ANALISI DI SERIE TEMPORALI CAOTICHE (2)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ANALISI DI SERIE TEMPORALI CAOTICHE (2)"

Transcript

1 ANALISI DI SERIE TEMPORALI CAOTICHE (2) Calcolo della dimensione frattale Modelli di previsione Calcolo degli esponenti di Liapunov C. Piccardi e F. Dercole Politecnico di Milano - 28/12/2009 1/24

2 CALCOLO DELLA DIMENSIONE FRATTALE La dimensione d dell attrattore A coincide con quella dell attrattore ricostruito A m. Perciò, se è nota una dimensione di embedding m, d può essere calcolata come dimensione di correlazione, utilizzando la serie temporale z m (t) che definisce l attrattore ricostruito. Ma, in genere, d non è nota a priori e, quindi, neppure, m. Un procedimento empirico, spesso adottato: Calcolare la dimensione di correlazione d (m) per una successione di valori crescenti di m. Per m mmin (dove m min è la minima dimensione di embedding ), d (m) rimane costante al valore corrispondente alla dimensione di correlazione di A. C. Piccardi e F. Dercole Politecnico di Milano - 28/12/2009 2/24

3 Esempio: esperimento di Couette-Taylor Lo spazio delle uscite ritardate z m (t) per m = 2. Per ogni valore di m tra 2 e 20, viene calcolata la funzione di correlazione C m ( r) = #coppie ( zm ( i), zm ( j) ) t.c. zm ( i) #coppie( z ( i), z ( j) ) m m z m ( j) < r per vari valori di r. C. Piccardi e F. Dercole Politecnico di Milano - 28/12/2009 3/24

4 C m (r) deve scalare con r secondo la legge log C m ( r) = d log r +α per cui la pendenza log ( r) / log r fornisce la stima di d. C m Il grafico di logc m ( r) / log r in funzione di log r fornisce (in un range intermedio di valori dell ascissa) la stima d 3. C. Piccardi e F. Dercole Politecnico di Milano - 28/12/2009 4/24

5 Esempio: un esperimento su un laser Lo spazio delle uscite ritardate z m (t) per m = 2. Il grafico di logc m ( r) / log r in funzione di log r fornisce (in un range intermedio di valori dell ascissa) la stima d C. Piccardi e F. Dercole Politecnico di Milano - 28/12/2009 5/24

6 Esempio: esperimento di Rayleigh-Bénard Un fluido viene riscaldato tra due piastre orizzontali mantenute a differente temperatura ( T l > Tu ). Tl Tu è piccolo, il fluido è fermo e il calore è scambiato per conduzione. T T supera una certa soglia, il fluido si muove e il calore è trasmesso per Se Se l u convezione. Per l Tu T elevato, il movimento del fluido è caotico. L esperimento misura la velocità in un determinato punto dello strato fluido. C. Piccardi e F. Dercole Politecnico di Milano - 28/12/2009 6/24

7 Dal grafico di logc m ( r) in funzione di log r, si ricava la stima di d calcolando la pendenza. La stima di d tende ad un valore asintotico (pari a circa 2.8) al crescere di m. Per contro, il rumore bianco risulta avere dimensione d = m ( riempie qualsiasi dimensione). C. Piccardi e F. Dercole Politecnico di Milano - 28/12/2009 7/24

8 MODELLI DI PREVISIONE Data la serie temporale di uscita, registrata fino all istante t : { y y,, y y } Y 0, t = 0, τ L t τ, il problema della previsione consiste nel determinare t una stima ŷ t+ τ del prossimo valore dell uscita ( previsione a un passo ) oppure, più in generale, una stima y ˆt+ τ yˆ t+ 2τ L yˆ t+ kτ dei prossimi valori dell uscita, per un certo numero di passi ( previsione a k - passi ), C. Piccardi e F. Dercole Politecnico di Milano - 28/12/2009 8/24

9 Per effettuare la previsione, è necessario ricavare dalla serie temporale un modello (procedura di identificazione ): Poiché ( Y ) y ˆ t+τ = F 0, t x = f ( x y = g x il modello non riproduce perfettamente il sistema ( & ), ( )) che ha generato la serie temporale Y la serie temporale è misurata con precisione finita la previsione ŷ t+ τ sarà differente dal valore effettivo y t+ τ. Il modello di previsione sarà tanto più buono quanto più riuscirà a rendere piccolo l errore di previsione ε t+ τ = ŷ t+ τ yt+ τ C. Piccardi e F. Dercole Politecnico di Milano - 28/12/2009 9/24

10 Supponiamo che: La serie temporale Y sia stata ricavata mentre il sistema funzionava su un attrattore n A R. Sia stata determinata una dimensione di embedding m per l attrattore A. Allora il vettore delle uscite ritardate z L t = yt yt τ yt ( m 1)τ ha una dinamica equivalente a quella dello stato è tutta e sola quella che serve per la previsione). x A (=l informazione contenuta in z t Consideriamo perciò modelli di previsione del tipo ( z ) F( y y y ) yˆ L t+ τ = F t = t t τ t ( m 1) τ C. Piccardi e F. Dercole Politecnico di Milano - 28/12/ /24

11 Previsione nearest-neighbor Dalla serie temporale (scalare) di uscita Y { y y,, y, y } 0, t 0, τ t τ dapprima la serie (vettoriale) delle uscite ritardate { z, z z }, t 2τ t τ Z = L, = L, si costruisce t t dove z t m = yt yt τ L yt ( m 1) τ R. All istante t, si cerca nella serie Z il vettore z i più vicino a z t, e si effettua la previsione: z z ˆ t+ 1 = i+ 1 da cui segue y ˆ t + 1 = y i + 1. C. Piccardi e F. Dercole Politecnico di Milano - 28/12/ /24

12 Nota bene: Il metodo di previsione è basato sull ipotesi che due stati correnti vicini diano luogo a due successori vicini (=il flusso di traiettorie è continuo rispetto allo stato). Siccome tutti gli z t vicini ad uno stesso z i daranno luogo alla stessa previsione z ˆ t+ 1 = zi+ 1, ne risulta che il metodo definisce implicitamente un modello y ˆ t+τ = F( z t ) costante a tratti. Una possibile generalizzazione (fra le tante): dato z t, si considerano tutti i vicini z i con z i z t < δ, con δ > 0 (piccolo) prefissato. La previsione è data dalla media dei successori: zˆ t+ 1 = z i + 1 i C. Piccardi e F. Dercole Politecnico di Milano - 28/12/ /24

13 Previsione lineare locale Consiste nel determinare un modello di previsione lineare, valido localmente nell intorno m di zt R : yˆ t + τ = azt + b = a1 yt + a2 yt τ + L + am yt ( m 1) τ + b I coefficienti ( a, b) vengono determinati minimizzando l errore (quadratico medio) di previsione: ε 2 ( yˆ y ) = ( az + b y ) 2 i+ τ = i+ τ i+ τ i z I i δ 2 i+ τ dove I δ è l insieme dei vettori z i vicini a z t, cioè prefissato. z z < δ, con > 0 i t δ (piccolo) C. Piccardi e F. Dercole Politecnico di Milano - 28/12/ /24

14 Nota bene: Ad ogni istante, quando è disponibile il nuovo t ricalcolato. z, il modello (, b) a deve essere Il problema di minimizzazione ha soluzione esplicita ( minimi quadrati ), e quindi è molto rapido computazionalmente. Concettualmente, il metodo equivale a determinare uno sviluppo di Taylor arrestato al primo ordine del modello (incognito ) ( z ) F( y y y ) y L t+ τ = F t = t t τ t ( m 1) τ All istante t, la previsione a k -passi si ottiene utilizzando ricorsivamente le previsioni precedentemente ottenute: yˆ t + τ = a1 yt + a2 yt τ + L + am yt ( m 1) τ + b yˆ a y + a y + L + a y b t + 2τ = 1 ˆt+ τ 2 t m t ( m 1) τ + τ + t + 3τ = a1 yˆ t+ 2τ + a2 yˆ t+ τ + + am yt ( m 1) τ + 2τ + yˆ L M b C. Piccardi e F. Dercole Politecnico di Milano - 28/12/ /24

15 Esempio: mappa di Ikeda x( t y( t + 1) = R + + 1) = C 2 C2( x( t)cosγ ( t) y( t)sin γ ( t) ) ( x( t)sin γ ( t) + y( t)cosγ ( t) ) ( 2 2 ) con γ = C C + x y Un previsore lineare locale è stato stimato da una serie temporale di 5000 punti generata dal modello, a cui è stato sovrapposto rumore. ( ): previsione a 1 passo ŷ t ( ): valore effettivo y t C. Piccardi e F. Dercole Politecnico di Milano - 28/12/ /24

16 Modelli di previsione globali Un modello globale è determinato sulla base dell intera serie temporale Y, ed è quindi valido in tutte le regioni visitate dall attrattore A. In generale, è un modello del tipo ( z ) F ( y y y ) yˆ L t+ τ = Fp t = p t t τ t ( m 1) τ dove F p è una funzione prefissata, dipendente da alcuni parametri p = p1 p2 L pr. I parametri previsione: p vengono determinati minimizzando l errore (quadratico medio) di 2 ε i+ τ = + 2 ( yˆ i+ τ yi+ τ ) = ( Fp ( zi ) yi τ ) z i 2 dove la sommatoria è estesa a tutta la serie di dati disponibili. C. Piccardi e F. Dercole Politecnico di Milano - 28/12/ /24

17 Nota bene: Se si ipotizza che la serie temporale sia stata generata da un sistema non lineare, ovviamente F p si sceglierà non lineare rispetto a z t. Tipiche scelte sono: funzioni polinomiali rbf (radial basis functions) reti neurali F p è lineare rispetto ai parametri p (p.e. polinomi, rbf) il problema di minimizzazione ha comunque soluzione esplicita ( minimi quadrati ), computazionalmente rapida e robusta. Se Poiché il modello è stato ricavato dalla serie temporale relativa al funzionamento sull attrattore A, il modello (anche se globale ) non potrà replicare il funzionamento del sistema al di fuori di A (p.e., transitorio di avvicinamento ad A). C. Piccardi e F. Dercole Politecnico di Milano - 28/12/ /24

18 Esempio: sistema di Lorenz La tipica performance di un modello globale per la previsione a k -passi: ( ): previsione a k -passi ( ): valore effettivo y t La previsione è buona fino a circa 90 passi. Aumentando l orizzonte, il comportamento previsto è comunque qualitativamente simile a quello effettivo. L errore di previsione (media quadratica rispetto a vari esperimenti) cresce al crescere dell orizzonte di previsione. C. Piccardi e F. Dercole Politecnico di Milano - 28/12/ /24

19 CALCOLO DEGLI ESPONENTI DI LIAPUNOV Il calcolo del primo (=massimo) esponente di Liapunov L 1 associato ad una serie temporale è particolarmente informativo, poiché L 1 caratterizza la dinamica del sistema è computazionalmente molto più conveniente e affidabile del calcolo dell intero spettro degli esponenti di Liapunov. Data la serie temporale (scalare) di uscita Y { L, y( t τ ), y( t), y( + τ ),L} = t e determinata una dimensione di embedding m, si costruisce la serie Z dei vettori (m-dimensionali) delle uscite ritardate: Z { L, z ( t τ ), z ( t), z ( + τ ),L} = t dove ( t) = y( t) y( t τ ) y( t ( m 1) τ ) z m L. m m m C. Piccardi e F. Dercole Politecnico di Milano - 28/12/ /24

20 Fissato un vettore z m (i), si cerca nella serie Z un vettore z m ( j) molto vicino a (i) cioè tale che la distanza ( 0) = z ( i) z ( j) m possa essere considerata infinitesimale. m z m, Quindi, dalla serie Z si estrae la funzione ( t) = z ( i + t) z ( j t) m m + che rappresenta l evoluzione nel tempo della distanza tra i due punti considerati. In media, ci si aspetta che, per t piccolo, (t) ( t) = (0) exp( L1t ), dove L 1 è il primo esponente di Liapunov. evolva secondo la legge C. Piccardi e F. Dercole Politecnico di Milano - 28/12/ /24

21 In pratica, per ogni vettore z m ( i) Z si deve calcolare ( ) z ( i + t) z ( j t i, m, ε ( t) = ln m m + per t = 0,1, L j q ) dove la media è estesa a tutti gli z m ( j) tali che z ( i) z ( j) < ε j m m (ε piccolo). Poi q i, m, ε ( t) deve essere mediato su tutti gli (i) z m che compongono la serie Z : Q ( t) m, ε ( t) = qi, m, ε i Q m ε ( ) dovrebbe crescere linearmente con t (almeno in un certo range di t ), cioè, t Ponendo in un grafico, ( t) grafico stesso. Q m, ) 1 ε ( t = L t +α Q m ε in funzione di t, si ricava quindi 1 L come pendenza del C. Piccardi e F. Dercole Politecnico di Milano - 28/12/ /24

22 Esempio: dati da un esperimento su un laser a CO 2 In un range intermedio di t, la pendenza (media) delle curve (ottenute al variare di alcuni parametri di calcolo) è circa pari a L Q m ε, ( t) t C. Piccardi e F. Dercole Politecnico di Milano - 28/12/ /24

23 Calcolare tutti gli esponenti di Liapunov Rispetto al calcolo del solo L 1, molto più critico è il calcolo di tutti gli esponenti di Liapunov ( L1 L2 L Ln): il più delle volte, n non è noto: scegliendo una dimensione di embedding (come avviene di solito) si introducono m n esponenti spuri (=non presenti nel sistema originale) che possono non essere facilmente isolabili (non sono tra i primi + d che entrano nella formula di Kaplan-Yorke); il calcolo degli esponenti richiede di stimare le matrici Jacobiane (=modelli lineari locali) lungo la traiettoria ricostruita, un compito numericamente piuttosto delicato: poiché la serie temporale Y è registrata mentre il sistema funziona sull attrattore A, le differenze finite coinvolgono solo direzioni non trasversali all attrattore; ciò rende difficilmente stimabili alcuni esponenti negativi (quelli che governano il transitorio di avvicinamento ad A) perché non eccitati. Comunemente, si considerano stimabili solo gli esponenti positivi, o al più quelli che + entrano nella formula di Kaplan-Yorke (i primi d ). m > n C. Piccardi e F. Dercole Politecnico di Milano - 28/12/ /24

24 In pratica, due sono gli approcci generalmente adottati: per ogni vettore delle uscite ritardate (t) stima del modello lineare locale; z m, determinare lo Jacobiano mediante dalla serie temporale, stimare un modello non lineare (differenziabile) globale (p.e. polinomiale, razionale, rbf), per cui lo Jacobiano risulta disponibile in forma analitica. Esempio: calcolo dei primi 3 esponenti da dati relativi a un esperimento su laser (k =numero punti utilizzati per la stima del modello lineare locale) L uso di modelli globali sembra meno sensibile ai parametri computazionali. C. Piccardi e F. Dercole Politecnico di Milano - 28/12/ /24

ANALISI DI SERIE TEMPORALI CAOTICHE (1)

ANALISI DI SERIE TEMPORALI CAOTICHE (1) ANALISI DI SERIE TEMPORALI CAOTICHE (1) Problematiche Ricostruzione dello stato Dimensione di embedding C. Piccardi e F. Dercole Politecnico di Milano ver. 28/12/2009 1/15 Per studiare e comprendere appieno

Dettagli

INSIEMI FRATTALI. Dimensione di un insieme. Insiemi frattali elementari. Dimensioni frattali. Insiemi frattali e sistemi dinamici

INSIEMI FRATTALI. Dimensione di un insieme. Insiemi frattali elementari. Dimensioni frattali. Insiemi frattali e sistemi dinamici INSIEMI FRATTALI Dimensione di un insieme Insiemi frattali elementari Dimensioni frattali Insiemi frattali e sistemi dinamici C. Piccardi Politecnico di Milano - 03/01/2007 1/1 Caratteristiche tipiche

Dettagli

INSIEMI FRATTALI. Dimensione di un insieme. Insiemi frattali elementari. Dimensioni frattali. Insiemi frattali e sistemi dinamici

INSIEMI FRATTALI. Dimensione di un insieme. Insiemi frattali elementari. Dimensioni frattali. Insiemi frattali e sistemi dinamici INSIEMI FRATTALI Dimensione di un insieme Insiemi frattali elementari Dimensioni frattali Insiemi frattali e sistemi dinamici C. Piccardi e F. Dercole Politecnico di Milano - 30/11/2011 1/29 Caratteristiche

Dettagli

ANALISI PICCO-PICCO. Diagramma picco-picco. Dinamica picco-picco. Diagramma dei tempi di ritorno. Calcolo del primo esponente di Liapunov

ANALISI PICCO-PICCO. Diagramma picco-picco. Dinamica picco-picco. Diagramma dei tempi di ritorno. Calcolo del primo esponente di Liapunov ANALISI PICCO-PICCO Diagramma picco-picco Dinamica picco-picco Diagramma dei tempi di ritorno Calcolo del primo esponente di Liapunov C. Piccardi e F. Dercole Politecnico di Milano - 28/2/2009 /2 DIAGRAMMA

Dettagli

ANALISI DI SERIE TEMPORALI CAOTICHE

ANALISI DI SERIE TEMPORALI CAOTICHE ANALISI DI SERIE TEMPORALI CAOTICHE Probleatiche Ricostruzione dello stato Diensione di ebedding Calcolo della diensione frattale Modelli di previsione Calcolo degli esponenti di Liapunov C. Piccardi e

Dettagli

IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA

IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA Metodi per l Analisi dei Dati Sperimentali AA009/010 IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA Sommario Massima Verosimiglianza Introduzione La Massima Verosimiglianza Esempio 1: una sola misura sperimentale

Dettagli

COME APPARE IL CAOS DETERMINISTICO

COME APPARE IL CAOS DETERMINISTICO COME APPARE IL CAOS DETERMINISTICO Serie temporale Spettro di potenza Quadro delle traiettorie Sezione di Poincaré Auto-somiglianza Sensibilità alle condizioni iniziali C. Piccardi e F. Dercole Politecnico

Dettagli

VALIDAZIONE DEL MODELLO

VALIDAZIONE DEL MODELLO VALIDAZIONE DEL MODELLO Validazione del Modello Non è sufficiente stimare il vettore θ per dichiarare concluso il processo di identificazione. E necessario ottenere una misura della sua affidabilità L

Dettagli

Analisi cinematica di meccanismi articolati

Analisi cinematica di meccanismi articolati Analisi cinematica di meccanismi articolati metodo dei numeri complessi rev 10 1 Il quadrilatero articolato b β a c α d γ Posizione a + b = c + d a e iα + b e iβ = c e iγ + d a cos α + b cos β = c cos

Dettagli

Capitolo 3: Ottimizzazione non vincolata parte III. E. Amaldi DEI, Politecnico di Milano

Capitolo 3: Ottimizzazione non vincolata parte III. E. Amaldi DEI, Politecnico di Milano Capitolo 3: Ottimizzazione non vincolata parte III E. Amaldi DEI, Politecnico di Milano 3.4 Metodi di ricerca unidimensionale In genere si cerca una soluzione approssimata α k di min g(α) = f(x k +αd k

Dettagli

5. Applicazione ai dati sperimentali, un modello di previsione delle temperature

5. Applicazione ai dati sperimentali, un modello di previsione delle temperature 5. Applicazione ai dati sperimentali, un modello di previsione delle temperature 5.1 Ricostruzione dello spazio delle fasi L utilizzo del teorema di embedding per ricostruire lo spazio delle fasi relativo

Dettagli

Elementi di Teoria dei Sistemi

Elementi di Teoria dei Sistemi Parte 2, 1 Elementi di Teoria dei Sistemi Parte 2, 2 Definizione di sistema dinamico Parte 2, 3 Sistema dinamico a tempo continuo Ingresso Uscita Parte 2, 4 Cosa significa Dinamico?? e` univocamente determinata?

Dettagli

ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u (1) y = x 1

ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u (1) y = x 1 Alcuni esercizi risolti su: - calcolo dell equilibrio di un sistema lineare e valutazione delle proprietà di stabilità dell equilibrio attraverso linearizzazione - calcolo del movimento dello stato e dell

Dettagli

Claudio Estatico Equazioni non-lineari

Claudio Estatico Equazioni non-lineari Claudio Estatico (claudio.estatico@uninsubria.it) Equazioni non-lineari 1 Equazioni non-lineari 1) Equazioni non-lineari e metodi iterativi. 2) Metodo di bisezione, metodo regula-falsi. 3) Metodo di Newton.

Dettagli

Elementi di Teoria dei Sistemi. Definizione di sistema dinamico. Cosa significa Dinamico? Sistema dinamico a tempo continuo

Elementi di Teoria dei Sistemi. Definizione di sistema dinamico. Cosa significa Dinamico? Sistema dinamico a tempo continuo Parte 2, 1 Parte 2, 2 Elementi di Teoria dei Sistemi Definizione di sistema dinamico Parte 2, 3 Sistema dinamico a tempo continuo Cosa significa Dinamico? Parte 2, 4? e` univocamente determinata? Ingresso

Dettagli

Maria Prandini Dipartimento di Elettronica e Informazione Politecnico di Milano

Maria Prandini Dipartimento di Elettronica e Informazione Politecnico di Milano Note relative a test di bianchezza rimozione delle componenti deterministiche da una serie temporale a supporto del Progetto di Identificazione dei Modelli e Analisi dei Dati Maria Prandini Dipartimento

Dettagli

Il metodo dei minimi quadrati

Il metodo dei minimi quadrati Il metodo dei minimi quadrati 1 Posizione del problema Introduciamo la problematica con un semplice esempio pratico. Supponiamo di avere a disposizione una certa quantità x di oggetti tutti uguali tra

Dettagli

Metodi di Iterazione Funzionale

Metodi di Iterazione Funzionale Appunti di Matematica Computazionale Lezione Metodi di Iterazione Funzionale Il problema di calcolare il valore per cui F() = si può sempre trasformare in quello di trovare il punto fisso di una funzione

Dettagli

Metodi di identificazione

Metodi di identificazione Metodi di identificazione Metodo di identificazione LS per sistemi ARX Sia yt un processo ARX generico con parametri ignoti: S: yt= B z A z ut 1 1 A z et ota: scegliere ut 1 è la scelta più generica possibile,

Dettagli

1. Funzioni implicite

1. Funzioni implicite 1. Funzioni implicite 1.1 Il caso scalare Sia X R 2 e sia f : X R. Una funzione y : (a, b) R si dice definita implicitamente dall equazione f(x, y) = 0 in (a, b) quando: 1. (x, y(x)) X x (a, b); 2. f(x,

Dettagli

Fondamenti di Data Processing

Fondamenti di Data Processing Fondamenti di Data Processing Vincenzo Suraci Automazione INTRODUZIONE AL DATA PROCESSING ACQUISIZIONE DATI SCHEMA COSTRUTTIVO SCHEDA INPUT OSCILLATORE A FREQUENZA COSTANTE BANDA PASSANTE ACCORDATA AL

Dettagli

STRADE AL CAOS. Sistemi parametrizzati. Cascata di raddoppi di periodo (cascata di Feigenbaum) Rottura di toro. Caos alla Shilnikov.

STRADE AL CAOS. Sistemi parametrizzati. Cascata di raddoppi di periodo (cascata di Feigenbaum) Rottura di toro. Caos alla Shilnikov. STRADE AL CAOS Sistemi parametrizzati Cascata di raddoppi di periodo (cascata di Feigenbaum) Rottura di toro Caos alla Shilnikov Intermittenza Crisi C. Piccardi e F. Dercole Politecnico di Milano ver.

Dettagli

Facoltà di Psicologia Università di Padova Anno Accademico Corso di Psicometria - Modulo B

Facoltà di Psicologia Università di Padova Anno Accademico Corso di Psicometria - Modulo B Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011 Corso di Psicometria - Modulo B Dott. Marco Vicentini marco.vicentini@unipd.it Rev. 27/12/2010 Regressione lineare Modello geometrico

Dettagli

Sistemi di Elaborazione dell Informazione 170. Caso Non Separabile

Sistemi di Elaborazione dell Informazione 170. Caso Non Separabile Sistemi di Elaborazione dell Informazione 170 Caso Non Separabile La soluzione vista in precedenza per esempi non-linearmente separabili non garantisce usualmente buone prestazioni perchè un iperpiano

Dettagli

Parte I Identificazione di modelli dinamici. 6: Teoria della stima e caratteristiche degli stimatori. Parte I 6, 1

Parte I Identificazione di modelli dinamici. 6: Teoria della stima e caratteristiche degli stimatori. Parte I 6, 1 Parte I 6, 1 Parte I Identificazione di modelli dinamici 6: Teoria della stima e caratteristiche degli stimatori Generalita` Parte I 6, 2 In generale abbiamo: dove sono i dati osservati e` la quantita`

Dettagli

ATTRATTORI CAOTICI. Attrattori. Classificazione degli attrattori: equilibri, cicli, tori, caos. Esponenti di Liapunov di attrattori

ATTRATTORI CAOTICI. Attrattori. Classificazione degli attrattori: equilibri, cicli, tori, caos. Esponenti di Liapunov di attrattori ARAORI CAOICI Attrattori Classificazione degli attrattori: equilibri, cicli, tori, caos Esponenti di Liapunov di attrattori Sistemi dissipativi C. Piccardi e F. Dercole Politecnico di Milano - 06/12/2012

Dettagli

SQP (Sequential Quadratic Programming ) La soluzione del problema min f o (x) g i (x) = 0, i I

SQP (Sequential Quadratic Programming ) La soluzione del problema min f o (x) g i (x) = 0, i I SQP (Sequential Quadratic Programming ) La soluzione del problema min f o (x) g i (x) = 0, i I e caratterizzata dalle condizioni f o (x) + i I μ i g i (x) = 0 e dall ammissibilita ( g i (x) = 0, i I )

Dettagli

Prova Finale di Tipo B e Prova di Accesso alla Laura Magistrale. Dip. Matematica - Università Roma Tre

Prova Finale di Tipo B e Prova di Accesso alla Laura Magistrale. Dip. Matematica - Università Roma Tre Prova Finale di Tipo B e Prova di Accesso alla Laura Magistrale Dip. Matematica - Università Roma Tre Prof. U. Bessi, S. Gabelli, G. Gentile, M. Pontecorvo febbraio 2006 Istruzioni. a) La sufficienza viene

Dettagli

Progetto e miglioramento del processo produttivo 383

Progetto e miglioramento del processo produttivo 383 Ottimizzazione del processo con esperimenti programmati I piani fattoriali sono molto utili nella selezione dei fattori o factor screening, cioè nella identificazione di quei fattori che maggiormente influiscono

Dettagli

5.6 Metodo di penalità e metodo basato sulle funzioni lagrangiane aumentate. min f(x) s.v. c i (x) 0 i I c i (x) = 0 i E (1) x R n

5.6 Metodo di penalità e metodo basato sulle funzioni lagrangiane aumentate. min f(x) s.v. c i (x) 0 i I c i (x) = 0 i E (1) x R n 5.6 Metodo di penalità e metodo basato sulle funzioni lagrangiane aumentate Consideriamo il generico problema di PNL min f(x) s.v. c i (x) 0 i I c i (x) = 0 i E (1) x R n dove f e le c i sono di classe

Dettagli

Elementi di Teoria dei Sistemi. Definizione di sistema dinamico. Cosa significa Dinamico? Sistema dinamico a tempo continuo

Elementi di Teoria dei Sistemi. Definizione di sistema dinamico. Cosa significa Dinamico? Sistema dinamico a tempo continuo Parte 2, 1 Parte 2, 2 Elementi di Teoria dei Sistemi Definizione di sistema dinamico Parte 2, 3 Sistema dinamico a tempo continuo Cosa significa Dinamico? Parte 2, 4? e` univocamente determinata? Ingresso

Dettagli

TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI

TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI TEORIA DEI SISTEMI Laurea Specialistica in Ingegneria Meccatronica Laurea Specialistica in Ingegneria Gestionale Indirizzo Gestione Industriale TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI Ing. Cristian

Dettagli

Analisi degli Errori

Analisi degli Errori Analisi degli Errori Luca Gemignani lucagemignani@unipiit 1 marzo 2018 Indice Lezione 1: Errori nel Calcolo di una Funzione Razionale 1 Lezione 2: Tecniche per l Analisi degli Errori 3 Lezione 3: Cenni

Dettagli

I FRATTALI. Chiara Mocenni. giovedì 15 dicembre 11

I FRATTALI. Chiara Mocenni. giovedì 15 dicembre 11 I FRATTALI Chiara Mocenni (mocenni@dii.unisi.it) IL CAOS DETERMINISTICO Sistema deterministico Comportamento aperiodico Sensibilità alle condizioni iniziali Attrattori strani Infiniti cicli repulsivi GLI

Dettagli

Stabilità esterna e analisi della risposta

Stabilità esterna e analisi della risposta Stabilità esterna e analisi della risposta Risposte di sistemi del 1 e 2 ordine Introduzione Risposta al gradino di sistemi del 1 ordine Determinazione di un modello del 1 ordine Risposta al gradino di

Dettagli

w 1 (z) = z2 z + 1 z 3 z 2 + z 1, w 2(z) = z2

w 1 (z) = z2 z + 1 z 3 z 2 + z 1, w 2(z) = z2 Teoria dei Sistemi - 9 cfu - L.M. in Ingegneria dell Automazione Compito del 3///7 Esercizio Si considerino le funzioni di trasferimento (a tempo discreto) w (z) = z z + z 3 z + z, w (z) = z z 3 (.) (i)

Dettagli

In questa lezione ci occuperemo di sistemi dinamici in tempo continuo, rappresentati da equazioni differenziali.

In questa lezione ci occuperemo di sistemi dinamici in tempo continuo, rappresentati da equazioni differenziali. Sistemi dinamici In questa lezione ci occuperemo di sistemi dinamici in tempo continuo, rappresentati da equazioni differenziali. Le equazioni differenziali sono delle equazioni in cui le incognite rispetto

Dettagli

ANALISI VETTORIALE COMPITO IN CLASSE DEL 8/11/2013

ANALISI VETTORIALE COMPITO IN CLASSE DEL 8/11/2013 ANALISI VETTORIALE COMPITO IN CLASSE DEL 8//3 Premessa (Cfr. gli Appunti di Analisi Vettoriale / del Prof. Troianiello) Nello studio degli integrali impropri il primo approccio all utilizzo del criterio

Dettagli

5.6 Metodo di penalità e metodo basato sulle funzioni lagrangiane aumentate

5.6 Metodo di penalità e metodo basato sulle funzioni lagrangiane aumentate 5.6 Metodo di penalità e metodo basato sulle funzioni lagrangiane aumentate Consideriamo il generico problema di PNL min f (x) s.v. c i (x) 0 i I c i (x) = 0 i E (1) x R n dove f e le c i sono di classe

Dettagli

Università di Siena. Teoria della Stima. Lucidi del corso di. Identificazione e Analisi dei Dati A.A

Università di Siena. Teoria della Stima. Lucidi del corso di. Identificazione e Analisi dei Dati A.A Università di Siena Teoria della Stima Lucidi del corso di A.A. 2002-2003 Università di Siena 1 Indice Approcci al problema della stima Stima parametrica Stima bayesiana Proprietà degli stimatori Stime

Dettagli

b vettore(termine noto) y* proiezione ortogonale di b

b vettore(termine noto) y* proiezione ortogonale di b Carla Guerrini 1 Sistemi sovradeterminati Sia A una matrice m n ove m > n sia b R m trovare una soluzione del sistema sovradeterminato Ax = b significa cercare di esprimere un vettore di R m come combinazione

Dettagli

PAROLE CHIAVE Accuratezza, Accuracy, Esattezza, PRECISIONE, Precision, Ripetibilità, Affidabilità, Reliability, Scarto quadratico medio (sqm), Errore

PAROLE CHIAVE Accuratezza, Accuracy, Esattezza, PRECISIONE, Precision, Ripetibilità, Affidabilità, Reliability, Scarto quadratico medio (sqm), Errore PAROLE CHIAVE Accuratezza, Accuracy, Esattezza, PRECISIONE, Precision, Ripetibilità, Affidabilità, Reliability, Scarto quadratico medio (sqm), Errore medio, Errore quadratico medio (eqm), Deviazione standard,

Dettagli

Laboratorio di Calcolo Numerico

Laboratorio di Calcolo Numerico Laboratorio di Calcolo Numerico M.R. Russo Università degli Studi di Padova Dipartimento di Matematica Pura ed Applicata A.A. 2009/2010 Equazioni non lineari Data una funzione consideriamo il problema

Dettagli

METODI DI COLLOCAZIONE POLINOMIALE (Metodi di Runge-Kutta continui) November 30, 2004

METODI DI COLLOCAZIONE POLINOMIALE (Metodi di Runge-Kutta continui) November 30, 2004 METODI DI COLLOCAZIONE POLINOMIALE (Metodi di Runge-Kutta continui) November, Nell approssimare numericamente un problema di Cauchy, puo capitare di essere interessati a valori della soluzione in punti

Dettagli

Progr. Non Lineare: algoritmi

Progr. Non Lineare: algoritmi Progr. Non Lineare: algoritmi Fabio Schoen schoen@ing.unifi.it http://globopt.dsi.unifi.it/users/schoen A.A. 22-23 Programmazione Non Lineare: Cenni sugli algoritmi di ottimizzazione locale Schema generale

Dettagli

Metodo dei Minimi Quadrati. Dott. Claudio Verona

Metodo dei Minimi Quadrati. Dott. Claudio Verona Metodo dei Minimi Quadrati Dott. Claudio Verona E in generale interessante studiare l andamento di una variabile in funzione di un altra e capire se c è una funzione matematica che le lega. Viceversa è

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Laurea in Ingegneria Gestionale Sede di Fermo Corso di 9 - EQUAZIONI DIFFERENZIALI ORDINARIE valori iniziali Valori iniziali Ci occuperemo della soluzione numerica di equazioni del prim ordine

Dettagli

Corso di Laurea in Ingegneria Gestionale - Sede di Fermo Anno Accademico 2009/2010 Matematica 2 Esercizi d esame

Corso di Laurea in Ingegneria Gestionale - Sede di Fermo Anno Accademico 2009/2010 Matematica 2 Esercizi d esame Corso di Laurea in Ingegneria Gestionale - ede di Fermo Anno Accademico 2009/2010 Matematica 2 Esercizi d esame Nome... N. Matricola... Fermo, gg/mm/aaaa 1. tabilire l ordine di ciascuna delle seguenti

Dettagli

Analisi Numerica: Introduzione

Analisi Numerica: Introduzione Analisi Numerica: Introduzione S. Maset Dipartimento di Matematica e Geoscienze, Università di Trieste Analisi numerica e calcolo numerico Analisi numerica e calcolo numerico La matematica del continuo

Dettagli

Note sul sistema di Lotka-Volterra. Prima versione. Commenti e correzioni sono benvenuti.

Note sul sistema di Lotka-Volterra. Prima versione. Commenti e correzioni sono benvenuti. Ottobre 2016 Note sul sistema di Lotka-Volterra Prima versione. Commenti e correzioni sono benvenuti. 1 Introduzione Il sistema di Lotka Volterra (LV), o sistema preda predatore è probabilmente il primo

Dettagli

Metodo dei minimi quadrati e matrice pseudoinversa

Metodo dei minimi quadrati e matrice pseudoinversa Scuola universitaria professionale della Svizzera italiana Dipartimento Tecnologie Innovative Metodo dei minimi quadrati e matrice pseudoinversa Algebra Lineare Semestre Estivo 2006 Metodo dei minimi quadrati

Dettagli

Cenni sull integrazione numerica delle equazioni differenziali. Corso di Dinamica e Simulazione dei Sistemi Meccanici

Cenni sull integrazione numerica delle equazioni differenziali. Corso di Dinamica e Simulazione dei Sistemi Meccanici Cenni sull integrazione numerica delle equazioni differenziali Corso di Dinamica e Simulazione dei Sistemi Meccanici 9 ottobre 009 Introduzione La soluzione analitica dell integrale di moto di sistemi

Dettagli

25 - Funzioni di più Variabili Introduzione

25 - Funzioni di più Variabili Introduzione Università degli Studi di Palermo Facoltà di Economia CdS Statistica per l Analisi dei Dati Appunti del corso di Matematica 25 - Funzioni di più Variabili Introduzione Anno Accademico 2013/2014 M. Tumminello

Dettagli

Intervallo di fiducia del coefficiente angolare e dell intercetta L intervallo di fiducia del coefficiente angolare (b 1 ) è dato da:

Intervallo di fiducia del coefficiente angolare e dell intercetta L intervallo di fiducia del coefficiente angolare (b 1 ) è dato da: Analisi chimica strumentale Intervallo di fiducia del coefficiente angolare e dell intercetta L intervallo di fiducia del coefficiente angolare (b 1 ) è dato da: (31.4) dove s y è la varianza dei valori

Dettagli

Derivazione numerica. Introduzione al calcolo numerico. Derivazione numerica (II) Derivazione numerica (III)

Derivazione numerica. Introduzione al calcolo numerico. Derivazione numerica (II) Derivazione numerica (III) Derivazione numerica Introduzione al calcolo numerico Il calcolo della derivata di una funzione in un punto implica un processo al limite che può solo essere approssimato da un calcolatore. Supponiamo

Dettagli

PREVISIONE. E inutile cercare di prevedere la componente deterministica. Quindi si opera su valori depurati di questa componente.

PREVISIONE. E inutile cercare di prevedere la componente deterministica. Quindi si opera su valori depurati di questa componente. PREVISIONE Sono analoghi a quelli di simulazione tranne che per l'uso dell'informazione: - si utilizzano tutte le informazioni disponibili (ingressi) fino all'istante t e si calcola il passo/i passi successivi

Dettagli

Sistemi Intelligenti Relazione tra ottimizzazione e statistica - IV Alberto Borghese

Sistemi Intelligenti Relazione tra ottimizzazione e statistica - IV Alberto Borghese Sistemi Intelligenti Relazione tra ottimizzazione e statistica - IV Alberto Borghese Università degli Studi di Milano Laboratory of Applied Intelligent Systems (AIS-Lab) Dipartimento di Informatica borghese@di.unimi.it

Dettagli

Osservatore di Luenberger

Osservatore di Luenberger 1 Osservatore di Luenberger In queste note verrà presentato l osservatore di Luenberger, uno stimatore dello stato per sistemi lineari. Si farà il caso di sistemi dinamici tempo-continui e tempo-discreti.

Dettagli

PROCESSO STOCASTICO I

PROCESSO STOCASTICO I PROCESSO STOCASTICO I valori futuri di un segnale aleatorio (stocastico) non possono essere predetti esattamente. I segnali aleatori sono tali per loro natura (meccanismo interno) o rappresentano meccanismi

Dettagli

Appunti su Indipendenza Lineare di Vettori

Appunti su Indipendenza Lineare di Vettori Appunti su Indipendenza Lineare di Vettori Claudia Fassino a.a. Queste dispense, relative a una parte del corso di Matematica Computazionale (Laurea in Informatica), rappresentano solo un aiuto per lo

Dettagli

Proprietà strutturali e leggi di controllo

Proprietà strutturali e leggi di controllo Proprietà strutturali e leggi di controllo Retroazione statica dallo stato La legge di controllo Esempi di calcolo di leggi di controllo Il problema della regolazione 2 Retroazione statica dallo stato

Dettagli

Statistica Applicata all edilizia: il modello di regressione

Statistica Applicata all edilizia: il modello di regressione Statistica Applicata all edilizia: il modello di regressione E-mail: orietta.nicolis@unibg.it 27 aprile 2009 Indice Il modello di Regressione Lineare 1 Il modello di Regressione Lineare Analisi di regressione

Dettagli

Note per le esercitazioni di Geometria 1 a.a. 2007/08 A. Lotta. Metodi per il calcolo del rango di una matrice

Note per le esercitazioni di Geometria 1 a.a. 2007/08 A. Lotta. Metodi per il calcolo del rango di una matrice Note per le esercitazioni di Geometria 1 a.a. 2007/08 A. Lotta Versione del 21/12/07 Metodi per il calcolo del rango di una matrice Sia A M m,n (K). Denotiamo con A (i) la riga i-ma di A, i {1,..., m}.

Dettagli

2. Fra tutti i rettangoli inscritti in una circonferenza, determinare quello di area massima.

2. Fra tutti i rettangoli inscritti in una circonferenza, determinare quello di area massima. 2. Fra tutti i rettangoli inscritti in una circonferenza, determinare quello di area massima. 3. Fra tutti i cilindri a base rotonda inscritti in una sfera, determinare quello di volume massimo. 4. Dimostrare

Dettagli

Regola dei trapezi. a, b punti fissi a priori. non fissi a priori (indeterminati) errore di integrazione. a, b

Regola dei trapezi. a, b punti fissi a priori. non fissi a priori (indeterminati) errore di integrazione. a, b INTEGRAZIONE NUMERICA (Quadratura di Gauss) Regola dei trapezi I ( b a) f ( a) + f ( b) f (x) errore di integrazione f (x) f (a) f (b) a b x a a ' b' b x a, b punti fissi a priori a, b non fissi a priori

Dettagli

Identificazione di modello

Identificazione di modello SE5 Prof. Davide Manca Politecnico di Milano Dinamica e Controllo dei Processi Chimici Esercitazione #5 Identificazione di modello ing. Sara Brambilla SE5 Identificazione di modello Nel definire un modello

Dettagli

Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2013/14 Docente: Fabio Paronetto

Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2013/14 Docente: Fabio Paronetto Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2013/14 Docente: Fabio Paronetto Gli argomenti denotati con un asterisco tra parentesi (e solo

Dettagli

0.1 Spazi Euclidei in generale

0.1 Spazi Euclidei in generale 0.1. SPAZI EUCLIDEI IN GENERALE 1 0.1 Spazi Euclidei in generale Sia V uno spazio vettoriale definito su R. Diremo, estendendo una definizione data in precedenza, che V è uno spazio vettoriale euclideo

Dettagli

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale SISTEMI ELEMENTARI DEL o E 2 o ORDINE Ing. Luigi Biagiotti Tel. 5 29334 / 5 29368 e-mail: lbiagiotti@deis.unibo.it http://www-lar.deis.unibo.it/~lbiagiotti

Dettagli

Analisi Matematica (A L) Polinomi e serie di Taylor

Analisi Matematica (A L) Polinomi e serie di Taylor a.a. 2015/2016 Laurea triennale in Informatica Analisi Matematica (A L) Polinomi e serie di Taylor Nota: questo file differisce da quello proiettato in aula per la sola impaginazione. Polinomio di Taylor

Dettagli

s a Inferenza: singolo parametro Sistema di ipotesi: : β j = β j0 H 1 β j0 statistica test t confronto con valore t o p-value

s a Inferenza: singolo parametro Sistema di ipotesi: : β j = β j0 H 1 β j0 statistica test t confronto con valore t o p-value Inferenza: singolo parametro Sistema di ipotesi: H 0 : β j = β j0 H 1 : β j β j0 statistica test t b j - b s a jj j0 > t a, 2 ( n-k) confronto con valore t o p-value Se β j0 = 0 X j non ha nessuna influenza

Dettagli

RETI DI TELECOMUNICAZIONE

RETI DI TELECOMUNICAZIONE RETI DI TELECOMUNICAZIONE Modelli delle Sorgenti di Traffico Generalità Per la realizzazione di un modello analitico di un sistema di telecomunicazione dobbiamo tenere in considerazione 3 distinte sezioni

Dettagli

Raggiungibilità, Controllabilità, Osservabilità e Determinabilità

Raggiungibilità, Controllabilità, Osservabilità e Determinabilità Raggiungibilità, Controllabilità, Osservabilità e Determinabilità Si determini se i sistemi lineari tempo invarianti ẋ(t) = Ax(t) + Bu(t), Σ c : y(t) = Cx(t) + Du(t). x(k + ) = Ax(k) + Bu(k), Σ d : y(k)

Dettagli

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm SISTEMI ELEMENTARI DEL o

Dettagli

Analisi Matematica 2

Analisi Matematica 2 Analisi Matematica 2 Differenziabilità per funzioni di due variabili Differenziabilità per funzioni di due variabili CCS Ingegneria Meccanica e Ingegneria Chimica 1 / 26 Differenziabilitá Data la funzione

Dettagli

Algoritmo di stima minimi quadrati ricorsivi per sistemi con ingressi e uscite vettoriali

Algoritmo di stima minimi quadrati ricorsivi per sistemi con ingressi e uscite vettoriali Algoritmo di stima minimi quadrati ricorsivi per sistemi con ingressi e uscite vettoriali Lorenzo Magliocchetti Arrigo Marchiori Michele Marino Ottobre 2006 Sommario Lo scopo di questo documento è ricavare

Dettagli

Metodi ad un passo espliciti

Metodi ad un passo espliciti Sono metodi della forma { un+1 = u n + h Φ(t n, u n ; h, f ) n = 0,..., N 1 Esempi: u 0 = y 0 metodi di Taylor metodo di Eulero esplicito metodo di Taylor di ordine 2 Φ(t, u; h, f ) = f (t, u) Φ(t, u;

Dettagli

Apprendimento Automatico

Apprendimento Automatico Apprendimento Automatico Fabio Aiolli www.math.unipd.it/~aiolli Sito web del corso www.math.unipd.it/~aiolli/corsi/1516/aa/aa.html Rappresentazione dei dati con i kernel Abbiamo una serie di oggetti S

Dettagli

Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 20 giugno 2011

Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 20 giugno 2011 Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 20 giugno 2011 L esame consiste di 4 domande aperte e 10 esercizi a risposta multipla. Per gli esercizi ci sono

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 3 LUGLIO 08 Si risolvano cortesemente i seguenti problemi, sapendo che verranno valutati: la correttezza del risultato ottenuto e della procedura utilizzata;

Dettagli

Analisi della disponibilità d acqua. Valutazione dell impianto attraverso il calcolo di un indice economico (criterio)

Analisi della disponibilità d acqua. Valutazione dell impianto attraverso il calcolo di un indice economico (criterio) Analisi della disponibilità d acqua Valutazione dell impianto attraverso il calcolo di un indice economico (criterio) Approccio diverso a seconda del criterio di valutazione Nel caso di criterio statistico

Dettagli

Il metodo dei minimi quadrati. Molto spesso due grandezze fisiche x e y, misurabili direttamente, sono legate tra loro da una legge del tipo:

Il metodo dei minimi quadrati. Molto spesso due grandezze fisiche x e y, misurabili direttamente, sono legate tra loro da una legge del tipo: Il metodo dei minimi quadrati Molto spesso due grandezze fisiche x e y, misurabili direttamente, sono legate tra loro da una legge del tipo: Dove A e B sono costanti y = A + Bx (ad esempio in un moto uniformemente

Dettagli

Sviluppi di McLaurin

Sviluppi di McLaurin Esempio 1 Data la funzione Sviluppi di McLaurin fx) = e 3x arctan3x) 1 1. determinarne lo sviluppo di McLaurin arrestato all ordine n = 3; 2. stabilire di che natura è il punto x 0 = 0. Soluzione 1. Ricordiamo

Dettagli

Consideriamo un sistema dinamico tempo-invariante descritto da:

Consideriamo un sistema dinamico tempo-invariante descritto da: IL PROBLEMA DELLA STABILITA Il problema della stabilità può essere affrontato in vari modi. Quella adottata qui, per la sua riconosciuta generalità ed efficacia, è l impostazione classica dovuta a M. A.

Dettagli

Esercitazione su Filtraggio Adattativo (17 Giugno 2008)

Esercitazione su Filtraggio Adattativo (17 Giugno 2008) Esercitazione su Filtraggio Adattativo 17 Giugno 008) D. Donno Esercizio 1: Stima adattativa in rumore colorato Una sequenza disturbante x n è ottenuta filtrando un processo bianco u n con un filtro FIR

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del sesto appello, 16 luglio 2018 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del sesto appello, 16 luglio 2018 Testi 1 Scritto del sesto appello, 6 luglio 208 Testi Prima parte, gruppo.. Trovare α [0, 2π) per cui vale l identità trigonometrica sin(x π/3) = cos(x + α). 2. Trovare il polinomio di Taylor (in 0) di ordine

Dettagli

Esperienza 1/3: viscosità. della glicerina. Laboratorio di Fisica 1 A. Baraldi, M. Riccò. Università di Parma. a.a. 2012/2013

Esperienza 1/3: viscosità. della glicerina. Laboratorio di Fisica 1 A. Baraldi, M. Riccò. Università di Parma. a.a. 2012/2013 Esperienza 1/3: viscosità Università di Parma della glicerina a.a. 2012/2013 Laboratorio di Fisica 1 A. Baraldi, M. Riccò Coefficiente di viscosità La viscosità è quella grandezza fisica che ci permette

Dettagli

I teoremi della funzione inversa e della funzione implicita

I teoremi della funzione inversa e della funzione implicita I teoremi della funzione inversa e della funzione implicita Appunti per il corso di Analisi Matematica 4 G. Mauceri Indice 1 Il teorema della funzione inversa 1 Il teorema della funzione implicita 3 1

Dettagli

Elementi di Teoria dei Sistemi. Sistemi dinamici a tempo discreto

Elementi di Teoria dei Sistemi. Sistemi dinamici a tempo discreto Parte 2, 1 Elementi di Teoria dei Sistemi Sistemi dinamici a tempo discreto Introduzione e motivazione Parte 2, 2 Necessità di introdurre una nuova classe di sistemi dinamici: i sistemi dinamici a tempo

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Prof. L. Brandolini Corso di Calcolo Numerico Dott.ssa N. Franchina Laboratorio 6 Equazioni differenziali ordinarie: metodi impliciti 3 Novembre 26 Esercizi di implementazione Un equazione differenziale

Dettagli

INTERPOLAZIONE. Francesca Pelosi. Dipartimento di Matematica, Università di Roma Tor Vergata. CALCOLO NUMERICO e PROGRAMMAZIONE

INTERPOLAZIONE. Francesca Pelosi. Dipartimento di Matematica, Università di Roma Tor Vergata. CALCOLO NUMERICO e PROGRAMMAZIONE INTERPOLAZIONE Francesca Pelosi Dipartimento di Matematica, Università di Roma Tor Vergata CALCOLO NUMERICO e PROGRAMMAZIONE http://www.mat.uniroma2.it/ pelosi/ INTERPOLAZIONE p./8 INTERPOLAZIONE Nella

Dettagli

Geometria iperbolica - Primo foglio Andrea Petracci

Geometria iperbolica - Primo foglio Andrea Petracci Geometria iperbolica - Primo foglio Andrea Petracci Esercizio 1. Teorema (Hopf-Rinow). Se M è una varietà riemanniana connessa, allora le seguenti affermazioni sono equivalenti: (1) M è completa con la

Dettagli

LEZIONE 12. v = α 1 v α n v n =

LEZIONE 12. v = α 1 v α n v n = LEZIONE 12 12.1. Combinazioni lineari. Definizione 12.1.1. Sia V uno spazio vettoriale su k = R, C e v 1,..., v n V vettori fissati. Un vettore v V si dice combinazione lineare di v 1,..., v n se esistono

Dettagli

Richiami di statistica e loro applicazione al trattamento di osservazioni topografiche e geodetiche

Richiami di statistica e loro applicazione al trattamento di osservazioni topografiche e geodetiche Richiami di statistica e loro applicazione al trattamento di osservazioni topografiche e geodetiche Ludovico Biagi Politecnico di Milano, DIIAR ludovico.biagi@polimi.it (materiale didattico preparato in

Dettagli