Ingegneria Informatica. Prof. Claudio Melchiorri DEIS-Università di Bologna Tel

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Ingegneria Informatica. Prof. Claudio Melchiorri DEIS-Università di Bologna Tel"

Transcript

1 CONTROLLI AUTOMATICI LS Ingegneria Informatica Sistemi a Dati Campionati Prof. DEIS-Università di Bologna Tel claudio.melchiorri@unibo.it lar.deis.unibo.it/people/cmelchiorri it/people/cmelchiorri

2 Sistemi di controllo digitale Sistemi di controllo digitale Presenza di un calcolatore nel loop di controllo Elaborazione tempo-discreta della legge di controllo Occorrono dispositivi di interfaccia tra il dominio tempo-continuo dell impianto e quello tempo-discreto del regolatore A/D CALCOLAT. DIGITALE D/A attuat. impianto Clock (T) Tempo-discreto trasduttore

3 Convertitore A/D Campiona, con periodo T, il segnale di ingresso x(t) Restituisce in uscita la sequenza dei valori x(kt) codificati e quantizzati 3 A/D Campionatore a impulsi di Dirac: la chiusura dell interruttore è istantanea in uscita produce un impulso di Dirac di area pari a x(kt) A/D

4 Convertitore D/A 4 Fornisce un segnale analogico a partire dalla sequenza di campioni in ingresso La ricostruzione non è univoca a meno di soddisfare il teorema di Shannon (ω s > 2 ω c, ω s = 2 π/t) Ricostruttore di ordine zero (Zero Order Hold) Produce l uscita: Supponendo un campionamento impulsivo:

5 Descrizione di processi a segnali campionati 5 SISTEMI TEMPO-CONTINUI Equazioni differenziali A/D SISTEMI TEMPO-DISCRETI Equazioni alle differenze Trasformata di Laplace D/A Trasformata Z

6 Campionamento dei segnali 6 Si consideri il sistema lineare tempo continuo: U(s) G(s) Y(s) Avendo un ingresso tempo-discreto u(kt), se si inserisce un ricostruttore di ordine zero H (s) e un campionatore ideale di periodo T, si ottiene il seguente sistema tempo discreto: u(kt) u(t) y(t) y(kt) G(s) Il segnale u(t) è continuo a tratti:

7 Campionamento dei segnali 7 Il segnale u(t) è continuo a tratti: u(kt) u(t) Il segnale y(t) campionato con periodo T genera il segnale t.d. y(kt). y(t) 3 2 Segnale y(t) 3 2 Segnale y(kt) y(kt) Tempo (sec) Tempo kt (sec)

8 Campionamento dei segnali 8 u(kt) u(t) y(t) y(kt) G(s) Il comportamento ingresso-uscita del sistema complessivo èquellodi un sistema tempo discreto: U(z) G(z) Y(z)

9 Campionamento dei segnali 9 Esiste un preciso legame tra le matrici (A,B,C) e le matrici (F,G,H). Per ricavarlo occorre risolvere la seguente equazione differenziale nell intervallo [kt, (k+1)t]: Lo stato x(t) che si raggiunge a partire dallo stato iniziale x(kt) all istante t=kt è: Essendo u(t)=u(kt) costante, lo stato x((k+1)t) che si raggiunge all istante t=(k+1)t è quindi:

10 Campionamento dei segnali 1 Operando il seguente cambio di variabile: La matrice G può essere trasformata come segue: L uscita y(kt) si ottiene da y(t) campionando all istante t=kt:

11 Sistema a segnali campionati 11 Il legame fra le matrici (A,B,C), e le matrici (F,G,H) (,, è quindi: Il sistema G(z) che si ottiene da G(s) nel modo descritto èdetto sistema a segnali campionati. Poichè le matrici F e G dipendono dal periodo di campionamento T, analizziamo le proprietà strutturali di raggiungibilità e osservabilità del sistema a segnali campionati al variare di T.

12 Raggiungibilità e osservabilità 12 Essendo la matrice F = e AT sempre invertibile, per un sistema a segnali campionati: la controllabilità è sempre equivalente alla raggiungibilità g la ricostruibilità è sempre equivalente all osservabilità. Per sistemi ad un solo ingresso, vale la seguente proprietà: TEOREMA: Sia dato un sistema (A, b) raggiungibile e sia T il periodo di campionamento. Il corrispondente sistema a segnali campionati è raggiungibile se e solo se, per ogni coppia λ i, λ j di autovalori distinti di A aventi la stessa parte reale si ha:

13 Raggiungibilità e osservabilità 13 Per sistemi ad una sola uscita, vale la seguente proprietà: TEOREMA: Siadatounsistema(A (A, c) osservabile e sia T il periodo di campionamento. Il corrispondente sistema a segnali campionati è osservabile se e solo se, per ogni coppia λ i, λ j di autovalori distinti di A aventi la stessa parte reale si ha: Osservazione: Se la matrice A ha tutti gli autovalori reali, il sistema a segnali campionati conserva sempre, per ogni T >, le stesse caratteristiche strutturali del sistema di partenza (A, b, c).

14 Sistema a segnali campionati 14 Esempio: si calcoli il sistema a segnali campionati corrispondente al seguente sistema tempo continuo: Le matrici (F, G, H) risultano:

15 Sistema a segnali campionati 15 Il corrispondente sistema a segnali campionati è quindi: dove per semplicità si sono indicati: Gli autovalori della matrice A sono:

16 Sistema a segnali campionati Raggiungibilità 16 La matrice di raggiungibilità del sistema a segnali campionati è: Per T=π il sistema non è completamente raggiungibile, infatti: Dal teorema sulla raggiungibilità il sistema a dati campionati è raggiungibile solo se:

17 Sistema a segnali campionati Osservabilità 17 La matrice di osservabilità del sistema a segnali campionati è: Il sistema a dati campionati è osservabile solo se: Il polinomio caratteristico della matrice F è: Gli autovalori della matrice F sono quindi:

18 Sistema a segnali campionati ingr. impulso T = π/2/ T = π/ T = π/2 T = π

19 .6 Sistema a segnali campionati ingr. sinusoide T = π/2 T = π/ All aumentare del periodo di campionamento T, diminuiscono le possibilità di osservare e controllare l evoluzione del sistema! T = π Controlli Automatici LS A.A. 28/29

20 Sistema a segnali campionati F.d.T 2 La funzione di trasferimento G(s) del sistema continuo è: La f.d.t. G(z) del corrispondente sistema a segnali campionati è:

21 Sistema a segnali campionati F.d.T 21 Allo stesso risultato si può giungere discretizzando la funzione G(s) preceduta dal ricostruttore di ordine zero:

22 Sistema a segnali campionati 22 Esempio: si consideri il seguente sistema puramente inerziale di massa unitaria (m=1) sottoposto ad una forza esterna u(t): m u(t) Il vettore di stato è formato da posizione e velocità della massa x L uscita del sistema è la posizione della massa

23 Sistema a segnali campionati 23 Il modello dinamico nello spazio degli stati è: Le matrici F e G del corrispondente sistema a segnali campionati sono:

24 Sistema a segnali campionati 24 Il sistema a segnali campionati ha quindi la seguente forma: Si verifica facilmente che il sistema è raggiungibile ed osservabile Si vuole realizzare un controllo dead-beat: legge di controllo in retroazione dello stato u(k)=k x(k), tale per cui gli autovalori del sistema retroazionato eig(f+gk) siano tutti nulli. Questo implica che il polinomio desiderato del sistema retroazionato sia:

25 Sistema a segnali campionati 25 Sia la matrice di retroazione dello stato. Posto u(k)=k x(k), si ottiene la seguente matrice di sistema: Il polinomio caratteristico di tale matrice è il seguente: Imponendo il polinomio desiderato si ottiene:

26 Sistema a segnali campionati 26 Essendo un controllore dead-beat, la retroazione u(k)=k x(t) è in grado di portare esattamente a zero lo stato generico del sistema x() in soli due passi e con un periodo di campionamento T comunque piccolo.

27 Sistema a segnali campionati 27 L azione di controllo u(k) negli istanti k= e k=1 sarà tanto più elevata quanto piccolo è il periodo di campionamento T. Si ha infatti: La capacità di poter portare a zero lo stato del sistema in un intervallo di tempo 2T non può essere ottenuta nel caso di sistemi tempo continuo. In questo caso, infatti, si tende a zero sempre in modo esponenziale, cioè si giunge esattamente a zero per t ->.

28 Sistema a segnali campionati 28 Schema Simulink t Clock To Workspace1 uo To Workspace6 yd To Workspace14 K*u K*u 1 s K*u y Pulse Generator Kups Zero-Order Hold B Integrator A C To Workspace13 K Zero-Order Hold1 K*u K*u xo To Workspace2 K*u ys C1 To Workspace3

29 Sistema a segnali campionati 29 Ts = 1 sec, x = [5, -2] T, riferimento nullo 6 Andamento yd, y e ys 5 Azione di controllo u(k) Andamento x1 e x Valori ingresso u(k) = -2, 4

30 Sistema a segnali campionati 3 Ts =.5 sec, x = [5, -2] T Ts = 2 sec, x = [5, -2] T 6 Andamento yd, y e ys 6 Andamento yd, y e ys Andamento x1 e x2 6 Andamento x1 e x Azione di controllo u(k) 1 Azione di controllo u(k) Valori ingresso u(k) = -14, 18 Valori ingresso u(k) =.25,.75

31 Sistema a segnali campionati 31 Ts = 1 sec, x = [5, -2] T, riferimento onda quadra A = 1 15 Andamento yd, y e ys 3 Azione di controllo u(k) Andamento x1 e x

32 Sistema a segnali campionati 32 Se lo stato non è misurabile, si può procedere alla sintesi di un osservatore dead-beat: osservatore tale per cui l errore di stima si evolve con una dinamica data da autovalori nulli. Questo implica che gli autovalori di A+LC (o F+LH) siano tutti nulli. G F Esempio: progetto di un osservatore dead-beat di ordine ridotto. Si richiama il progetto di un generico osservatore di ordine ridotto nel caso tempo discreto: il sistema ha già le componenti dello stato note nelle prime q=1 componenti dell uscita. La dinamica dell osservatore risulta quindi:

33 Sistema a segnali campionati 33 Si pongono uguali a zero gli autovalori: La dinamica dell osservatore dead-beat di ordine ridotto assume quindi la forma: da cui e lo stato stimato risulta: La f.d.t. G(s) del sistema tempo continuo è: La f.d.t. G(z) del corrispondente sistema tempo discreto è:

34 Sistema a segnali campionati 34 Schema Simulink t uo Clock To Workspace1 To Workspace6 yd To Workspace14 K*u K*u 1 s K*u y Pulse Generator Kups Zero-Order Hold B Integrator A C To Workspace13 K Zero-Order Hold1 K*u K*u xo To Workspace2 xhat To Workspace4 K*u C. ys To Workspace3 K*u 1 x hat In1 y x hat L In2 u 1 In1 y -1 Z Integer Delay K*u -1/T Subsystem 2-1 Z In2 u Integer Delay1 K*u Ku T/2 N.B. metodo non furbo per implementare in Simulink

35 Sistema a segnali campionati 35 Ts = 2 sec, x = [5, -2] T Ts = 1 sec, x = [5, -2] T 5 Andamento yd, y e ys 5 Andamento yd, y e ys Andamento x1 e x Azione di controllo u(k) Andamento x1 e x Azione di controllo u(k)

36 Sistema a segnali campionati 36 Ts = 2 sec, x = [5, -2] T Ts = 1 sec, x = [5, -2] T 15 Andamento yd, y e ys 15 Andamento yd, y e ys Andamento x1 e x2 2 Andamento x1 e x Azione di controllo u(k) Azione di controllo u(k)

37 CONTROLLI AUTOMATICI LS Sistemi a Dati Campionati FINE Prof. DEIS-Università di Bologna Tel claudio.melchiorri@unibo.it lar.deis.unibo.it/people/cmelchiorri it/people/cmelchiorri

Controllo con retroazione dello stato

Controllo con retroazione dello stato CONTROLLI AUTOMATICI LS Ingegneria Informatica Controllo con retroazione dello stato Prof. Claudio Melchiorri DEIS-Università di Bologna Tel. 51 29334 e-mail: claudio.melchiorri@unibo.it http://www-lar.deis.unibo.it/people/cmelchiorri

Dettagli

Esame scritto di Teoria dei Sistemi - Modena - 22 Giugno Domande

Esame scritto di Teoria dei Sistemi - Modena - 22 Giugno Domande Esame scritto di Teoria dei Sistemi - Modena - Giugno 5 - Domande Per ciascuno dei seguenti test a risposta multipla segnare con una crocetta le affermazioni che si ritengono giuste. Alcuni test sono seguiti

Dettagli

Cesare Fantuzzi Pag. 1

Cesare Fantuzzi Pag. 1 INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Laurea Specialistica in Ingegneria Meccatronica INTRODUZIONE Prof. Tel. 0522 522 213 e-mail: cesare.fantuzzi@unimore.it Materiale didattico elaborato da

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 CONTROLLI DIGITALI Laurea Magistrale in Ingegneria Meccatronica INTRODUZIONE Ing. Tel. 0522 522235 e-mail:cristian.secchi@unimore.it http://www.dismi.unimo.it/members/csecchi Scopo del Corso Introdurre

Dettagli

Sistemi a segnali campionati

Sistemi a segnali campionati Capitolo. INRODUZIONE 6. Sitemi a egnali campionati Si conideri il eguente itema lineare tempo continuo: G() : ẋ(t) Ax(t)+Bu(t) y(t) Cx(t) U() G() Y() Se i inerice un ricotruttore di ordine zero H () e

Dettagli

COMPITO DI ANALISI DEI SISTEMI Laurea in Ingegneria dell Informazione 13 Luglio 2010

COMPITO DI ANALISI DEI SISTEMI Laurea in Ingegneria dell Informazione 13 Luglio 2010 COMPITO DI ANALISI DEI SISTEMI Laurea in Ingegneria dell Informazione 3 Luglio Esercizio. Si consideri il seguente sistema a tempo continuo: ẋ(t) = F x(t) = x(t), y(t) = Hx(t) = [ ] x(t), t. i) Si progetti,

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Controllo con retroazione dello stato Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. 39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1 Controllo

Dettagli

Proprietà strutturali: Controllabilità e Osservabilità

Proprietà strutturali: Controllabilità e Osservabilità CONTROLLI AUTOMATICI LS Ingegneria Informatica Proprietà strutturali: Controllabilità e Osservabilità Prof. Claudio Melchiorri DEIS-Università di Bologna Tel. 051 2093034 e-mail: claudio.melchiorri@deis.unibo.it

Dettagli

Prova TIPO D per: ESERCIZIO 1.

Prova TIPO D per: ESERCIZIO 1. Prova TIPO D per: Esame di FONDAMENTI DI AUTOMATICA (9 crediti): 6 dei 10 esercizi numerici (nell effettiva prova d esame verranno selezionati a priori dal docente) domande a risposta multipla (v. ultime

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (6 CFU) / CONTROLLI AUTOMATICI SOLUZIONE

Esame di FONDAMENTI DI AUTOMATICA (6 CFU) / CONTROLLI AUTOMATICI SOLUZIONE Esame di FONDAMENTI DI AUTOMATICA (6 CFU) / CONTROLLI AUTOMATICI Prova scritta 20 giugno 2017 SOLUZIONE ESERCIZIO 1. Si vuole realizzare un sistema di sorveglianza costituito da una flotta di droni di

Dettagli

CENNI SUL CONTROLLO DIGITALE

CENNI SUL CONTROLLO DIGITALE 1.1. MODELLISICA - Modellistica dinamica 2.1 1 CENNI SUL CONROLLO DIGIALE SISEMI DI CONROLLO DIGIALE: sistemi di controllo in retroazione in cui è presente un calcolatore digitale e quindi una elaborazione

Dettagli

INTRODUZIONE AL CONTROLLO DIGITALE

INTRODUZIONE AL CONTROLLO DIGITALE CONTROLLI AUTOMATICI LS Ingegneria Informatica INTRODUZIONE AL CONTROLLO DIGITALE Prof. Claudio Melchiorri DEIS-Università di Bologna Tel. 051 2093034 e-mail: claudio.melchiorri@unibo.it http://www-lar.deis.unibo.it/people/cmelchiorri

Dettagli

Progetto dei Sistemi di Controllo Digitali. Docente: Prof. Francesco Amato

Progetto dei Sistemi di Controllo Digitali. Docente: Prof. Francesco Amato Progetto dei Sistemi di Controllo Digitali Docente: Prof. Francesco Amato 1 Schema di un sistema di controllo digitale Controllore digitale r e A/D e* u* D/A u y Processo Sistema a empo-continuo Sistema

Dettagli

CONTROLLI AUTOMATICI LS Ingegneria Informatica. Analisi modale

CONTROLLI AUTOMATICI LS Ingegneria Informatica. Analisi modale CONTROLLI AUTOMATICI LS Ingegneria Informatica Analisi modale Prof. Claudio Melchiorri DEIS-Università di Bologna Tel. 5 9334 e-mail: claudio.melchiorri@unibo.it http://www-lar.deis.unibo.it/~cmelchiorri

Dettagli

SOLUZIONE della Prova TIPO F per:

SOLUZIONE della Prova TIPO F per: SOLUZIONE della Prova TIPO F per: Esame di FONDAMENTI DI AUTOMATICA (9 crediti): 6 dei 10 esercizi numerici (nell effettiva prova d esame verranno selezionati a priori dal docente) + domande a risposta

Dettagli

Stimatori dello stato

Stimatori dello stato Capitolo. TEORIA DEI SISTEMI 5. Stimatori dello stato La retroazione statica dello stato u(k) = K x(k) richiede la conoscenza di tutte le componenti del vettore di stato. Tipicamente le uniche variabili

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (9 CFU) SOLUZIONE

Esame di FONDAMENTI DI AUTOMATICA (9 CFU) SOLUZIONE Esame di FONDAMENTI DI AUTOMATICA (9 CFU) Prova scritta 9 giugno 2017 SOLUZIONE ESERCIZIO 1. Si consideri un altoparlante ad attrazione magnetica per la riproduzione sonora, rappresentato dalla seguente

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (9 crediti) SOLUZIONE

Esame di FONDAMENTI DI AUTOMATICA (9 crediti) SOLUZIONE Esame di FONDAMENTI DI AUTOMATICA (9 crediti) Prova scritta 16 luglio 2014 SOLUZIONE ESERCIZIO 1. Dato il sistema con: si determinino gli autovalori della forma minima. Per determinare la forma minima

Dettagli

Prova TIPO C per: ESERCIZIO 1.

Prova TIPO C per: ESERCIZIO 1. Prova TIPO C per: Esame di FONDAMENTI DI AUTOMATICA (9 crediti): 6 dei 10 esercizi numerici (nell effettiva prova d esame verranno selezionati a priori dal docente) + domande a risposta multipla (v. ultime

Dettagli

Applicando le leggi di Kirchhoff e le formule di base dei componenti RLC, si ottiene il seguente modello matematico:

Applicando le leggi di Kirchhoff e le formule di base dei componenti RLC, si ottiene il seguente modello matematico: Prova TIPO F per: Esame di FONDAMENTI DI AUTOMATICA (9 crediti): 6 dei 10 esercizi numerici (nell effettiva prova d esame verranno selezionati a priori dal docente) + domande a risposta multipla (v. ultime

Dettagli

SOLUZIONE della Prova TIPO D per:

SOLUZIONE della Prova TIPO D per: SOLUZIONE della Prova TIPO D per: Esame di FONDAMENTI DI AUTOMATICA (9 crediti): 6 dei 10 esercizi numerici (nell effettiva prova d esame verranno selezionati a priori dal docente) domande a risposta multipla

Dettagli

Controlli Automatici I

Controlli Automatici I Ingegneria Elettrica Politecnico di Torino Luca Carlone Controlli Automatici I LEZIONE V Sommario LEZIONE V Proprietà strutturali Controllabilità e raggiungibilità Raggiungibilità nei sistemi lineari Forma

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (6 CFU) / CONTROLLI AUTOMATICI SOLUZIONE

Esame di FONDAMENTI DI AUTOMATICA (6 CFU) / CONTROLLI AUTOMATICI SOLUZIONE Esame di FONDAMENTI DI AUTOMATICA (6 CFU) / CONTROLLI AUTOMATICI Prova scritta 8 settembre 2017 SOLUZIONE ESERCIZIO 1. Si consideri il seguente circuito elettrico passivo: Applicando le leggi di Kirchhoff

Dettagli

COMPITO DI ANALISI DEI SISTEMI 21 Settembre 2005

COMPITO DI ANALISI DEI SISTEMI 21 Settembre 2005 COMPITO DI ANALISI DEI SISTEMI 21 Settembre 2005 Esercizio 1. Si consideri il sistema a tempo continuo descritto dalle seguenti equazioni: ẋ(t) = Fx(t) + [ g 1 g 2 ] u(t) = 0 1 0 2 1 0 x(t) + 0 0 1 1 u(t)

Dettagli

FONDAMENTI DI SISTEMI DINAMICI (prof. Vincenzo LIPPIELLO A.A ) Corso di Laurea in Ingegneria Elettronica e delle Telecomunicazioni - II anno

FONDAMENTI DI SISTEMI DINAMICI (prof. Vincenzo LIPPIELLO A.A ) Corso di Laurea in Ingegneria Elettronica e delle Telecomunicazioni - II anno Voto Cognome/Nome & No. Matricola FONDAMENTI DI SISTEMI DINAMICI (prof. Vincenzo LIPPIELLO A.A. 5 6) Corso di Laurea in Ingegneria Elettronica e delle Telecomunicazioni - II anno PROVA DEL 9 DICEMBRE 6

Dettagli

IMPLEMENTAZIONE DIGITALE DEI REGOLATORI

IMPLEMENTAZIONE DIGITALE DEI REGOLATORI CONTROLLI AUTOMATICI Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/controlliautomtici.html IMPLEMENTAZIONE DIGITALE DEI REGOLATORI Ing. e-mail: luigi.biagiotti@unimore.it

Dettagli

SISTEMI DIGITALI DI CONTROLLO

SISTEMI DIGITALI DI CONTROLLO Sistemi Digitali di Controllo A.A. 2009-2010 p. 1/11 SISTEMI DIGITALI DI CONTROLLO Prof. Alessandro De Luca DIS, Università di Roma La Sapienza deluca@dis.uniroma1.it Lucidi tratti dal libro C. Bonivento,

Dettagli

Stimatori dello stato

Stimatori dello stato Capitolo 5. OSSERVABILITÀ E RICOSTRUIBILITÀ 5. Stimatori dello stato La retroazione statica dello stato u(k) = K x(k) richiede la conoscenza di tutte le componenti del vettore di stato. Tipicamente le

Dettagli

COMPITO DI ANALISI DEI SISTEMI 4 Aprile A.A. 2007/2008

COMPITO DI ANALISI DEI SISTEMI 4 Aprile A.A. 2007/2008 COMPITO DI ANALISI DEI SISTEMI 4 Aprile 28 - AA 27/28 Esercizio Si consideri il sistema a tempo continuo non lineare descritto dalla seguente equazione di stato: ẋ (t) = f (x (t),x 2 (t),u(t)) = ax (t)

Dettagli

Controllori Digitali. Prof. Laura Giarré

Controllori Digitali. Prof. Laura Giarré Controllori Digitali Prof. Laura Giarré Laura.Giarre@UNIMORE.IT https://giarre.wordpress.com/ca/ Introduzione al Controllo Schema tecnologico di un sistema di controllo 1001 D A Attuatori D 1001 A Unità

Dettagli

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale SISTEMI ELEMENTARI DEL o E 2 o ORDINE Ing. Luigi Biagiotti Tel. 5 29334 / 5 29368 e-mail: lbiagiotti@deis.unibo.it http://www-lar.deis.unibo.it/~lbiagiotti

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (9 CFU) SOLUZIONE

Esame di FONDAMENTI DI AUTOMATICA (9 CFU) SOLUZIONE Esame di FONDAMENTI DI AUTOMATICA (9 CFU) Prova scritta 20 giugno 2017 SOLUZIONE ESERCIZIO 1. Si vuole realizzare un sistema di sorveglianza costituito da una flotta di droni di tipologia quadricottero.

Dettagli

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm SISTEMI ELEMENTARI DEL o

Dettagli

3) Stimatore dello stato di ordine ridotto :

3) Stimatore dello stato di ordine ridotto : Capitolo. TEORIA DEI SISTEMI 5. 3) Stimatore dello stato di ordine ridotto : Gli stimatori asintotici dello stato di ordine intero forniscono una informazione ridondante, in quanto non tengono conto che

Dettagli

Fondamenti di Automatica Prof. Luca Bascetta. Primo prova intermedia 27 Aprile 2018

Fondamenti di Automatica Prof. Luca Bascetta. Primo prova intermedia 27 Aprile 2018 Fondamenti di Automatica Prof. Luca Bascetta Primo prova intermedia 27 Aprile 28 ESERCIZIO E assegnato il sistema dinamico, a tempo continuo, lineare e invariante con ingresso u(t) e uscita y(t): { ẋ(t)

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (9 CFU) SOLUZIONE

Esame di FONDAMENTI DI AUTOMATICA (9 CFU) SOLUZIONE Esame di FONDAMENTI DI AUTOMATICA (9 CFU) Prova scritta 29 gennaio 2018 SOLUZIONE ESERCIZIO 1. Si vuole realizzare un sistema robotico, costituito da un attuatore lineare che integra il circuito elettronico

Dettagli

INGEGNERIA INFORMATICA

INGEGNERIA INFORMATICA INGEGNERIA INFORMATICA FONDAMENTI DI AUTOMATICA 29/06/2017 Prof. Marcello Farina SOLUZIONI ESERCIZIO 1 Si consideri il sistema descritto dalle seguenti equazioni: A. Scrivere le equazioni del sistema linearizzato

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (9 CFU) SOLUZIONE

Esame di FONDAMENTI DI AUTOMATICA (9 CFU) SOLUZIONE Esame di FONDAMENTI DI AUTOMATICA (9 CFU) Prova scritta 8 settembre 2017 SOLUZIONE ESERCIZIO 1. Si consideri il seguente circuito elettrico passivo: Applicando le leggi di Kirchhoff e le formule di base

Dettagli

TEORIA DEI SISTEMI e IDENTIFICAZIONE DEI MODELLI (IMC - 12 CFU) COMPITO DI TEORIA DEI SISTEMI 20 Giugno A.A

TEORIA DEI SISTEMI e IDENTIFICAZIONE DEI MODELLI (IMC - 12 CFU) COMPITO DI TEORIA DEI SISTEMI 20 Giugno A.A TEORIA DEI SISTEMI e IDENTIFICAZIONE DEI MODELLI (IMC - CFU) COMPITO DI TEORIA DEI SISTEMI Giugno - A.A. - Esercizio. Si consideri il sistema a tempo continuo descritto dalle seguenti equazioni: x(t +

Dettagli

Nome, Cognome: punti corrispondono alla nota massima.

Nome, Cognome: punti corrispondono alla nota massima. Nome ognome: Gli esercizi 11 e 12 sono obbligatori il terzo esercizio deve essere scelto tra 13 e 14 10 punti corrispondono alla nota massima 6 dicembre 2012 ing Ivan Furlan 1 11 Sistema per sollevare

Dettagli

Proprietà strutturali e leggi di controllo. Stima dello stato e regolatore dinamico

Proprietà strutturali e leggi di controllo. Stima dello stato e regolatore dinamico Proprietà strutturali e leggi di controllo Stima dello stato e regolatore dinamico Stima dello stato e regolatore dinamico Stimatore asintotico dello stato Esempi di progetto di stimatori asintotici dello

Dettagli

CAMPIONAMENTO E RICOSTRUZIONE DEI SEGNALI

CAMPIONAMENTO E RICOSTRUZIONE DEI SEGNALI INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Laurea Specialistica in Ingegneria Meccatronica CAMPIONAMENTO E RICOSTRUZIONE DEI SEGNALI Ing. Cristian Secchi Tel. 0522 522235 e-mail: secchi.cristian@unimore.it

Dettagli

iii) uno stimatore il cui errore di stima converga a zero più rapidamente della successione ;

iii) uno stimatore il cui errore di stima converga a zero più rapidamente della successione ; Teoria dei Sistemi - 9 cfu - L.M. in Ingegneria dell Automazione Compito del 4//7 Esercizio Si consideri il sistema lineare discreto Σ = (F, G, H) con F = 3 4 5, G =, H = 4 6 6 Si stabilisca se esiste,

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (9 CFU)

Esame di FONDAMENTI DI AUTOMATICA (9 CFU) Esame di FONDAMENTI DI AUTOMATICA (9 CFU) Prova scritta 29 gennaio 2018 COGNOME e NOME: MATRICOLA: ESERCIZIO 1. Si vuole realizzare un sistema robotico, costituito da un attuatore lineare che integra il

Dettagli

Raggiungibilità, Controllabilità, Osservabilità e Determinabilità

Raggiungibilità, Controllabilità, Osservabilità e Determinabilità Raggiungibilità, Controllabilità, Osservabilità e Determinabilità Si determini se i sistemi lineari tempo invarianti ẋ(t) = Ax(t) + Bu(t), Σ c : y(t) = Cx(t) + Du(t). x(k + ) = Ax(k) + Bu(k), Σ d : y(k)

Dettagli

Corso di Laurea in Ingegneria Meccatronica SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE

Corso di Laurea in Ingegneria Meccatronica SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE Automation Robotics and System CONTROL Università degli Studi di Modena e Reggio Emilia Corso di Laurea in Ingegneria Meccatronica SISTEMI ELEMENTARI DEL o E 2 o ORDINE CA 5 Cesare Fantuzzi (cesare.fantuzzi@unimore.it)

Dettagli

Schema a campionamento dell uscita

Schema a campionamento dell uscita Schema a campionamento dell uscita Introduzione Il progetto di un controllore digitale può svilupparsi secondo due linee alternative: La prima si basa su tecniche di progetto a tempo continuo basate su

Dettagli

Corso di Laurea in Ingegneria Meccatronica SISTEMI ELEMENTARI DEL 1 o E 2. ORDINE CA 05 Sistemi Elementari

Corso di Laurea in Ingegneria Meccatronica SISTEMI ELEMENTARI DEL 1 o E 2. ORDINE CA 05 Sistemi Elementari Automation Robotics and System CONTROL Università degli Studi di Modena e Reggio Emilia Corso di Laurea in Ingegneria Meccatronica SISTEMI ELEMENTARI DEL o E 2 o ORDINE CA 5 Sistemi Elementari Cesare Fantuzzi

Dettagli

Raggiungibilità e Controllabilità Esercizi risolti

Raggiungibilità e Controllabilità Esercizi risolti Raggiungibilità e ontrollabilità Esercizi risolti 1 Esercizio Dato il seguente sistema dinamico LTI a tempo discreto descritto dalle matrici A e B: [ [ 1 k k A, B 0 1 + k 1 studiare le proprietà di raggiungibilità

Dettagli

SISTEMI DIGITALI DI CONTROLLO

SISTEMI DIGITALI DI CONTROLLO Sistemi Digitali di Controllo A.A. 2009-200 p. /32 SISTEMI DIGITALI DI CONTROLLO Prof. Alessandro De Luca DIS, Università di Roma La Sapienza deluca@dis.uniroma.it Lucidi tratti dal libro C. Bonivento,

Dettagli

Controllo Digitale. Riassumendo. I sistemi di controllo digitale hanno alcuni vantaggi rispetto ai sistemi di controllo a tempo continuo:

Controllo Digitale. Riassumendo. I sistemi di controllo digitale hanno alcuni vantaggi rispetto ai sistemi di controllo a tempo continuo: Parte 12, 1 Motivazioni Parte 12, 2 I sistemi di controllo digitale hanno alcuni vantaggi rispetto ai sistemi di controllo a tempo continuo: Controllo Digitale Flessibilità del SW rispetto all HW Compatibilità

Dettagli

Prof. Carlo Rossi DEIS - Università di Bologna Tel:

Prof. Carlo Rossi DEIS - Università di Bologna Tel: Prof. Carlo Rossi DEIS - Università di Bologna Tel: 051 2093020 email: carlo.rossi@unibo.it Sistemi Tempo-Discreti In questi sistemi i segnali hanno come base l insieme dei numeri interi: sono sequenze

Dettagli

Invito alla lettura. Simboli e notazioni

Invito alla lettura. Simboli e notazioni Indice Generale Invito alla lettura Simboli e notazioni xiii xv 1 Automatica, ieri e oggi 1 1.1 Le disavventure di Sir Shovell................... 1 1.2 Missioni cometarie......................... 1 1.3

Dettagli

CONTROLLO IN RETROAZIONE

CONTROLLO IN RETROAZIONE CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm CONTROLLO IN RETROAZIONE Ing. Federica Grossi Tel. 59 256333 e-mail: federica.grossi@unimore.it

Dettagli

Proprietà Strutturali dei Sistemi Dinamici: Controllabilità e Raggiungibilità

Proprietà Strutturali dei Sistemi Dinamici: Controllabilità e Raggiungibilità Proprietà Strutturali dei Sistemi Dinamici: ontrollabilità e Raggiungibilità Ingegneria dell'automazione orso di Sistemi di ontrollo Multivariabile - Prof. F. Amato Versione 2.2 Ottobre 22 ontrollabilità

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (9 CFU)

Esame di FONDAMENTI DI AUTOMATICA (9 CFU) Esame di FONDAMENTI DI AUTOMATICA (9 CFU) Prova scritta 20 giugno 2017 COGNOME e NOME: MATRICOLA: ESERCIZIO 1. Si vuole realizzare un sistema di sorveglianza costituito da una flotta di droni di tipologia

Dettagli

Controlli Automatici

Controlli Automatici Controlli Automatici (Prof. Casella) Prova in Itinere 8 Maggio 2014 SOLUZIONI Domanda 1 Con rifermento a sistemi lineari tempo-invarianti, dimostrare che la connessione in cascata preserva la stabilità

Dettagli

w 1 (z) = z2 z + 1 z 3 z 2 + z 1, w 2(z) = z2

w 1 (z) = z2 z + 1 z 3 z 2 + z 1, w 2(z) = z2 Teoria dei Sistemi - 9 cfu - L.M. in Ingegneria dell Automazione Compito del 3///7 Esercizio Si considerino le funzioni di trasferimento (a tempo discreto) w (z) = z z + z 3 z + z, w (z) = z z 3 (.) (i)

Dettagli

4 I modelli ingresso/uscita dei sistemi lineari

4 I modelli ingresso/uscita dei sistemi lineari 4 I modelli ingresso/uscita dei sistemi lineari In questo capitolo verranno descritte le proprietà dei modelli di ingresso/uscita dei sistemi lineari stazionari ed i loro legami con i modelli ingresso/stato/uscita

Dettagli

Controlli Automatici e Teoria dei Sistemi I modelli dei sistemi

Controlli Automatici e Teoria dei Sistemi I modelli dei sistemi Controlli Automatici e Teoria dei Sistemi I modelli dei sistemi Prof. Roberto Guidorzi Dipartimento di Elettronica, Informatica e Sistemistica Università di Bologna Viale del Risorgimento 2, 40136 Bologna

Dettagli

STRUMENTI MATEMATICI PER L ANALISI DEI SISTEMI DISCRETI

STRUMENTI MATEMATICI PER L ANALISI DEI SISTEMI DISCRETI INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Laurea Specialistica in Ingegneria Meccatronica STRUMENTI MATEMATICI PER L ANALISI L DEI SISTEMI DISCRETI Ing. Cristian Secchi Tel. 0522 522235 e-mail:

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Laurea Specialistica in Ingegneria Meccatronica STRUMENTI MATEMATICI PER L ANALISI DEI SISTEMI DISCRETI Ing. Tel. 0522 522235 e-mail: secchi.cristian@unimore.it

Dettagli

Esame di Controlli Automatici 4 Febbraio 2016

Esame di Controlli Automatici 4 Febbraio 2016 Esame di Controlli Automatici 4 Febbraio 26. (7) Si consideri il seguente sistema non lineare ẋ αx 3 2( + x 2 + x 2 2) ẋ 2 βx 3 ( + x 2 + x 2 2) () e si studi la stabilità dell equilibrio nell origine

Dettagli

Controlli Automatici e Teoria dei Sistemi I Sistemi Lineari Stazionari Retroazione, Modelli di Ingresso Uscita, Realizzazione

Controlli Automatici e Teoria dei Sistemi I Sistemi Lineari Stazionari Retroazione, Modelli di Ingresso Uscita, Realizzazione Controlli Automatici e Teoria dei Sistemi I Sistemi Lineari Stazionari Retroazione, Modelli di Ingresso Uscita, Realizzazione Prof. Roberto Guidorzi Dipartimento di Elettronica, Informatica e Sistemistica

Dettagli

iii) Si studi la raggiungibilità e l osservabilità dei seguenti sistemi:

iii) Si studi la raggiungibilità e l osservabilità dei seguenti sistemi: Teoria dei Sistemi - 9 cfu - L.M. in Ingegneria dell Automazione Compito del /9/7 Esercizio Sia (F, g, H) un sistema discreto, raggiungibile e osservabile, con un ingresso e un uscita, e sia n(z) R(z)

Dettagli

Strumenti matematici per l analisi dei sistemi tempo discreto LT-Cap. 2

Strumenti matematici per l analisi dei sistemi tempo discreto LT-Cap. 2 Controllo Digitale a.a. 2007-2008 Strumenti matematici per l analisi dei sistemi tempo discreto LT-Cap. 2 Ing. Federica Pascucci Equazioni alle differenze (ricorsive) f legame tra le sequenze {e k } ed

Dettagli

Controllo Digitale - A.A. 2013/2014 Elaborato 6: metodi nello spazio degli stati, stima dello stato, sintesi del regolatore

Controllo Digitale - A.A. 2013/2014 Elaborato 6: metodi nello spazio degli stati, stima dello stato, sintesi del regolatore Controllo Digitale - A.A. 23/24 Elaborato 6: metodi nello spazio degli stati, stima dello stato, sintesi del regolatore Problema. È dato il sistema α 2 3 +. Al variare di α determinare l insieme degli

Dettagli

Sistemi di controllo digitali. Concetti introduttivi

Sistemi di controllo digitali. Concetti introduttivi Sistemi di controllo digitali Concetti introduttivi I sistemi di controllo digitali o a tempo discreto si distinguono dai sistemi di controllo analogici o a tempo continuo in quanto caratterizzati dalla

Dettagli

Esercitazione Si consideri il processo descritto dalla funzione di trasferimento: Soluzione

Esercitazione Si consideri il processo descritto dalla funzione di trasferimento: Soluzione Esercitazione. Si consideri il processo descritto dalla funzione di trasferimento: Soluzione s F ( s) k s s s Analizzare la funzione F(s) mediante il luogo delle radici: tracciare il luogo positivo e il

Dettagli

ESERCIZIO 1 Si consideri il sistema con ingresso u(t) ed uscita y(t) descritto dalle seguenti equazioni

ESERCIZIO 1 Si consideri il sistema con ingresso u(t) ed uscita y(t) descritto dalle seguenti equazioni ESERCIZIO 1 Si consideri il sistema con ingresso u(t) ed uscita y(t) descritto dalle seguenti equazioni ẋ 1 (t) x 1 (t) + 3x 2 (t) + u(t) ẋ 2 (t) 2u(t) y(t) x 1 (t) + x 2 (t) 1. Si classifichi il sistema

Dettagli

I prova in itinere di Fondamenti di Automatica A.A Novembre 2011 Prof. SILVIA STRADA Tempo a disposizione: 1 h. 45 m.

I prova in itinere di Fondamenti di Automatica A.A Novembre 2011 Prof. SILVIA STRADA Tempo a disposizione: 1 h. 45 m. I prova in itinere di Fondamenti di Automatica A.A. - 8 Novembre Prof. SILVIA STRADA Tempo a disposizione: h. 45 m. SOLUZIONE N.B. Svolgere i vari punti nello spazio che segue ogni esercizio. ESERCIZIO

Dettagli

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello dell 8 luglio 2008: testo e soluzione

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello dell 8 luglio 2008: testo e soluzione AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello dell 8 luglio 8: testo e soluzione Prof. Maria Prandini 1. Si consideri il sistema con ingresso u ed uscita y descritto dalle seguenti equazioni:

Dettagli

INGEGNERIA INFORMATICA

INGEGNERIA INFORMATICA ESERCIZIO Si consideri il seguente sistema S. INGEGNERIA INFORMATICA FONDAMENTI DI AUTOMATICA 7/06/09 Prof. Marcello Farina TESTO DEGLI ESERCIZI E SOLUZIONI x = u (sin(πx)) A. Si scrivano le equazioni

Dettagli

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm SISTEMI ELEMENTARI DEL o E 2 o ORDINE Ing. Federica Grossi Tel. 59 256333

Dettagli

Note sulle Catene di Markov

Note sulle Catene di Markov Note sulle Catene di Markov ELAUT Prof. Giuseppe C. Calafiore Sommario Queste note contengono un estratto schematico ridotto di parte del materiale relativo alle Catene di Markov a tempo continuo e a tempo

Dettagli

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Il teorema di Shannon

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Il teorema di Shannon INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Il teorema di Shannon Prof. Carlo Rossi DEIS - Università di Bologna Tel: 051 2093024 email: crossi@deis.unibo.it Introduzione Il teorema di Shannon, o

Dettagli

Osservatore di Luenberger

Osservatore di Luenberger 1 Osservatore di Luenberger In queste note verrà presentato l osservatore di Luenberger, uno stimatore dello stato per sistemi lineari. Si farà il caso di sistemi dinamici tempo-continui e tempo-discreti.

Dettagli

Classe Ingegneria dell Informazione Laurea in Ingegneria Informatica Insegnamento: Controlli dei Processi I ING-INF/04

Classe Ingegneria dell Informazione Laurea in Ingegneria Informatica Insegnamento: Controlli dei Processi I ING-INF/04 Classe Ingegneria dell Informazione Laurea in Ingegneria Informatica Insegnamento: Controlli dei Processi I ING-INF/4 Docente Numero di crediti: 6 Prof: Maria Pia Fanti Conoscenze preliminari Trasformata

Dettagli

B = Si studi, giustificando sinteticamente le proprie affermazioni, la stabilità del sistema. si A = G(s) = Y f (s) U(s) = 1.

B = Si studi, giustificando sinteticamente le proprie affermazioni, la stabilità del sistema. si A = G(s) = Y f (s) U(s) = 1. ESERCIZIO 1 Un sistema dinamico lineare invariante e a tempo continuo è descritto dall equazione differenziale che lega l ingresso all uscita:... y (t) + ÿ(t) + 4ẏ(t) + 4y(t) = u(t) 1. Si determinino le

Dettagli

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE CONTROLLI AUTOMATICI Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/controlliautomatici.html SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE Ing. e-mail: luigi.biagiotti@unimore.it

Dettagli

1b) Calcolare fino a quale pulsazione l errore di riproduzione di una sinusoide del tipo sin(ωt) sia minore di 0.4.

1b) Calcolare fino a quale pulsazione l errore di riproduzione di una sinusoide del tipo sin(ωt) sia minore di 0.4. Esame di Fondamenti di Automatica Corsi di Laurea V.O. in Elettronica e Meccanica febbraio Compito A a) Sia dato un processo P(s) descrivibile mediante la funzione di trasferimento: s /3 Ps () = ( s/3

Dettagli

3. Sistemi Lineari a Tempo Discreto

3. Sistemi Lineari a Tempo Discreto . Sistemi Lineari a Tempo Discreto .5 y(t), y(kt) 4 y(t), y(kt).5.5.5.5.5 4 5 4 5 Campionamento di un segnale continuo Fig. (a) Segnale discreto Fig. (b) Esprimono relazioni fra variabili campionate ad

Dettagli

Fondamenti di Automatica per Ing. Elettrica

Fondamenti di Automatica per Ing. Elettrica Fondamenti di Automatica per Ing. Elettrica Prof. Patrizio Colaneri, Prof. Gian Paolo Incremona 2 Esame del 27 Giugno 208 Cognome Nome Matricola Firma Durante la prova non è consentita la consultazione

Dettagli

Lezione 6. Assegnamento degli autovalori mediante retroazione dello stato. F. Previdi - Controlli Automatici - Lez. 6 1

Lezione 6. Assegnamento degli autovalori mediante retroazione dello stato. F. Previdi - Controlli Automatici - Lez. 6 1 Lezione 6. Assegnamento degli autovalori mediante retroazione dello stato F. Previdi - Controlli Automatici - Lez. 6 Schema della lezione. ntroduzione 2. Assegnamento degli autovalori con stato accessibile

Dettagli

Fondamenti di Automatica - Ingegneria Gestionale (H-PO) Prof. Silvia Strada Prima prova in itinere del 25 Novembre 2016 Tempo a disposizione: 1.30 h.

Fondamenti di Automatica - Ingegneria Gestionale (H-PO) Prof. Silvia Strada Prima prova in itinere del 25 Novembre 2016 Tempo a disposizione: 1.30 h. Politecnico di Milano Fondamenti di Automatica - Ingegneria Gestionale (H-PO) Prof. Silvia Strada Prima prova in itinere del 25 Novembre 206 Tempo a disposizione:.30 h. Nome e Cognome................................................................................

Dettagli

PIANO DI LAVORO DEI DOCENTI

PIANO DI LAVORO DEI DOCENTI Pag. 1 di 5 Docente: Materia insegnamento: SISTEMI ELETTRONICI AUTOMATICI Dipartimento: ELETTRONICA Classe Anno scolastico: 1 Livello di partenza (test di ingresso, livelli rilevati) Per il modulo di automazione

Dettagli

Motore in corrente continua - Controllo per assegnamento dei poli, controllo ottimo LQ e osservatore dello stato

Motore in corrente continua - Controllo per assegnamento dei poli, controllo ottimo LQ e osservatore dello stato Motore in corrente continua - Controllo per assegnamento dei poli, controllo ottimo LQ e osservatore dello stato Esercitazioni di Controlli Automatici LS (Prof. C. Melchiorri) Si consideri il motore elettrico

Dettagli

SOLUZIONE della Prova TIPO E per:

SOLUZIONE della Prova TIPO E per: SOLUZIONE della Prova TIPO E per: Esame di FONDAMENTI DI AUTOMATICA (9 CFU): 6 degli 8 esercizi numerici + 4 delle 5 domande a risposta multipla (v. ultime due pagine) NOTA: nell effettiva prova d esame

Dettagli

SISTEMI A TEMPO DISCRETO

SISTEMI A TEMPO DISCRETO CONTROLLI DIGITALI Laurea Magistrale in Ingegneria Meccatronica SISTEMI A TEMPO DISCRETO Ing. Tel. 0522 522235 e-mail: cristian.secchi@unimore.it http://www.dismi.unimo.it/members/csecchi Richiami di Controlli

Dettagli

Esercitazione sulla sintesi con reazione dallo stato. (bozza da rivedere a cura degli studenti, comunicando errori al docente)

Esercitazione sulla sintesi con reazione dallo stato. (bozza da rivedere a cura degli studenti, comunicando errori al docente) 1 Esercitazione sulla sintesi con reazione dallo stato (bozza da rivedere a cura degli studenti, comunicando errori al docente) Lo schema semplificato di un sistema di puntamento automatico di un antenna

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (6 CFU) / CONTROLLI AUTOMATICI SOLUZIONE

Esame di FONDAMENTI DI AUTOMATICA (6 CFU) / CONTROLLI AUTOMATICI SOLUZIONE Esame di FONDAMENTI DI AUTOMATICA (6 CFU) / CONTROLLI AUTOMATICI Prova scritta 28 giugno 2018 SOLUZIONE ESERCIZIO 1. Si vuole realizzare un sistema robotico per la lucidatura automatica della superficie

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Proprietà strutturali e leggi di controllo aggiungibilità e controllabilità etroazione statica dallo stato Osservabilità e rilevabilità Stima dello stato e regolatore dinamico

Dettagli

Proprietà strutturali e leggi di controllo

Proprietà strutturali e leggi di controllo Proprietà strutturali e leggi di controllo Retroazione statica dallo stato La legge di controllo Esempi di calcolo di leggi di controllo Il problema della regolazione 2 Retroazione statica dallo stato

Dettagli

Prova scritta di Teoria dei Segnali: nuovo ordinamento

Prova scritta di Teoria dei Segnali: nuovo ordinamento Prova scritta di Teoria dei Segnali: nuovo ordinamento 1. Dati i segnali x(t) = rect[(t-2)/2] e y(t) = 2rect[(t+3)/2], si calcoli il prodotto di convoluzione tra x(t) e y(t), 2. Si calcoli la trasformata

Dettagli

Prof. Carlo Rossi DEIS - Università di Bologna Tel:

Prof. Carlo Rossi DEIS - Università di Bologna Tel: Prof. Carlo Rossi DEIS - Università di Bologna Tel: 051 2093024 email: carlo.rossi@unibo.it Introduzione Il teorema di Shannon, o del campionamento, stabilisce la connessione esistente tra i segnali fisici

Dettagli