w 1 (z) = z2 z + 1 z 3 z 2 + z 1, w 2(z) = z2

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "w 1 (z) = z2 z + 1 z 3 z 2 + z 1, w 2(z) = z2"

Transcript

1 Teoria dei Sistemi - 9 cfu - L.M. in Ingegneria dell Automazione Compito del 3///7 Esercizio Si considerino le funzioni di trasferimento (a tempo discreto) w (z) = z z + z 3 z + z, w (z) = z z 3 (.) (i) Si costruiscano una realizzazione minima Σ = (F, g, H ) di w (z) ed una minima Σ = (F, g, H ) di w (z). (ii) Si stabilisca se il sistema serie di Σ seguito da Σ è raggiungibile e/o osservabile e se lo stato zero del sistema serie è semplicemente stabile. (iii) Si costruisca per il sistema Σ una retroazione K dallo stato in modo che ogni evoluzione libera dello stato di Σ si annulli in un numero finito di passi. Si determini se il sistema complessivo (cfr. figura) è semplicemente stabile, raggiungibile e/o osservabile. u(t) y(t) + Σ Σ x (t) K Σ (K) (iv) Si determinino tutti gli ingressi u(t) del sistema serie reazionato come al punto iii, che siano nulli dall istante t = 5 in poi e che diano luogo a uscite forzate y(t) di durata finita. (i) Entrambe le funzioni razionali sono irriducibili: w (z) = z z + (z )(z + ), z (z )(z + z + ) quindi le corrispondenti realizzazioni minime hanno entrambe dimensione 3. Ricorriamo a due realizzazioni, (ad esempio) in forma canonica di controllo la prima e di osservazione la seconda: Σ =,, [, Σ =,, [ (ii) Il sistema serie - è raggiungibile, dato che i polinomi H adj(zi F )g = z z + e det(zi F ) = (z )(z +z +) sono coprimi, - è osservabile, perché sono coprimi i polinomi H adj(zi F )g = z e det(zi F ) = (z )(z +z+) - è quindi realizzazione minima della funzione trasferimento prodotto espressa in forma irriducibile z (z z + ) (z ) (z + z + )(z + ). Pertanto la sua matrice di transizione di stato è ciclica e nella sua forma di Jordan l autovalore λ =, che ha molteplicità algebrica, compare in un miniblocco di dimensione. Quindi l origine non è punto di equilibrio semplicemente stabile.

2 (iii) K è un controllore dead-beat per il sistema Σ, quindi deve essere K = [. Il sistema risultante - è raggiungibile, poiché sono rimasti raggiungibili i sistemi componenti della serie e sono immutati rispetto alla situazione precedente i polinomi H adj(zi F )g = z z + e det(zi F ) = (z )(z + z + ); non è osservabile perché non sono coprimi det(zi F g K ) = z 3 e H adj(zi F )g = z ; - è semplicemente stabile perché gli autovalori della matrice di transizione di stato sono λ = con molteplicità algebrica 3, mentre gli autovalori a modulo unitario λ =, λ 3 = e j π 3, λ 4 = e j 4π 3 hanno molteplicità algebrica. (iv) La funzione di trasferimento del sistema complessivo è w(z) = z z + z 3 z (z )(z + z + ) = z z + z(z )(z + z + ) Gli ingressi nulli dall istante t = 5 in poi sono rappresentabili come U(z) = p(z), deg p(z) 4 z4 Si devono quindi cercare tutti i polinomi p(z) di grado non superiore a 4 per cui Y (z) = w(z)u(z) = w(z) p(z) z z + p(z) z 4 = z(z )(z + z + ) z 4 ha uno sviluppo in serie di potenze in z con un numero finito di termini. Sono i polinomi p(z) = α(z β)(z )(z + z + ), α, β R e p(z) = α(z )(z + z + ), α R

3 3 Esercizio Si consideri il sistema discreto x(t + ) = x(t) + u(t) = F x(t) + Gu(t) Si determinino (i) il sottospazio raggiungibile in un passo, in due passi e in tre passi; (ii) il sottospazio controllabile in un passo, in due passi e in tre passi; (iii) se il sistema non è raggiungibile, la forma standard di raggiungibilità. (i) X R = Im G = span,. X R = Im [ G F G = span,,. X3 R coincide con X R e quindi con X R. Il sistema non è raggiungibile. (ii) Il sottospazio controllabile in un passo X C = = α β x : F x X R β α = x : F x span, = : span, γ δ α, α, γ, δ R γ δ ha dimensione 3. Il sottospazio controllabile in due passi è X C = x : F x X R = e coincide ovviamente con quello controllabile in 3 passi. = x : F x span,, α α β β : span,, γ δ = R 4 (iii) Per calcolare la forma standard di raggiungibilità, si considera una matrice di cambiamento di base T le cui prime tre colonne siano una base per lo spazio raggiungibile T =

4 4 Essa ha per inversa e la forrma standard cercata è T = T F T = = T G = = = F

5 5 Esercizio 3. Si consideri il sistema discreto [ x(t + ) = e l indice quadratico x(t) + [ u(t) = F x(t) + gu(t) y(t) = [ x(t) (3.) J(u, x ) = + t= ( 4u (t) + 9y (t) ), (3.3) (i) Il controllo ottimo u ot ( ) che minimizza l indice quadratico è stabilizzante? Perché? (ii) Si scriva l equazione algebrica di Riccati associata al problema di controllo ottimo e si stabilisca quante sono le sue soluzioni semidefinite positive. (iii) Si calcolino la soluzione ottimizzante M dell equazione algebrica di Riccati, la corrispondente matrice di reatroazione K e si verifichi sullo spettro di F + gk quanto affermato al punto (i); (iv) Per quali stati iniziali x il valore minimo dell indice min u J(u, x ) ha valore 3? Quali sono gli stati x di norma euclidea minima per cui min u J(u, x ) = 3? Quanto vale tale norma? Si [ noti che nel[ problema di controllo ottimo in considerazione l indice ha matrici R = 4 e Q = C T C = 3 9 [ 3 =. La coppia (F, g) è raggiungibile, quindi stabilizzabile, quindi il controllo ottimo esiste per ogni stato iniziale x. La coppia (F, C) è in forma standard di osservabilità (quindi non è osservabile) e il sottosistema non osservabile ha autovalore, quindi la coppia (F, C) è rivelabile. (i) La risposta è positiva, dato che (F, C) è rivelabile. (ii) L equazione algebrica di Riccati (EAR) è M = Q + F T MF F T Mg (R + g T Mg) g T MF Poichè - la soluzione ottimizzante M è in questo caso anche stabilizzante, - esiste al più una sola soluzione stabilizzante M S, - tutte le soluzioni s.d.p. di EAR sono comprese fra la soluzione ottimizzante M e la stabilizzante M S, possiamo concludere che M = M S è l unica soluzione s.d.p. di EAR. (iii) L equazione alle differenze di Riccati M( t ) = Q + F T M( t)f F T M( t)g(r + g T M( t)g) gm( t)f [ [ [ 9 = + M( t) [ [ M( t) (4 + [ M( t) se inizializzata da M() = [ ) [ M( t) [, ha per ogni t > una soluzione con struttura M( t) = [ m ( t), [,

6 6 come si vede immediatamente per induzione rispetto a t. Quindi anche M = lim t M( t) ha diversa da zero solo la componente di posizione (, ). Essendo M una soluzione [ semidefinita positiva m dell equazione algebrica di Riccati del punto (ii), ponendo in EAR M = M = si perviene all equazione [ [ [ [ [ m 9 m = + [ [ [ [ [ [ [ m m (4 + [ ) m [ Da essa si ricava m = 9 + m e infine m 9m 36 =, che ha per soluzioni m = 9 ± 5. m 4 + m La condizione che M sia semidefinita positiva impone di scegliere la soluzione positiva, pervenendo a [ M =. La matrice K è allora da cui K = (R + g T M g) g T M F = (4 + ) [ = 6 [ = [ 3 4 F + gk = [ + che ha entrambi gli autovalori a modulo minore di. [ [ 3 4 = 4 (iv) Il valore minimo dell indice vale 3 in corrispondenza agli stati iniziali x = la condizione quindi agli stati iniziali 3 = [ α β x = 7 4 [ [ α = α β [ ±, β R. β Fra gli stati indicati sopra, quelli a norma euclidea minima sono ovviamente di norma /. [ [, [ e (3.4) [ α che soddisfano β [, entrambi

7 7 Esercizio 4. Si consideri il sistema ẋ(t) = x(t) + u(t) = F x(t) + Gu(t) (i) Si determini qual è il numero minimo di uscite affinché lo stato risulti osservabile e si scelga H in modo che ciò avvenga. (ii) Si determini una matrice di reazione K tale che lo stato del sistema (F + GK, G, H) risulti osservabile con una sola uscita e per una scelta opportuna della matrice riga H. Si scelga H R 4 in modo che (F + GK, G, H) risulti osservabile. (iii) Se (F + GK, G, H) è il sistema di cui al punto precedente, si costruisca, se possibile, uno stimatore di ordine intero tale che le componenti dell errore di stima siano sempre esprimibili come combinazione lineare dei modi (e t cos t) e (e t sin t). (i) La matrice F è simile alla forma canonica di Jordan che ha tre miniblocchi relativi all autovalore. Affinché lo stato possa essere osservabile, sono necessarie almeno tre uscite (criterio di osservabilità relativo alla forma di Jordan). Come matrice H si può scegliere, ad esempio, H = (ii) Affinché tale H esista occorre che F + GK sia una matrice ciclica. Poiché (F, G) è raggiungibile, esiste una matrice K per cui F + GK risulta ciclica. Per calcolarla si può utilizzare il procedimento del lemma di Heymann oppure sfruttare il fatto che il sistema è dato in forna canonica di controllo multivariabile. Con il lemma di Heymann, dalla matrice di raggiungibilità di (F, G), R = [ g g g 3 F g F g F g 3... si ottiene la matrice e si costruiscono Q = [ g g F g g 3 = S = [ e e 3 = M = SQ = := K

8 8 Il sistema reazionato con K ha la matrice F + GK = ciclica, con vettore ciclico g. Una scelta di H in corrispondenza a cui (F + GK, H) è osservabile, è H = [. Sfruttando la forma canonica, è immediato calcolare K in modo da avere e quindi H = [ F + GK = (iii) Uno stimatore con le caratteristiche richieste non esiste. Infatti, per ogni scelta di L =, l 3 l 4 la matrice (F + GK) + L H è ciclica e l errore di stima è soluzione dell equazione omogenea ė(t) = (F + GK + L H)e(t), la cui soluzione generale contiene 4 modi linearmente indipendenti. l l

{ 1 per t = 0 u(t) = 0 per t 0. 2) Quali sono la funzione di trasferimento e la dimensione di Σ 2? 2 = (F 2 + g 2 K, g 2, H 2 )?

{ 1 per t = 0 u(t) = 0 per t 0. 2) Quali sono la funzione di trasferimento e la dimensione di Σ 2? 2 = (F 2 + g 2 K, g 2, H 2 )? Teoria dei Sistemi - 9 cfu - L.M. in Ingegneria dell Automazione Compito del 4/2/26 Esercizio I sistemi discreti con un ingresso e un uscita Σ = (F, g, H ) e Σ 2 = (F 2, g 2, H 2 ) sono entrambi raggiungibili

Dettagli

iii) Si studi la raggiungibilità e l osservabilità dei seguenti sistemi:

iii) Si studi la raggiungibilità e l osservabilità dei seguenti sistemi: Teoria dei Sistemi - 9 cfu - L.M. in Ingegneria dell Automazione Compito del /9/7 Esercizio Sia (F, g, H) un sistema discreto, raggiungibile e osservabile, con un ingresso e un uscita, e sia n(z) R(z)

Dettagli

iii) uno stimatore il cui errore di stima converga a zero più rapidamente della successione ;

iii) uno stimatore il cui errore di stima converga a zero più rapidamente della successione ; Teoria dei Sistemi - 9 cfu - L.M. in Ingegneria dell Automazione Compito del 4//7 Esercizio Si consideri il sistema lineare discreto Σ = (F, G, H) con F = 3 4 5, G =, H = 4 6 6 Si stabilisca se esiste,

Dettagli

x 2 (t) K 1 K 2 2z + z 2 z 3 + 2z 2 z 2 = z(z + 2)

x 2 (t) K 1 K 2 2z + z 2 z 3 + 2z 2 z 2 = z(z + 2) . CONNESSIONI Esercizio.. Si consideri lo schema di figura, in cui i sistemi Σ e Σ sono sistemi discreti connessi in serie e i segnali di retroazione dallo stato di Σ e dallo stato di Σ vengono iniettati

Dettagli

x 2 (t) K 1 K 2 2z + z 2 z 3 + 2z 2 z 2 = z(z + 2)

x 2 (t) K 1 K 2 2z + z 2 z 3 + 2z 2 z 2 = z(z + 2) 1 1. CONNESSIONI Esercizio 1.1. Si consideri lo schema di figura, in cui i sistemi e Σ 2 sono sistemi discreti connessi in serie e i segnali di retroazione dallo stato di e dallo stato di Σ 2 vengono iniettati

Dettagli

TEORIA DEI SISTEMI e IDENTIFICAZIONE DEI MODELLI (IMC - 12 CFU) COMPITO DI TEORIA DEI SISTEMI 30 Gennaio A.A

TEORIA DEI SISTEMI e IDENTIFICAZIONE DEI MODELLI (IMC - 12 CFU) COMPITO DI TEORIA DEI SISTEMI 30 Gennaio A.A TEORIA DEI SISTEMI e IDENTIFICAZIONE DEI MODELLI (IMC - 12 CFU) COMPITO DI TEORIA DEI SISTEMI 30 Gennaio 2013 - A.A. 2012-2013 Esercizio 1. Si consideri il sistema a tempo continuo descritto dalle seguenti

Dettagli

COMPITO DI ANALISI DEI SISTEMI Laurea in Ingegneria dell Informazione 13 Luglio 2010

COMPITO DI ANALISI DEI SISTEMI Laurea in Ingegneria dell Informazione 13 Luglio 2010 COMPITO DI ANALISI DEI SISTEMI Laurea in Ingegneria dell Informazione 3 Luglio Esercizio. Si consideri il seguente sistema a tempo continuo: ẋ(t) = F x(t) = x(t), y(t) = Hx(t) = [ ] x(t), t. i) Si progetti,

Dettagli

TEORIA DEI SISTEMI e IDENTIFICAZIONE DEI MODELLI (IMC - 12 CFU) COMPITO DI TEORIA DEI SISTEMI 20 Giugno A.A

TEORIA DEI SISTEMI e IDENTIFICAZIONE DEI MODELLI (IMC - 12 CFU) COMPITO DI TEORIA DEI SISTEMI 20 Giugno A.A TEORIA DEI SISTEMI e IDENTIFICAZIONE DEI MODELLI (IMC - CFU) COMPITO DI TEORIA DEI SISTEMI Giugno - A.A. - Esercizio. Si consideri il sistema a tempo continuo descritto dalle seguenti equazioni: x(t +

Dettagli

COMPITO DI ANALISI DEI SISTEMI 21 Settembre 2005

COMPITO DI ANALISI DEI SISTEMI 21 Settembre 2005 COMPITO DI ANALISI DEI SISTEMI 21 Settembre 2005 Esercizio 1. Si consideri il sistema a tempo continuo descritto dalle seguenti equazioni: ẋ(t) = Fx(t) + [ g 1 g 2 ] u(t) = 0 1 0 2 1 0 x(t) + 0 0 1 1 u(t)

Dettagli

Raggiungibilità, Controllabilità, Osservabilità e Determinabilità

Raggiungibilità, Controllabilità, Osservabilità e Determinabilità Raggiungibilità, Controllabilità, Osservabilità e Determinabilità Si determini se i sistemi lineari tempo invarianti ẋ(t) = Ax(t) + Bu(t), Σ c : y(t) = Cx(t) + Du(t). x(k + ) = Ax(k) + Bu(k), Σ d : y(k)

Dettagli

Esercizi. { ẋ1 = 2x 1 (1 + x 2 2 ) ẋ 2 = x 2 (1 x 2 1 ) x(k +1) = x(k)+ 1 u(k) dove x(k) =

Esercizi. { ẋ1 = 2x 1 (1 + x 2 2 ) ẋ 2 = x 2 (1 x 2 1 ) x(k +1) = x(k)+ 1 u(k) dove x(k) = Capitolo. INTRODUZIONE 7. Esercizi. Si consideri il seguente sistema non lineare tempo-continuo: { ẋ x x x + u ẋ x x + u.a) Posto u u, trovare i punti di equilibrio del sistema e studiarne la stabilità

Dettagli

Stimatori dello stato

Stimatori dello stato Capitolo 5. OSSERVABILITÀ E RICOSTRUIBILITÀ 5. Stimatori dello stato La retroazione statica dello stato u(k) = K x(k) richiede la conoscenza di tutte le componenti del vettore di stato. Tipicamente le

Dettagli

Stimatori dello stato

Stimatori dello stato Capitolo. TEORIA DEI SISTEMI 5. Stimatori dello stato La retroazione statica dello stato u(k) = K x(k) richiede la conoscenza di tutte le componenti del vettore di stato. Tipicamente le uniche variabili

Dettagli

COMPITO DI ANALISI DEI SISTEMI 4 Aprile A.A. 2007/2008

COMPITO DI ANALISI DEI SISTEMI 4 Aprile A.A. 2007/2008 COMPITO DI ANALISI DEI SISTEMI 4 Aprile 28 - AA 27/28 Esercizio Si consideri il sistema a tempo continuo non lineare descritto dalla seguente equazione di stato: ẋ (t) = f (x (t),x 2 (t),u(t)) = ax (t)

Dettagli

Esame scritto di Teoria dei Sistemi - Modena - 22 Giugno Domande

Esame scritto di Teoria dei Sistemi - Modena - 22 Giugno Domande Esame scritto di Teoria dei Sistemi - Modena - Giugno 5 - Domande Per ciascuno dei seguenti test a risposta multipla segnare con una crocetta le affermazioni che si ritengono giuste. Alcuni test sono seguiti

Dettagli

Proprietà Strutturali dei Sistemi Dinamici: Controllabilità e Raggiungibilità

Proprietà Strutturali dei Sistemi Dinamici: Controllabilità e Raggiungibilità Proprietà Strutturali dei Sistemi Dinamici: ontrollabilità e Raggiungibilità Ingegneria dell'automazione orso di Sistemi di ontrollo Multivariabile - Prof. F. Amato Versione 2.2 Ottobre 22 ontrollabilità

Dettagli

TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI

TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI TEORIA DEI SISTEMI Laurea Specialistica in Ingegneria Meccatronica Laurea Specialistica in Ingegneria Gestionale Indirizzo Gestione Industriale TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI Ing. Cristian

Dettagli

Scrivere il numero della risposta sopra alla corrispondente domanda. (voti: 2,0,-1, min=14 sulle prime 10) , C = [3 2 2], D =

Scrivere il numero della risposta sopra alla corrispondente domanda. (voti: 2,0,-1, min=14 sulle prime 10) , C = [3 2 2], D = n. 101 cognome nome corso di laurea Analisi e Simulazione di Sistemi Dinamici 18/11/2003 Risposte Domande 1 2 3 4 5 6 7 8 9 10 N. matricola Scrivere il numero della risposta sopra alla corrispondente domanda.

Dettagli

3) Stimatore dello stato di ordine ridotto :

3) Stimatore dello stato di ordine ridotto : Capitolo. TEORIA DEI SISTEMI 5. 3) Stimatore dello stato di ordine ridotto : Gli stimatori asintotici dello stato di ordine intero forniscono una informazione ridondante, in quanto non tengono conto che

Dettagli

Scomposizione canonica di Kalman

Scomposizione canonica di Kalman Capitolo. TEORIA DEI SISTEMI 5. Scomposizione canonica di Kalman Si consideri il sistema S = (A, B, C). Sia X + il sottospazio raggiungibile ed E il sottospazio non osservabile. Sia una matrice di base

Dettagli

Osservabilità e ricostruibilità

Osservabilità e ricostruibilità Capitolo. TEORIA DEI SISTEMI 5. Osservabilità e ricostruibilità Osservabilità: il problema dell osservabilità consiste nel determinare lo stato iniziale x(t ) mediante osservazioni degli ingressi u(t)

Dettagli

3. Trovare, se esiste, una funzione di ingresso che porti il sistema da x(0) = x allo stato 0.

3. Trovare, se esiste, una funzione di ingresso che porti il sistema da x(0) = x allo stato 0. Esempio Per il sistema a tempo discreto x(k + ) = Ax(k) + Bu(k) avente: A =, B =, si considerino i seguenti quesiti:. Il sistema è raggiungibile? è controllabile?. Lo stato x = [ ] è raggiungibile? è controllabile?.

Dettagli

Esercizi di teoria dei sistemi

Esercizi di teoria dei sistemi Esercizi di teoria dei sistemi Controlli Automatici LS (Prof. C. Melchiorri) Esercizio Dato il sistema lineare tempo continuo: ẋ(t) 2 y(t) x(t) x(t) + u(t) a) Determinare l evoluzione libera dello stato

Dettagli

Esercitazione 07: Esercitazione di ripasso per la prima prova in itinere

Esercitazione 07: Esercitazione di ripasso per la prima prova in itinere Esercitazione 07: Esercitazione di ripasso per la prima prova in itinere 29 aprile 2016 (2h) Prof. Marcello Farina marcello.farina@polimi.it Fondamenti di Automatica 1 Sistemi a tempo discreto Un azienda

Dettagli

Raggiungibilità e Controllabilità Esercizi risolti

Raggiungibilità e Controllabilità Esercizi risolti Raggiungibilità e ontrollabilità Esercizi risolti 1 Esercizio Dato il seguente sistema dinamico LTI a tempo discreto descritto dalle matrici A e B: [ [ 1 k k A, B 0 1 + k 1 studiare le proprietà di raggiungibilità

Dettagli

Controllabilità e raggiungibilità

Controllabilità e raggiungibilità TDSC Parte 4, 1 Controllabilità e raggiungibilità Definizioni e proprietà per i sistemi dinamici TDSC Parte 4, 2 Definizioni generali Che cosa si intende per controllabilità o per raggiungibilità?! Facendo

Dettagli

Geometria Prova scritta, appello unico, sessione autunnale Corso di laurea in fisica A.A 2017/2018 Canali A C, e L Pa

Geometria Prova scritta, appello unico, sessione autunnale Corso di laurea in fisica A.A 2017/2018 Canali A C, e L Pa Geometria Prova scritta, appello unico, sessione autunnale Corso di laurea in fisica A.A 27/28 Canali A C, e L Pa Durata: 2 ore e 3 minuti Simone Diverio Alessandro D Andrea Paolo Piccinni 7 settembre

Dettagli

Esercizi di geometria per Fisica / Fisica e Astrofisica

Esercizi di geometria per Fisica / Fisica e Astrofisica Esercizi di geometria per Fisica / Fisica e Astrofisica Foglio 3 - Soluzioni Esercizio. Stabilire se i seguenti sottoinsiemi di R 3 sono sottospazi vettoriali: (a) S = {(x y z) R 3 : x + y + z = }. (b)

Dettagli

Prova scritta di Geometria 1 Docente: Giovanni Cerulli Irelli 20 Gennaio 2017

Prova scritta di Geometria 1 Docente: Giovanni Cerulli Irelli 20 Gennaio 2017 Prova scritta di Geometria Docente: Giovanni Cerulli Irelli Gennaio 7 Esercizio. Si considerino i seguenti tre punti dello spazio euclideo: P :=, Q :=, R :=.. Dimostrare che P, Q ed R non sono collineari.

Dettagli

Controllo con retroazione dello stato

Controllo con retroazione dello stato CONTROLLI AUTOMATICI LS Ingegneria Informatica Controllo con retroazione dello stato Prof. Claudio Melchiorri DEIS-Università di Bologna Tel. 51 29334 e-mail: claudio.melchiorri@unibo.it http://www-lar.deis.unibo.it/people/cmelchiorri

Dettagli

Proposizione 2 Il polinomio minimo di t corrisponde all annullatore minimale di M V.

Proposizione 2 Il polinomio minimo di t corrisponde all annullatore minimale di M V. Fogli NON riletti. Grazie per ogni segnalazione di errori. L esempio qui sviluppato vuole mostrare in concreto il significato dei risultati trattati a lezione e qui velocemente riassunti. Si assume che

Dettagli

ESAME DI GEOMETRIA E ALGEBRA INGEGNERIA INFORMATICA (PROF. ACCASCINA) PROVA SCRITTA DEL 4 LUGLIO 2000 Tempo assegnato: 2 ore e 30 minuti

ESAME DI GEOMETRIA E ALGEBRA INGEGNERIA INFORMATICA (PROF. ACCASCINA) PROVA SCRITTA DEL 4 LUGLIO 2000 Tempo assegnato: 2 ore e 30 minuti ESAME DI GEOMETRIA E ALGEBRA INGEGNERIA INFORMATICA (PROF ACCASCINA) PROVA SCRITTA DEL 4 LUGLIO 000 Tempo assegnato: ore e 30 minuti PRIMO ESERCIZIO [7 punti] 1 Dimostrare che, per ogni naturale n, ciascuna

Dettagli

(VX) (F) Se A e B sono due matrici simmetriche n n allora anche A B è una matrice simmetrica.

(VX) (F) Se A e B sono due matrici simmetriche n n allora anche A B è una matrice simmetrica. 5 luglio 010 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

Sviluppando ancora per colonna sulla prima colonna della prima matrice e sulla seconda della seconda matrice si ottiene:

Sviluppando ancora per colonna sulla prima colonna della prima matrice e sulla seconda della seconda matrice si ottiene: M. CARAMIA, S. GIORDANI, F. GUERRIERO, R. MUSMANNO, D. PACCIARELLI RICERCA OPERATIVA Isedi Esercizi proposti nel Cap. 5 - Soluzioni Esercizio 5. - La norma Euclidea di è 9 6 5 - Il versore corrispondente

Dettagli

Raggiungibilità e osservabilità

Raggiungibilità e osservabilità Raggiungibilità e osservabilità January 5, 2 La raggiungibilità e l osservabilità sono due proprietà che caratterizzano lo spazio di stato associato ad un sistema. Raggiungibilità Uno stato x è raggiungibile

Dettagli

La teoria della Realizzazione nei sistemi dinamici

La teoria della Realizzazione nei sistemi dinamici Università degli Studi di Padova DIPARTIMENTO DI INGEGNERIA Corso di Laurea Triennale in Ingegneria Elettronica Tesi di laurea triennale La teoria della Realizzazione nei sistemi dinamici Realization theory

Dettagli

Compito di Analisi e simulazione dei sistemi dinamici - 06/02/2003. p 2 3 x p 2 y = [1 1 0] x

Compito di Analisi e simulazione dei sistemi dinamici - 06/02/2003. p 2 3 x p 2 y = [1 1 0] x Compito di Analisi e simulazione dei sistemi dinamici - 06/02/2003 Esercizio 1. Dato il seguente sistema lineare tempo invariante, SISO: p 2 3 ẋ = 0 p 2 1 x + 0 1 p 2 y = [1 1 0] x 1 p 3 0 u Si calcoli

Dettagli

F x 1 = x 1 + x 2. 2x 1 x 2 Determinare la matrice C associata a F rispetto alla base canonica (equivalentemente,

F x 1 = x 1 + x 2. 2x 1 x 2 Determinare la matrice C associata a F rispetto alla base canonica (equivalentemente, Corso di Laurea in Fisica. Geometria 1. a.a. 2006-07. Gruppo B. Prof. P. Piazza Esonero del 1/12/06 con soluzione Esercizio. Spazio vettoriale R 2 con base canonica fissata e coordinate associate (x 1,

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 2

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 2 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Preparazione al primo compito in itinere. (a) Mostrare che l insieme B = {b, b, b 3 }, formato dai vettori b = (,, ), b = (,, ) e b 3 =

Dettagli

LAUREA IN INGEGNERIA CIVILE Corso di Matematica 2 II a prova di accertamento Padova Docenti: Chiarellotto - Cantarini TEMA n.

LAUREA IN INGEGNERIA CIVILE Corso di Matematica 2 II a prova di accertamento Padova Docenti: Chiarellotto - Cantarini TEMA n. LAUREA IN INGEGNERIA CIVILE Corso di Matematica II a prova di accertamento Padova 10-1-07 Docenti: Chiarellotto - Cantarini TEMA n.1 PARTE 1. Quesiti preliminari Stabilire se le seguenti affermazioni sono

Dettagli

TECNICHE DI CONTROLLO

TECNICHE DI CONTROLLO TECNICHE DI CONTROLLO Richiami di Teoria dei Sistemi Dott. Ing. SIMANI SILVIO con supporto del Dott. Ing. BONFE MARCELLO Sistemi e Modelli Concetto di Sistema Sistema: insieme, artificialmente isolato

Dettagli

Ingegneria Informatica. Prof. Claudio Melchiorri DEIS-Università di Bologna Tel

Ingegneria Informatica. Prof. Claudio Melchiorri DEIS-Università di Bologna Tel CONTROLLI AUTOMATICI LS Ingegneria Informatica Sistemi a Dati Campionati Prof. DEIS-Università di Bologna Tel. 51 29334 e-mail: claudio.melchiorri@unibo.it http://www-lar lar.deis.unibo.it/people/cmelchiorri

Dettagli

Esercizi per Geometria II Geometria euclidea e proiettiva

Esercizi per Geometria II Geometria euclidea e proiettiva Esercizi per Geometria II Geometria euclidea e proiettiva Filippo F. Favale 8 aprile 014 Esercizio 1 Si consideri E dotato di un riferimento cartesiano ortonormale di coordinate (x, y) e origine O. Si

Dettagli

- ciascun autovalore di T ha molteplicità geometrica uguale alla moltplicitaà algebrica.

- ciascun autovalore di T ha molteplicità geometrica uguale alla moltplicitaà algebrica. Lezioni del 14.05 e 17.05 In queste lezioni si sono svolti i seguenti argomenti. Ripresa del teorema generale che fornisce condizioni che implicano la diagonalizzabilità, indebolimento delle ipotesi, e

Dettagli

FONDAMENTI DI SISTEMI DINAMICI (prof. Vincenzo LIPPIELLO A.A ) Corso di Laurea in Ingegneria Elettronica e delle Telecomunicazioni - II anno

FONDAMENTI DI SISTEMI DINAMICI (prof. Vincenzo LIPPIELLO A.A ) Corso di Laurea in Ingegneria Elettronica e delle Telecomunicazioni - II anno Voto Cognome/Nome & No. Matricola FONDAMENTI DI SISTEMI DINAMICI (prof. Vincenzo LIPPIELLO A.A. 5 6) Corso di Laurea in Ingegneria Elettronica e delle Telecomunicazioni - II anno PROVA DEL 9 DICEMBRE 6

Dettagli

PRIMA PROVA PARZIALE DI CONTROLLO DIGITALE A.A. 2005/ aprile 2006 TESTO E SOLUZIONE

PRIMA PROVA PARZIALE DI CONTROLLO DIGITALE A.A. 2005/ aprile 2006 TESTO E SOLUZIONE PRIMA PROVA PARZIALE DI CONTROLLO DIGITALE A.A. 2005/2006 2 aprile 2006 TESTO E SOLUZIONE Esercizio Assegnato il sistema dinamico, non lineare, tempo invariante x (k + ) = x (k) + x 2 (k) 2 + u(k) x 2

Dettagli

Proprietà strutturali e leggi di controllo. Stima dello stato e regolatore dinamico

Proprietà strutturali e leggi di controllo. Stima dello stato e regolatore dinamico Proprietà strutturali e leggi di controllo Stima dello stato e regolatore dinamico Stima dello stato e regolatore dinamico Stimatore asintotico dello stato Esempi di progetto di stimatori asintotici dello

Dettagli

INGEGNERIA INFORMATICA

INGEGNERIA INFORMATICA INGEGNERIA INFORMATICA FONDAMENTI DI AUTOMATICA 18/07/2017 Prof. Marcello Farina SOLUZIONI Anno Accademico 2016/2017 ESERCIZIO 1 Un padre apre un libretto di risparmio al proprio figlio nel giorno della

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (9 CFU) SOLUZIONE

Esame di FONDAMENTI DI AUTOMATICA (9 CFU) SOLUZIONE Esame di FONDAMENTI DI AUTOMATICA (9 CFU) Prova scritta 9 giugno 2017 SOLUZIONE ESERCIZIO 1. Si consideri un altoparlante ad attrazione magnetica per la riproduzione sonora, rappresentato dalla seguente

Dettagli

Esame di Geometria - 9 CFU (Appello del 26 gennaio A)

Esame di Geometria - 9 CFU (Appello del 26 gennaio A) Esame di Geometria - 9 CFU (Appello del 26 gennaio 25 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. In R 3, siano dati il punto P = (, 2, 3) e la retta r : (,, ) + t(, 2), t R.. Determinare

Dettagli

Elementi di Algebra Lineare. Spazio Vettoriale (lineare)

Elementi di Algebra Lineare. Spazio Vettoriale (lineare) Elementi di Algebra Lineare Spazio Vettoriale (lineare) Uno spazio vettoriale su un corpo F è una quadrupla (X, F, +, ) costituita da: un insieme di elementi X, detti vettori, un corpo F, i cui elementi

Dettagli

Soluzione. (a) L insieme F 1 e linearmente indipendente; gli insiemi F 2 ed F 3 sono linearmente

Soluzione. (a) L insieme F 1 e linearmente indipendente; gli insiemi F 2 ed F 3 sono linearmente 1. Insiemi di generatori, lineare indipendenza, basi, dimensione. Consideriamo nello spazio vettoriale R 3 i seguenti vettori: v 1 = (0, 1, ), v = (1, 1, 1), v 3 = (, 1, 0), v 4 = (3, 3, ). Siano poi F

Dettagli

INGEGNERIA DELLE TELECOMUNICAZIONI

INGEGNERIA DELLE TELECOMUNICAZIONI INGEGNERIA DELLE TELECOMUNICAZIONI FONDAMENTI DI AUTOMATICA Prof. Marcello Farina TEMA D ESAME Prima prova in itinere 07 maggio 014 Anno Accademico 013/014 ESERCIZIO 1 Si consideri il sistema S descritto

Dettagli

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi)

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi) Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006 Matematica 2 (Analisi) Nome:................................. N. matr.:.................................

Dettagli

Controlli Automatici e Teoria dei Sistemi I Sistemi Lineari Stazionari Retroazione, Modelli di Ingresso Uscita, Realizzazione

Controlli Automatici e Teoria dei Sistemi I Sistemi Lineari Stazionari Retroazione, Modelli di Ingresso Uscita, Realizzazione Controlli Automatici e Teoria dei Sistemi I Sistemi Lineari Stazionari Retroazione, Modelli di Ingresso Uscita, Realizzazione Prof. Roberto Guidorzi Dipartimento di Elettronica, Informatica e Sistemistica

Dettagli

Rappresentazione in s dei sistemi lineari continui.

Rappresentazione in s dei sistemi lineari continui. Capitolo. INTRODUZIONE. Rappresentazione in s dei sistemi lineari continui. Applicando la trasformazione di Laplace alle funzioni di stato ed uscita di un sistema lineare: L e quindi: ẋ(t) Ax(t)+Bu(t)

Dettagli

5.7 Esercizi (V Settimana)

5.7 Esercizi (V Settimana) 5.7 Esercizi (V Settimana) 7 5.7 Esercizi (V Settimana) 5.7. Sia data f :(R 3 ) (R 3 ) da f(a,b,c) =(a + b, b, a + b + c). Si scriva la f sotto forma del prodotto di un vettore riga per una matrice A;.

Dettagli

Controlli Automatici

Controlli Automatici Controlli Automatici (Prof. Casella) I Prova in Itinere - 21 Novembre 2008 Soluzioni Domanda 1 Con riferimento al seguente sistema: ẋ 1 = x 1 ẋ 2 = 2 x 1 x 2 u ẋ 3 =x 1 5 x 2 x 3 y=3 x 1 2 x 2 1.1 Valutare

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Stabilità esterna e analisi della risposta Stabilità esterna e risposta a regime Risposte di sistemi del I e II ordine 2 Stabilità esterna e analisi della risposta Stabilità esterna

Dettagli

14 febbraio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

14 febbraio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

Raggiungibilità e controllabilità

Raggiungibilità e controllabilità Capitolo. TEORIA DEI SISTEMI 4. Raggiungibilità e controllabilità Raggiungibilità. Il problema della raggiungibilità consiste nel determinare l insieme di stati raggiungibili a partire da un dato stato

Dettagli

Compiti di geometria & algebra lineare. Anno: 2004

Compiti di geometria & algebra lineare. Anno: 2004 Compiti di geometria & algebra lineare Anno: 24 Anno: 24 2 Primo compitino di Geometria e Algebra 7 novembre 23 totale tempo a disposizione : 3 minuti Esercizio. [8pt.] Si risolva nel campo complesso l

Dettagli

Lezione 20: Stima dello stato di un sistema dinamico

Lezione 20: Stima dello stato di un sistema dinamico ELABORAZIONE dei SEGNALI nei SISTEMI di CONTROLLO Lezione 20: Stima dello stato di un sistema dinamico Motivazioni Formulazione del problema Osservazione dello stato Osservabilità Osservatore asintotico

Dettagli

21 marzo Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

21 marzo Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

Domanda Risposta

Domanda Risposta Esame di Geometria 18 Maggio 010 Cognome e Nome: Matricola: Corso di Laurea Regolamento della prova. La prova consiste in 7 Domande a risposta multipla chiusa (di cui una soltanto è corretta) e di Esercizi.

Dettagli

11.1. Esercizio. Dato il numero complesso z = 2 + i 2, calcolare z, z, scrivere la rappresentazione trigonometrica di z, calcolare z 8.

11.1. Esercizio. Dato il numero complesso z = 2 + i 2, calcolare z, z, scrivere la rappresentazione trigonometrica di z, calcolare z 8. ANALISI Soluzione esercizi gennaio 0.. Esercizio. Dato il numero complesso z = + i, calcolare z, z, scrivere la rappresentazione trigonometrica di z, calcolare z 8. z = i ( ) + ( ) =, π z = arg(z) = 4

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (9 crediti) SOLUZIONE

Esame di FONDAMENTI DI AUTOMATICA (9 crediti) SOLUZIONE Esame di FONDAMENTI DI AUTOMATICA (9 crediti) Prova scritta 16 luglio 2014 SOLUZIONE ESERCIZIO 1. Dato il sistema con: si determinino gli autovalori della forma minima. Per determinare la forma minima

Dettagli

TEORIA DEI SISTEMI SOLUZIONE Esercitazione 12 Esercizio 1 Si consideri un sistema SISO LTI descritto dalle seguenti matrici di stato

TEORIA DEI SISTEMI SOLUZIONE Esercitazione 12 Esercizio 1 Si consideri un sistema SISO LTI descritto dalle seguenti matrici di stato TEORIA DEI SISTEMI SOLUZIONE Esercitazione 2 Esercizio Si consideri un sistema SISO LTI descritto dalle seguenti matrici di stato 2 A = 3 3 B = e D = C = [ ] si progetti un controllore basato sul modello

Dettagli

CONTROLLI AUTOMATICI LS Ingegneria Informatica. Analisi modale

CONTROLLI AUTOMATICI LS Ingegneria Informatica. Analisi modale CONTROLLI AUTOMATICI LS Ingegneria Informatica Analisi modale Prof. Claudio Melchiorri DEIS-Università di Bologna Tel. 5 9334 e-mail: claudio.melchiorri@unibo.it http://www-lar.deis.unibo.it/~cmelchiorri

Dettagli

Esercitazione 05: Trasformata di Laplace e funzione di trasferimento

Esercitazione 05: Trasformata di Laplace e funzione di trasferimento Esercitazione 05: Trasformata di Laplace e funzione di trasferimento 28 marzo 208 (3h) Fondamenti di Automatica Prof. M. Farina Responsabile delle esercitazioni: Enrico Terzi Queste dispense sono state

Dettagli

Lezione 7 29 Ottobre

Lezione 7 29 Ottobre PSC: Progettazione di sistemi di controllo a.a. 2010-2011 Lezione 7 29 Ottobre Docente: Luca Schenato Stesori: L. Schenato 7.1 Definizioni e proposizioni generali Si consideri lo spazio delle matrici semidefinite

Dettagli

Esercitazione Sistemi e Modelli n.6

Esercitazione Sistemi e Modelli n.6 Esercitaione Sistemi e Modelli n.6 Eserciio Si consideri un allevamento di conigli con il numero di maschi uguale al numero delle femmine. Come variabili di stato si consideri il numero di coppie di conigli

Dettagli

Corso di Laurea in Scienza dei Materiali PROVA SCRITTA DI GEOMETRIA DEL 27/09/2016 SOLUZIONE DEGLI ESERCIZI PROPOSTI

Corso di Laurea in Scienza dei Materiali PROVA SCRITTA DI GEOMETRIA DEL 27/09/2016 SOLUZIONE DEGLI ESERCIZI PROPOSTI Corso di Laurea in Scienza dei Materiali PROVA SCRITTA DI GEOMETRIA DEL 7/9/6 SOLUZIONE DEGLI ESERCIZI PROPOSTI Esercizio. Si consideri la quadrica affine C d equazione cartesiana xy + yz z + 4x =. ()

Dettagli

ESAME DI GEOMETRIA. 6 febbraio 2002 CORREZIONE QUIZ

ESAME DI GEOMETRIA. 6 febbraio 2002 CORREZIONE QUIZ ESAME DI GEOMETRIA 6 febbraio CORREZIONE QUIZ. La parte reale di ( + i) 9 è positiva. QUIZ Si può procedere in due modi. Un primo modo è osservare che ( + i) =i, dunque ( + i) 9 =(+i)(i) 4 = 4 ( + i) :

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Proprietà strutturali e leggi di controllo aggiungibilità e controllabilità etroazione statica dallo stato Osservabilità e rilevabilità Stima dello stato e regolatore dinamico

Dettagli

Proprietà Strutturali dei Sistemi Dinamici: Osservabilità

Proprietà Strutturali dei Sistemi Dinamici: Osservabilità Proprietà Strutturali dei Sistemi Dinamici: sservabilità Ingegneria dell'automazione Corso di Sistemi di Controllo Multivariabile - Prof. F. Amato Versione 2.2 ttobre 2012 1 Consideriamo il sistema x f

Dettagli

Esercizi svolti. delle matrici

Esercizi svolti. delle matrici Esercizi svolti. astratti. Si dica se l insieme delle coppie reali (x, y) soddisfacenti alla relazione x + y è un sottospazio vettoriale di R La risposta è sì, perchè l unica coppia reale che soddisfa

Dettagli

ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u (1) y = x 1

ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u (1) y = x 1 Alcuni esercizi risolti su: - calcolo dell equilibrio di un sistema lineare e valutazione delle proprietà di stabilità dell equilibrio attraverso linearizzazione - calcolo del movimento dello stato e dell

Dettagli

Soluzione della seconda prova intermedia di Algebra lineare del 17 maggio Esercizio 1

Soluzione della seconda prova intermedia di Algebra lineare del 17 maggio Esercizio 1 Soluzione della seconda prova intermedia di Algebra lineare del 17 maggio 2012 Esercizio 1 (a) Si calcola il polinomio caratteristico λ 2 1 p(λ) = det k 1 2k λ k 1 2 2 λ usando lo sviluppo di Laplace secondo

Dettagli

INGEGNERIA EDILE ARCHITETTURA ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA 17 SETTEMBRE 2012

INGEGNERIA EDILE ARCHITETTURA ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA 17 SETTEMBRE 2012 INGEGNERIA EDILE ARCHITETTURA ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA 7 SETTEMBRE 202 Esercizio. Sia V = R[X] 2 lo spazio vettoriale dei polinomi ax 2 + bx + c nella variabile X di grado al più 2 a coefficienti

Dettagli

Analisi nel dominio del tempo delle rappresentazioni in variabili di stato

Analisi nel dominio del tempo delle rappresentazioni in variabili di stato 4 Analisi nel dominio del tempo delle rappresentazioni in variabili di stato Versione del 21 marzo 2019 In questo capitolo 1 si affronta lo studio, nel dominio del tempo, dei modelli di sistemi lineari,

Dettagli

Proprietà strutturali e leggi di controllo

Proprietà strutturali e leggi di controllo Proprietà strutturali e leggi di controllo sservabilità e rilevabilità Definizioni ed esempi introduttivi Analisi dell osservabilità di sistemi dinamici LTI Esempi di studio dell osservabilità sservabilità

Dettagli

A = e 1 = e 2 + e 3, e 2 = e 1 + e 3, e 3 = e 1, ; e 3 =

A = e 1 = e 2 + e 3, e 2 = e 1 + e 3, e 3 = e 1, ; e 3 = aa -6 Soluzioni Esercizi Applicazioni lineari Sia data l applicazione lineare F : R R, F X A X, dove A i Sia {e, e, e } la base canonica di R Far vedere che i vettori e e + e, e e + e, e e, formano una

Dettagli

Algebra lineare. Prova scritta - 5 febbraio 2019

Algebra lineare. Prova scritta - 5 febbraio 2019 Algebra lineare Anno accademico 8/9 Prova scritta - 5 febbraio 9 Nome: Cognome: Numero di matricola: Canale: A-L (Fiorenza-De Concini) M-Z (Mondello) Esercizio Punti totali Punteggio 8 8 3 8 4 8 Totale

Dettagli

Classe Ingegneria dell Informazione Laurea in Ingegneria Informatica Insegnamento: Controlli dei Processi I ING-INF/04

Classe Ingegneria dell Informazione Laurea in Ingegneria Informatica Insegnamento: Controlli dei Processi I ING-INF/04 Classe Ingegneria dell Informazione Laurea in Ingegneria Informatica Insegnamento: Controlli dei Processi I ING-INF/4 Docente Numero di crediti: 6 Prof: Maria Pia Fanti Conoscenze preliminari Trasformata

Dettagli

11 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

11 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

Corso di Laurea in Scienza dei Materiali PROVA SCRITTA DI GEOMETRIA DEL 12/07/2016 SOLUZIONE DEGLI ESERCIZI PROPOSTI

Corso di Laurea in Scienza dei Materiali PROVA SCRITTA DI GEOMETRIA DEL 12/07/2016 SOLUZIONE DEGLI ESERCIZI PROPOSTI Corso di Laurea in Scienza dei Materiali PROVA SCRITTA DI GEOMETRIA DEL 12/07/2016 SOLUZIONE DEGLI ESERCIZI PROPOSTI Esercizio 1 Si consideri la conica affine d equazione 9x 2 + 6y 2 4xy 6x + 8y = 1 (1)

Dettagli

SOLUZIONE della Prova TIPO A per:

SOLUZIONE della Prova TIPO A per: SOLUZIONE della Prova TIPO A per: Esame di FONDAMENTI DI AUTOMATICA (9 crediti): 6 dei 10 esercizi numerici (nell effettiva prova d esame verranno selezionati a priori dal docente) + domande a risposta

Dettagli

0 a a determinare la forma di Jordan e la matrice di cambio da base, al variare di a si discuta la stabilità di F al variare di a

0 a a determinare la forma di Jordan e la matrice di cambio da base, al variare di a si discuta la stabilità di F al variare di a Compito di SISTEMI E MODELLI 09/02/8: PARTE on è ammesso l uso di libri, quaderni o calcolatrici programmabili. Le risposte vanno giustificate. Saranno rilevanti per la valutazione anche l ordine e la

Dettagli

Esame scritto di Geometria I

Esame scritto di Geometria I Esame scritto di Geometria I Università degli Studi di Trento Corso di laurea in Fisica A.A. 26/27 Appello di febbraio 27 Esercizio Sia f h : R R l applicazione lineare definita da f h (e ) = 2e + (2 h)e

Dettagli

Università degli Studi di Bergamo Modulo di Geometria e Algebra Lineare (vecchio programma) 19 giugno 2013 Tema A

Università degli Studi di Bergamo Modulo di Geometria e Algebra Lineare (vecchio programma) 19 giugno 2013 Tema A Università degli Studi di Bergamo Modulo di Geometria e Algebra Lineare (vecchio programma) 9 giugno 203 Tema A Tempo a disposizione: 2 ore. Calcolatrici, libri e appunti non sono ammessi. Ogni esercizio

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Cognome Nome Matricola FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Ciarellotto, Esposito, Garuti Prova del 21 settembre 2013 Dire se è vero o falso (giustificare le risposte. Bisogna necessariamente rispondere

Dettagli

CORSO DI LAUREA IN INGEGNERIA MECCANICA A.A PROVA SCRITTA DI GEOMETRIA DEL Compito A Corso del Prof.

CORSO DI LAUREA IN INGEGNERIA MECCANICA A.A PROVA SCRITTA DI GEOMETRIA DEL Compito A Corso del Prof. CORSO DI LAUREA IN INGEGNERIA MECCANICA A.A. 202-203 PROVA SCRITTA DI GEOMETRIA DEL 8-02-3 Compito A Corso del Prof. Manlio BORDONI Esercizio. Sia W il sottospazio vettoriale di R 4 generato dai vettori

Dettagli

Esame di Controlli Automatici 30 Giugno 2016

Esame di Controlli Automatici 30 Giugno 2016 . (8) Si consideri il sistema Esame di Controlli Automatici Giugno 26 { ẋ = 4 2 2 f ( )( 2 + 2 2 2 4) ẋ 2 = 2 f 2 ( 2 )( 2 + 2 2 2 4) in cui le funzioni continue f e f 2 hanno lo stesso segno dei loro

Dettagli

(E) : 2x 43 mod 5. (2 + h)x + y = 0

(E) : 2x 43 mod 5. (2 + h)x + y = 0 Dipartimento di Matematica e Informatica Anno Accademico 2016-2017 Corso di Laurea in Informatica (L-31) Prova scritta di Matematica Discreta (12 CFU) 27 Settembre 2017 Parte A 1 [10 punti] Sia data la

Dettagli

Geometria e algebra lineare 20/6/2017 Corso di laurea in Ing. Elett. Tel., Ing. Inf. Org. e Informatica Correzione. x 2y = 0

Geometria e algebra lineare 20/6/2017 Corso di laurea in Ing. Elett. Tel., Ing. Inf. Org. e Informatica Correzione. x 2y = 0 Geometria e algebra lineare 20/6/2017 Corso di laurea in Ing. Elett. Tel., Ing. Inf. Org. e Informatica Correzione A Esercizio 1A Siano r la retta di equazioni { x + y 2z = 1 e P il punto di coordinate

Dettagli