, mappa affine

Dettagli

APPUNTI DI ALGEBRA LINEARE

APPUNTI DI ALGEBRA LINEARE APPUNTI DI ALGEBRA LINEARE. Definizione Si dice spazio vettoriale (sul campo dei numeri reali R) un insieme V per il quale siano definite l operazione interna di somma (che ad ogni coppia di vettori e

Dettagli

Geometria della programmazione lineare

Geometria della programmazione lineare Geometria della programmazione lineare p. 1/39 Geometria della programmazione lineare Mariantonia Cotronei Facoltà di Ingegneria Università degli Studi Mediterranea di Reggio Calabria Geometria della programmazione

Dettagli

Capitolo 2 Spazi vettoriali

Capitolo 2 Spazi vettoriali Capitolo 2 Spazi vettoriali Marco Robutti Facoltà di ingegneria Università degli studi di Pavia Anno accademico 2017-2018 Tutorato di geometria e algebra lineare Definizione (Spazio vettoriale) Uno spazio

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a. 2011-2012 Prova scritta del 28-1-2013 TESTO E SOLUZIONI 1. Per k R considerare il sistema lineare X 1 X 2 + kx 3 =

Dettagli

Insiemi di generatori e basi

Insiemi di generatori e basi Insiemi di generatori e basi Proposizione (Corollario al Teorema di Steinitz) Siano V (K) uno spazio vettoriale, B una sua base di cardinalità n e A un sottoinsieme di V di n vettori. Allora: se A è libero,

Dettagli

Esame di Geometria - 9 CFU (Appello del 14 gennaio A)

Esame di Geometria - 9 CFU (Appello del 14 gennaio A) Esame di Geometria - 9 CFU (Appello del 4 gennaio 24 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. Si considerino le rette s : { x x 2 2x 3 = 2 3x x 2 =, { x + x s 2 : 2 x 3 = x 2 =.. Stabilire

Dettagli

Prove di esame. Nicola Durante. 12 febbraio MATEMATICA II (Prof. N. Durante) FAC-SIMILE I Prova Gen. 2004

Prove di esame. Nicola Durante. 12 febbraio MATEMATICA II (Prof. N. Durante) FAC-SIMILE I Prova Gen. 2004 Prove di esame Nicola Durante 12 febbraio 2004 MATEMATICA II (Prof. N. Durante) FAC-SIMILE I Prova Gen. 2004 1. (i) Sia assegnata l equazione lineare 5y + 7z = 4 in tre incognite, y, z. (a) Si dica cosa

Dettagli

Sottospazi vettoriali

Sottospazi vettoriali Capitolo 6 Sottospazi vettoriali 6.1 Introduzione Riprendiamo un argomento già studiato ampiamente nel corso di Geometria, i sottospazi vettoriali di uno spazio vettoriale. Ci limiteremo a darne la definizione,

Dettagli

0.1 Complemento diretto

0.1 Complemento diretto 1 0.1 Complemento diretto Dato U V, un complemento diretto di U é un sottospazio W V tale che U W = {0} U + W = V cioé la somma di U con il suo complemento diretto é diretta, e dá tutto lo spazio vettoriale

Dettagli

1. Complemento ortogonale di un vettore non nullo Abbiamo visto che nel piano

1. Complemento ortogonale di un vettore non nullo Abbiamo visto che nel piano Geometria e Algebra (II), 11.12.12 1. Complemento ortogonale di un vettore non nullo Abbiamo visto che nel piano P O i vettori ortogonali ad un dato vettore non nullo descrivono una retta per O, e nello

Dettagli

Capitolo 3 Matrici. Marco Robutti. Facoltà di ingegneria Università degli studi di Pavia. Anno accademico

Capitolo 3 Matrici. Marco Robutti. Facoltà di ingegneria Università degli studi di Pavia. Anno accademico Capitolo 3 Matrici Marco Robutti Facoltà di ingegneria Università degli studi di Pavia Anno accademico 2017-2018 Tutorato di geometria e algebra lineare Definizione (Matrice) Una matrice A M R (k, n) è

Dettagli

Cognome Nome A. Scrivere le risposte agli esercizi 1,2,3 negli spazi sottostanti.

Cognome Nome A. Scrivere le risposte agli esercizi 1,2,3 negli spazi sottostanti. Cognome Nome A Scrivere le risposte agli esercizi 1,2,3 negli spazi sottostanti. 1) 2) 3) Geometria e algebra lineare 5/11/2015 A 1) Sia π il piano passante per i punti A = ( 3, 2, 1), B = (0, 1, 2), C

Dettagli

Esercizi svolti. delle matrici

Esercizi svolti. delle matrici Esercizi svolti. astratti. Si dica se l insieme delle coppie reali (x, y) soddisfacenti alla relazione x + y è un sottospazio vettoriale di R La risposta è sì, perchè l unica coppia reale che soddisfa

Dettagli

Geometria Prova scritta, appello unico, sessione autunnale Corso di laurea in fisica A.A 2017/2018 Canali A C, e L Pa

Geometria Prova scritta, appello unico, sessione autunnale Corso di laurea in fisica A.A 2017/2018 Canali A C, e L Pa Geometria Prova scritta, appello unico, sessione autunnale Corso di laurea in fisica A.A 27/28 Canali A C, e L Pa Durata: 2 ore e 3 minuti Simone Diverio Alessandro D Andrea Paolo Piccinni 7 settembre

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 27 GIUGNO 2016

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 27 GIUGNO 2016 FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 7 GIUGNO 06 MATTEO LONGO Ogni versione del compito contiene solo due tra i quattro esercizi 6-7-8-9. Esercizio. Considerare

Dettagli

SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n

SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n SPAZI E SOTTOSPAZI 1 SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n Spazi di matrici. Spazi di polinomi. Generatori, dipendenza e indipendenza lineare, basi e dimensione. Intersezione e somma di sottospazi,

Dettagli

Corso di GEOMETRIA Dipartimento di Ingegneria ed Architettura Università degli Studi di Trieste Prof. Fabio Perroni. 5. Rango

Corso di GEOMETRIA Dipartimento di Ingegneria ed Architettura Università degli Studi di Trieste Prof. Fabio Perroni. 5. Rango Corso di GEOMETRIA Dipartimento di Ingegneria ed Architettura Università degli Studi di Trieste Prof Fabio Perroni 5 Rango Definizione 1 Sia A M m,n (K) una matrice m n a coefficienti nel campo K Il rango

Dettagli

Lezione del 5 dicembre. Sottospazi vettoriali.

Lezione del 5 dicembre. Sottospazi vettoriali. Lezione del 5 dicembre. Sottospazi vettoriali. 1. Sottospazi vettoriali. Identificato lo spazio con R 3 tramite un sistema di riferimento cartesiano ortogonale, consideriamo un piano passante per l origine

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a. 2012-2013 Prova scritta del 15-7-2013 TESTO E SOLUZIONI A. Per il primo esonero svolgere gli esercizi 1,2,3; B. Per

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA INDUSTRIALE 27 GENNAIO 2014

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA INDUSTRIALE 27 GENNAIO 2014 FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA INDUSTRIALE 27 GENNAIO 2014 DOCENTE: MATTEO LONGO Rispondere alle domande di Teoria in modo esauriente e completo. Svolgere il maggior numero di esercizi

Dettagli

Trapani. Dispensa di Geometria, x 1 x 2.x n. (x 1 y 1 ) (x n y n ) 2.

Trapani. Dispensa di Geometria, x 1 x 2.x n. (x 1 y 1 ) (x n y n ) 2. 2006 Trapani Dispensa di Geometria, 1 Distanze Siano P e Q punti di R n con P di coordinate allora la distanza tra P e Q e P Q = x 1 x 2 x n (x 1 y 1 ) 2 + (x n y n ) 2 e Q di coordinate Siano Σ 1 e Σ

Dettagli

GEOMETRIA 1 seconda parte

GEOMETRIA 1 seconda parte GEOMETRIA 1 seconda parte Cristina Turrini C. di L. in Fisica - 2014/2015 Cristina Turrini (C. di L. in Fisica - 2014/2015) GEOMETRIA 1 1 / 40 index Spazi vettoriali 1 Spazi vettoriali 2 Sottospazi 3 Sistemi

Dettagli

Sottospazi vettoriali. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni.

Sottospazi vettoriali. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni. Politecnico di Torino. Sottospazi vettoriali. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni. Argomenti: Sottospazi. Generatori. Confrontando sottospazi: intersezione.

Dettagli

2 Sistemi lineari. Metodo di riduzione a scala.

2 Sistemi lineari. Metodo di riduzione a scala. Sistemi lineari. Metodo di riduzione a scala. Esercizio.1 Utilizzando il metodo di eliminazione di Gauss, risolvere i seguenti sistemi lineari: 1. 3. x 1 x + 3x 3 = 1 x 1 x x 3 = x 1 + x + 3x 3 = 5 x 1

Dettagli

Lezione 4: Base e dimensione

Lezione 4: Base e dimensione Lezione 4: Base e dimensione 1 Base: definizione ed esempi Come la parola stessa suggerisce, il concetto di base di uno spazio vettoriale e fondamentale e racchiude tutte le informazioni necessarie a ricostruire

Dettagli

Intersezione e somma di sottospazi vettoriali

Intersezione e somma di sottospazi vettoriali Capitolo 7 Intersezione e somma di sottospazi vettoriali 7.1 Introduzione Ricordiamo le definizioni di intersezione e somma di due sottospazi vettoriali. Anche in questo caso rimandiamo al testo di geometria

Dettagli

A = {1,2,3,5} B = {x N : x 2 = 9 o x 2 = 16} e C = {4,6,7} Si descrivano gli insiemi A B C (A B) (A B) (C B). elencandone gli elementi.

A = {1,2,3,5} B = {x N : x 2 = 9 o x 2 = 16} e C = {4,6,7} Si descrivano gli insiemi A B C (A B) (A B) (C B). elencandone gli elementi. .. Indicazioni per lo studio e per gli esercizi per casa. Sabato 4 ottobre: potete fare gli esercizi.4, tutti quelli sui numeri complessi, tutti quelli sulle matrici (soprattutto il.). Potete fare anche

Dettagli

ESERCIZI DI GEOMETRIA E ALGEBRA LINEARE (II PARTE) In ogni sezione gli esercizi sono tendenzialmente ordinati per difficoltà crescente.

ESERCIZI DI GEOMETRIA E ALGEBRA LINEARE (II PARTE) In ogni sezione gli esercizi sono tendenzialmente ordinati per difficoltà crescente. ESERCIZI DI GEOMETRIA E ALGEBRA LINEARE (II PARTE) versione: 24 maggio 27 In ogni sezione gli esercizi sono tendenzialmente ordinati per difficoltà crescente Autovettori e autovalori Esercizio Trova gli

Dettagli

DIARIO DEL CORSO DI MATHEMATICS FOR DATA SCIENCE TRENTO, A.A. 2018/19 DOCENTI: ANDREA CARANTI, SIMONE UGOLINI

DIARIO DEL CORSO DI MATHEMATICS FOR DATA SCIENCE TRENTO, A.A. 2018/19 DOCENTI: ANDREA CARANTI, SIMONE UGOLINI DIARIO DEL CORSO DI MATHEMATICS FOR DATA SCIENCE TRENTO, A.A. 2018/19 DOCENTI: ANDREA CARANTI, SIMONE UGOLINI Nota. La descrizione di lezioni non ancora svolte si deve intendere come una previsione/pianificazione.

Dettagli

Elementi di Algebra Lineare Spazi Vettoriali

Elementi di Algebra Lineare Spazi Vettoriali Elementi di Algebra Lineare Spazi Vettoriali Antonio Lanteri e Cristina Turrini UNIMI - 2015/2016 Antonio Lanteri e Cristina Turrini (UNIMI - 2015/2016) Elementi di Algebra Lineare 1 / 37 index Spazi vettoriali

Dettagli

Intersezione e somma di sottospazi vettoriali

Intersezione e somma di sottospazi vettoriali Capitolo 6 Intersezione e somma di sottospazi vettoriali 6.1 Introduzione Ricordiamo le definizioni di intersezione e somma di due sottospazi vettoriali. Anche in questo caso rimandiamo al testo di geometria

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Cognome Nome Matricola FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Ciarellotto, Esposito, Garuti Prova del 21 settembre 2013 Dire se è vero o falso (giustificare le risposte. Bisogna necessariamente rispondere

Dettagli

MATRICI E SISTEMI LINEARI

MATRICI E SISTEMI LINEARI - - MATRICI E SISTEMI LINEARI ) Calcolare i seguenti determinanti: a - c - d - e - f - g - 8 7 8 h - ) Calcolare per quali valori di si annullano i seguenti determinanti: a - c - ) Calcolare il rango delle

Dettagli

2. Determinare le dimensioni dei seguenti sottospazi W ed esibirne due basi basi diverse, quando è possibile:

2. Determinare le dimensioni dei seguenti sottospazi W ed esibirne due basi basi diverse, quando è possibile: aa 5-6 Esercizi 5 Basi dimensione e coordinate Soluzioni Apostol: Sezione 5 Esercizi 6a 7 8 9 Determinare le dimensioni dei seguenti sottospazi W ed esibirne due basi basi diverse quando è possibile: i

Dettagli

LEZIONE 13. v =α 1 v α i 1 v i 1 + α i v i = =α 1 v α i 1 v i 1 + α i (λ 1 v λ i 1 v i 1 ) =

LEZIONE 13. v =α 1 v α i 1 v i 1 + α i v i = =α 1 v α i 1 v i 1 + α i (λ 1 v λ i 1 v i 1 ) = LEZIONE 13 13.1. Il metodo degli scarti. Sia dato uno spazio vettoriale V su k = R, C e siano v 1,..., v n V. Quanto visto nella lezione precedente ci suggerisce il seguente algoritmo per stabilire se

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a. 2015-2016 Prova scritta del 16-9-2016 TESTO E SOLUZIONI Svolgere tutti gli esercizi. 1. Per k R considerare il sistema

Dettagli

Sistemi lineari e spazi vettoriali 1 / 14

Sistemi lineari e spazi vettoriali 1 / 14 Sistemi lineari e spazi vettoriali 1 / 14 Sistemi lineari 2 / 14 Studieremo sistemi lineari costituiti da m equazioni in n incognite (m,n N, m,n 1): cioè a 11 x 1 + +a 1n x n = b 1 a 21 x 1 + +a 2n x n

Dettagli

0. Introduzione al linguaggio matematico

0. Introduzione al linguaggio matematico Prof. Lidia Angeleri Università di Verona, 2013/14 Algebra Lineare ed Elementi di Geometria (Programma aggiornato in data 23 gennaio 2014) 0. Introduzione al linguaggio matematico 1. Insiemi 1.1 Esempi

Dettagli

Soluzioni primi compitini - Geometria 1

Soluzioni primi compitini - Geometria 1 Soluzioni primi compitini - Geometria Caterina Vernieri Ottobre 7 Le soluzioni proposte non sono state riviste dai professori Soluzioni Primi Compitini - G I compitino 7//3 Esercizio Al variare di α R

Dettagli

0.1 Introduzione Algebra lineare 3

0.1 Introduzione Algebra lineare 3 Indice 0.1 Introduzione... 2 Algebra lineare 3 1.1 Spazi vettoriali... 3 1.2 Applicazioni lineari... 8 1.3 Matrici... 12 1.4 Sul prodotto scalare... 15 1.5 Applicazioni lineari e matrici... 17 1.6 Sistemi

Dettagli

1 Spazi vettoriali. Sottospazi.

1 Spazi vettoriali. Sottospazi. CORSO DI ALGEBRA LINEARE. A.A. 004-005. Esercitazione del 10 Gennaio 005. (Prof. Mauro Saita, e-mail: maurosaita@tiscalinet.it) 1 Spazi vettoriali. Sottospazi. Esercizio 1.1 Siano v 1 = (, 5, 1, 3), v

Dettagli

Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria A.A ESERCIZI DA CONSEGNARE prof.

Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria A.A ESERCIZI DA CONSEGNARE prof. Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria A.A. 2015-2016 ESERCIZI DA CONSEGNARE prof. Cigliola Consegna per Martedì 6 Ottobre Esercizio 1. Una matrice quadrata A si

Dettagli

Soluzioni dello scritto di Geometria del 28 Maggio 2009

Soluzioni dello scritto di Geometria del 28 Maggio 2009 Soluzioni dello scritto di Geometria del 8 Maggio 9 1) Trovare le equazioni del sottospazio V(w, x, y, z) R 4 generato dalle quaterne c 1 = (,,, 1) e c = (, 1, 1, ). ) Trovare una base per OGNI autospazio

Dettagli

Manlio Bordoni. APPUNTI SULLA RAPPRESENTAZIONE DEI SOTTOSPAZI VETTORIALI DI R n I MODO. v 11. v n1

Manlio Bordoni. APPUNTI SULLA RAPPRESENTAZIONE DEI SOTTOSPAZI VETTORIALI DI R n I MODO. v 11. v n1 Manlio Bordoni APPUNTI SULLA RAPPRESENTAZIONE DEI SOTTOSPAZI VETTORIALI DI R n I MODO Sia dato un insieme di generatori v v =,, v k = v n di W : questo vuol dire che ogni vettore w W si scrive come combinazione

Dettagli

21. (cenni di) Geometria analitica del piano.

21. (cenni di) Geometria analitica del piano. . (cenni di) Geometria analitica del piano... Definizione. Sia π un piano e sia O un suo punto. Siano i e j due versori ortogonali tra loro e paralleli al piano π. Diremo che la terna ordinata (O, i, j)

Dettagli

Soluzione: La matrice M cercata è quella formata dagli autovettori di A. Il polinomio caratteristico di A è: p t (A) = (t 1)(t 3) 0 4 V 1 = Ker

Soluzione: La matrice M cercata è quella formata dagli autovettori di A. Il polinomio caratteristico di A è: p t (A) = (t 1)(t 3) 0 4 V 1 = Ker Compito di Algebra Lineare - Ingegneria Biomedica 4 luglio 7 IMPORTANTE: Non si possono consultare libri e appunti. Non si possono usare calcolatrici, computer o altri dispositivi elettronici. Non si può

Dettagli

Esercizi proposti. Si dica quali dei precedenti sono sottospazi vettoriali dello spazio vettoriale quadrate di ordine n.

Esercizi proposti. Si dica quali dei precedenti sono sottospazi vettoriali dello spazio vettoriale quadrate di ordine n. Esercizi proposti 1. astratti 1.1 Si consideri lo spazio R [x] dei polinomi nella variabile x con coefficienti reali. Si dica se il suo sottoinsieme S formato dai polinomi privi del termine di grado 2

Dettagli

Soluzione. (a) L insieme F 1 e linearmente indipendente; gli insiemi F 2 ed F 3 sono linearmente

Soluzione. (a) L insieme F 1 e linearmente indipendente; gli insiemi F 2 ed F 3 sono linearmente 1. Insiemi di generatori, lineare indipendenza, basi, dimensione. Consideriamo nello spazio vettoriale R 3 i seguenti vettori: v 1 = (0, 1, ), v = (1, 1, 1), v 3 = (, 1, 0), v 4 = (3, 3, ). Siano poi F

Dettagli

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U.

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U. APPUNTI d ESERCIZI PER CASA di GEOMETRIA pr il Corso di Laura in Chimica, Facoltà di Scinz MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rnd, 3 April 2 Sottospazi di uno spazio vttorial, sistmi di gnratori, basi

Dettagli

COGNOME... NOME , B = Calcolare le matrici A + C, BD, AC, CB, 2A e 2D. (Vale 6 punti).

COGNOME... NOME , B = Calcolare le matrici A + C, BD, AC, CB, 2A e 2D. (Vale 6 punti). I ESONERO di GEOMETRIA per il Corso di Laurea di Scienze Geo-topo-cartografiche, Facoltà di Scienze MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rende, 02 marzo 2009 Inserire la risoluzione di ciascun esercizio

Dettagli

13 febbraio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

13 febbraio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI febbraio 0 - Soluzione esame di geometria - Ing. gestionale - a.a. 0-0 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati

Dettagli

Capitolo 2 Spazi vettoriali Esercizi svolti Tutorato di geometria e algebra lineare. Marco Robutti

Capitolo 2 Spazi vettoriali Esercizi svolti Tutorato di geometria e algebra lineare. Marco Robutti Capitolo 2 Spazi vettoriali Esercizi svolti Tutorato di geometria e algebra lineare Marco Robutti 5 Ottobre 27 Introduzione Gli esercizi di questo capitolo riguardano i seguenti argomenti: Dato un insieme,

Dettagli

F x 1 = x 1 + x 2. 2x 1 x 2 Determinare la matrice C associata a F rispetto alla base canonica (equivalentemente,

F x 1 = x 1 + x 2. 2x 1 x 2 Determinare la matrice C associata a F rispetto alla base canonica (equivalentemente, Corso di Laurea in Fisica. Geometria 1. a.a. 2006-07. Gruppo B. Prof. P. Piazza Esonero del 1/12/06 con soluzione Esercizio. Spazio vettoriale R 2 con base canonica fissata e coordinate associate (x 1,

Dettagli

Somma diretta di sottospazi vettoriali

Somma diretta di sottospazi vettoriali Capitolo 8 Somma diretta di sottospazi vettoriali 8.1 Introduzione Introduciamo un caso particolare di somma di due sottospazi vettoriali: la somma diretta. Anche questo argomento è stato visto nel corso

Dettagli

r 2 r 2 2r 1 r 4 r 4 r 1

r 2 r 2 2r 1 r 4 r 4 r 1 SPAZI R n 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x, y, z)

Dettagli

I VERIFICA DI GEOMETRIA 1 CORSO DI LAUREA IN MATEMATICA - 4 DICEMBRE 2007

I VERIFICA DI GEOMETRIA 1 CORSO DI LAUREA IN MATEMATICA - 4 DICEMBRE 2007 A I VERIFICA DI GEOMETRIA 1 CORSO DI LAUREA IN MATEMATICA - 4 DICEMBRE 2007 ESERCIZIO 1. Si consideri il seguente sistema di equazioni lineari x + y + 2z = 1 2x + ky + 4z = h 2x 2y + kz = 0 (a) Determinare,

Dettagli

DIARIO DEL CORSO DI GEOMETRIA E ALGEBRA LINEARE

DIARIO DEL CORSO DI GEOMETRIA E ALGEBRA LINEARE DIARIO DEL CORSO DI GEOMETRIA E ALGEBRA LINEARE DOCENTI: S. MATTAREI (TITOLARE), G. VIGNA SURIA, D. FRAPPORTI Prima settimana. Lezione di martedí 23 febbraio 2010 Introduzione al corso: applicazioni dell

Dettagli

Esame di Geometria e Algebra Lineare Politecnico di Milano Ingegneria informatica Appello 30 Aprile 2015 Cognome: Nome: Matricola:

Esame di Geometria e Algebra Lineare Politecnico di Milano Ingegneria informatica Appello 30 Aprile 2015 Cognome: Nome: Matricola: Esame di Geometria e Algebra Lineare Politecnico di Milano Ingegneria informatica Appello 3 Aprile 25 Cognome: Nome: Matricola: Tutte le risposte devono essere motivate. Gli esercizi vanno svolti su questi

Dettagli

Esame scritto di Geometria I

Esame scritto di Geometria I Esame scritto di Geometria I Università degli Studi di Trento Corso di laurea in Fisica A.A. 26/27 Appello di febbraio 27 Esercizio Sia f h : R R l applicazione lineare definita da f h (e ) = 2e + (2 h)e

Dettagli

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette Annalisa Amadori e Benedetta Pellacci amadori@uniparthenope.it pellacci@uniparthenope.it Università di Napoli Parthenope Contenuti Nel Piano

Dettagli

APPUNTI SULLA DIAGONALIZZAZIONE Corso Prof. F.Podestà, a.a

APPUNTI SULLA DIAGONALIZZAZIONE Corso Prof. F.Podestà, a.a APPUNTI SULLA DIAGONALIZZAZIONE Corso Prof FPodestà, aa 003-004 Sia V uno spazio vettoriale e sia f : V V una applicazione lineare una tale applicazione da uno spazio vettoriale in se stesso è chiamata

Dettagli

Geometria analitica: rette e piani

Geometria analitica: rette e piani Geometria analitica: rette e piani Equazioni del piano Intersezioni di piani. Rette nello spazio Fasci di piani e rette Intersezioni fra piani e rette Piani e rette ortogonali Piani di forma parametrica

Dettagli

Le risposte vanno giustificate con chiarezza. 1) Nello spazio vettoriale V delle matrici 2 2 a coefficienti reali, considera le matrici A 1 = , A 4 =

Le risposte vanno giustificate con chiarezza. 1) Nello spazio vettoriale V delle matrici 2 2 a coefficienti reali, considera le matrici A 1 = , A 4 = Università degli Studi di Roma Tor Vergata. Corso di Laurea in Matematica Esame di Geometria 1 con Elementi di Storia Prof. F. Tovena 30 gennaio 2015 Le risposte vanno giustificate con chiarezza. 1 Nello

Dettagli

Nozioni e notazioni: concetti primitivi di insieme, elemento ed appartenenza.

Nozioni e notazioni: concetti primitivi di insieme, elemento ed appartenenza. Geometria I lezione del 30 settembre 2013 Presentazione del corso. Nozioni e notazioni: concetti primitivi di insieme, elemento ed appartenenza. Insiemi numerici: i numeri naturali, gli interi, i numeri

Dettagli

Esame di geometria e algebra

Esame di geometria e algebra Laurea Ing. 22 Febbraio 2008 Traccia I H = {(x, y, z, t) : x + 3y = 0, y z = 0}; K = {(x, y, z, t) : y + z = 0} 3y z 2z x y y { } hx 1 +hx 4 = h 1 x 2 +hx 4 = 1 x 1 +x 3 = h 1 1 1 4 Sia S = 1 una matrice

Dettagli

Università degli Studi di Bergamo Modulo di Geometria e Algebra Lineare (nuovo programma) 28 aprile 2014 Tema A

Università degli Studi di Bergamo Modulo di Geometria e Algebra Lineare (nuovo programma) 28 aprile 2014 Tema A Università degli Studi di Bergamo Modulo di Geometria e Algebra Lineare (nuovo programma 8 aprile 04 Tema A Tempo a disposizione: ore e mezza. Calcolatrici, libri e appunti non sono ammessi. Ogni esercizio

Dettagli

Osservazioni generali

Osservazioni generali Osservazioni generali Innanzitutto Non si può dividere per. Per i numeri complessi Quando si risolve z 3 = az con a dato, ricordarsi di stare attento per che cosa si divide. Infatti non si può dividere

Dettagli

Geometria analitica: equazioni parametriche, cartesiane, esercizi

Geometria analitica: equazioni parametriche, cartesiane, esercizi Lezione 2 Geometria analitica: equazioni parametriche, cartesiane, esercizi Definizione 2.. Sia S un insieme geometrico lineare definito tramite uno spazio vettoriale W V con dim(v ) = n. Scelta una base

Dettagli

Prodotto interno (prodotto scalare definito positivo)

Prodotto interno (prodotto scalare definito positivo) Contenuto Prodotto scalare. Lunghezza, ortogonalità. Sistemi e basi ortonormali. Somma diretta: V = U U. Proiezioni. Teorema di Pitagora, disuguaglianza di Cauchy-Schwarz. Angoli. Federico Lastaria. Analisi

Dettagli

Esercizi per il corso di Algebra e Geometria L.

Esercizi per il corso di Algebra e Geometria L. Esercizi per il corso di Algebra e Geometria L AA 2006/2007 1 Foglio 1 In tutti gli esercizi che seguiranno lo spazio ambiente sarà il piano cartesiano a valori nel campo dei numeri reali, dove supporremo

Dettagli

a + 2b + c 3d = 0, a + c d = 0 c d

a + 2b + c 3d = 0, a + c d = 0 c d SPAZI VETTORIALI 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x,

Dettagli

Esercizi di Geometria Spazi vettoriali e sottospazi - indipendenza lineare

Esercizi di Geometria Spazi vettoriali e sottospazi - indipendenza lineare Esercizi di Geometria Spazi vettoriali e sottospazi - indipendenza lineare 1. Quali dei seguenti sottoinsiemi sono sottospazi di R 3? Motivare la risposta. (a) {(x, y, 1) x, y R} (b) {(0, y, 0) y R} (c)

Dettagli

Soluzione facsimile 2 d esame di geometria - Ingegneria gestionale - a.a ISTRUZIONI

Soluzione facsimile 2 d esame di geometria - Ingegneria gestionale - a.a ISTRUZIONI Soluzione facsimile d esame di geometria - Ingegneria gestionale - a.a. 00-004 COGNOME......................................... NOME......................................... N. MATRICOLA................

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a. 014-01 Prova scritta del 1-6-01 TESTO E SOLUZIONI Avvertenze: A. Per il recupero del primo esonero svolgere gli esercizi

Dettagli

Forme bilineari simmetriche

Forme bilineari simmetriche Forme bilineari simmetriche Qui il campo dei coefficienti è sempre R Definizione 1 Sia V uno spazio vettoriale Una forma bilineare su V è una funzione b: V V R tale che v 1, v 2, v 3 V b(v 1 + v 2, v 3

Dettagli

Algebra Lineare ed Elementi di Geometria Corso di Laurea in Matematica Applicata MODULO 1

Algebra Lineare ed Elementi di Geometria Corso di Laurea in Matematica Applicata MODULO 1 Algebra Lineare ed Elementi di Geometria Corso di Laurea in Matematica Applicata MODULO 1 Prof. Lidia Angeleri Anno accademico 2015-2016 1 1 appunti aggiornati in data 14 gennaio 2016 Indice I Gruppi 3

Dettagli