Prova scritta di Teoria dei Segnali: nuovo ordinamento

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Prova scritta di Teoria dei Segnali: nuovo ordinamento"

Transcript

1 Prova scritta di Teoria dei Segnali: nuovo ordinamento 1. Dati i segnali x(t) = rect[(t-2)/2] e y(t) = 2rect[(t+3)/2], si calcoli il prodotto di convoluzione tra x(t) e y(t), 2. Si calcoli la trasformata di Fourier del segnale s(t) = rect[(t-1)/2]cos(2πf 0 t). (3 punti) 3. Il segnale s(t) = sinc 2 (200t 10) viene campionato alla minima frequenza di campionamento in grado di evitare aliasing. Supponendo che ogni campione venga rappresentato mediante 12 bit, si determini il numero di bit necessari a memorizzare 15 minuti del segnale s(t). (3 punti) 5. Dati due segnali a energia finita x(t) e y(t), si dimostri che la trasformata di Fourier del prodotto di convoluzione x(t) y(t) è pari al prodotto delle trasformate dei due segnali. (3 punti) 7. Data una variabile aleatoria X avente densità di probabilità f X (x) = 3e -3x u(x), si calcoli la probabilità che X-2 >1. (3 punti) 8. Dato un processo x(k,t) = (A+3)cos(2πf 0 t - θ), dove A e θ sono 2 variabili aleatorie indipendenti aventi densità di probabilità distribuite uniformemente rispettivamente tra 1 e 3, e 0 e 2π, se ne studi la 9. Si consideri il segnale aleatorio x(k,t) = Σ k A k rect((t - kt - τ)/t), costituito da una sequenza di impulsi di durata T e di ampiezza casuale A k. Le ampiezze A k, espresse in volt, assumono solo i valori (-3, -1, +1,+3) e possono essere assimilate a variabili aleatorie indipendenti caratterizzate dalle probabilità: P(-3) = 0.2, P(-1) = 0.2, P(+1) = 0.4, P(+3) = 0.2. La sequenza di impulsi non è sincronizzata e il ritardo τ rispetto tra 0 e T. Sapendo che τ è indipendente da A k k, si calcoli la densità spettrale di potenza media del processo e la percentuale di potenza contenuta nella componente in continua. 10. Si considerino due segnali aleatori indipendenti e stazionari s 1 (k,t) e s 2 (k,t). Il primo segnale è un passa basso ideale avente banda 2B, mentre il secondo è un passa banda con densità spettrale di potenza media costante nell intervallo [f 0-4B, f 0 +4B], con f 0 >> B. A partire da s 1 (k,t) e s 2 (k,t) si costruisca un nuovo segnale y(k,t) = s 1 (k,t)s 2 (k,t). Sapendo che la densità spettrale di potenza media all interno della banda dei due segnali è costante e uguale a N 0, si chiede di verificare la stazionarietà in senso lato di y(k,t) e di calcolarne la densità spettrale di potenza media e la potenza media.

2 Vecchio ->

3 Prova scritta di Teoria dei Segnali: nuovo ordinamento (b) 1. Dati i segnali x(t) = 2rect[(t-3)/4] e y(t) = rect[(t+4)/4], si calcoli il prodotto di convoluzione tra x(t) e y(t), 2. Si calcoli la trasformata di Fourier del segnale s(t) = rect[(t+1)/3]sen(2πf 0 t). (3 punti) 3. Il segnale s(t) = sinc 2 (20t +100) viene campionato alla minima frequenza di campionamento in grado di evitare aliasing. Supponendo che ogni campione venga rappresentato mediante 9 bit, si determini il numero di bit necessari a memorizzare 20 minuti del segnale s(t). (3 punti) 5. Dati due segnali a energia finita x(t) e y(t), si dimostri che la trasformata di Fourier del prodotto x(t)y(t) è pari al prodotto di convoluzione delle trasformate dei due segnali. (3 punti) 7. Data una variabile aleatoria X avente densità di probabilità f X (x) = 4e -4x u(x), si calcoli la probabilità che X-3 >2. (3 punti) 8. Dato un processo x(k,t) = (B-2)sen(2πf 0 t - θ), dove B e θ sono 2 variabili aleatorie indipendenti aventi densità di probabilità distribuite uniformemente rispettivamente tra 2 e 4, e 0 e 2π, se ne studi la 9. Data una variabile aleatoria X avente densità di probabilità f X (x) = 3λe -6 λ X (λ > 0), si calcoli la densità di probabilità della variabile aleatoria Y = 4 X e se ne disegni l andamento grafico. 10. Si consideri il segnale aleatorio x(k,t) = Σ k A k rect((t - 2kT - τ)/2t), costituito da una sequenza di impulsi di durata 2T e di ampiezza casuale A k. Le ampiezze A k, espresse in volt, assumono solo i valori (-6, -2, +2,+6) e possono essere assimilate a variabili aleatorie indipendenti caratterizzate dalle probabilità: P(-6) = 0.3, P(-2) = 0.1, P(+2) = 0.3, P(+6) = 0.3. La sequenza di impulsi non è sincronizzata e il ritardo τ rispetto tra 0 e 2T. Sapendo che τ è indipendente da A k k, si calcoli la densità spettrale di potenza media del processo e la percentuale di potenza contenuta nella componente in continua. Vecchio ->

4 Prova scritta di Teoria dei Segnali: nuovo ordinamento (c) 1. Dati i segnali x(t) = rect[(t-3)/2] e y(t) = 2rect[(t+2)/2], si calcoli il prodotto di convoluzione tra x(t) e y(t), 2. Si calcoli la trasformata di Fourier del segnale s(t) = tr[(t+4)/4]cos(πf 0 t). (3 punti) 3. Il segnale s(t) = sinc 2 (50t 4) viene campionato alla minima frequenza di campionamento in grado di evitare aliasing. Supponendo che ogni campione venga rappresentato mediante 16 bit, si determini il numero di bit necessari a memorizzare 20 minuti del segnale s(t). (3 punti) 5. Dato un sistema lineare tempo invariante, si mostri che la relazione che lega l uscita y(t) del sistema al segnale x(t) posto al suo ingresso è data da y(t) = x(t) h(t), dove h(t) è la risposta impulsiva del sistema. (3 punti) 7. Data una variabile aleatoria X avente densità di probabilità f X (x) = 2e -2x u(x), si calcoli la probabilità che 3-X >1. (3 punti) 8. Dato un processo x(k,t) = (A+5)cos(2πf 0 t - θ π/6), dove A e θ sono 2 variabili aleatorie indipendenti aventi densità di probabilità distribuite uniformemente rispettivamente tra 4 e 6, e 0 e 2π, se ne studi la 9. Data una variabile aleatoria X avente densità di probabilità f X (x) = λe -2 λ X (λ > 0), si calcoli la densità di probabilità della variabile aleatoria Y = -2 X e se ne disegni l andamento grafico. 10. Si consideri il segnale aleatorio x(k,t) = Σ k A k rect((t - 2k - τ)/2), costituito da una sequenza di impulsi di durata T e di ampiezza casuale A k. Le ampiezze A k, espresse in volt, assumono solo i valori (-3, -1, +1,+3) e possono essere assimilate a variabili aleatorie indipendenti caratterizzate dalle probabilità: P(-3) = 0.2, P(-1) = 0.2, P(+1) = 0.2, P(+3) = 0.4. La sequenza di impulsi non è sincronizzata e il ritardo τ rispetto tra 0 e T. Sapendo che τ è indipendente da A k k, si calcoli la densità spettrale di potenza media del processo e la percentuale di potenza contenuta nella componente in continua. Vecchio ->

5 Prova scritta di Teoria dei Segnali: nuovo ordinamento (d) 1. Dati i segnali x(t) = rect[(t-5)/4] e y(t) = 4rect[(t+4)/4], si calcoli il prodotto di convoluzione tra x(t) e y(t), 2. Si calcoli la trasformata di Fourier del segnale s(t) = tr[(t+5)/4]sen(6πf 0 t). (3 punti) 3. Il segnale s(t) = sinc 2 (500t + 50) viene campionato alla minima frequenza di campionamento in grado di evitare aliasing. Supponendo che ogni campione venga rappresentato mediante 8 bit, si determini il numero di bit necessari a memorizzare 30 minuti del segnale s(t). (3 punti) 5. Si enunci e si dimostri il teorema di Parseval per segnali determinati a energia finita. (3 punti) 7. Data una variabile aleatoria X avente densità di probabilità f X (x) = 0.5e -x/2 u(x), si calcoli la probabilità che 4-X >2. (3 punti) 8. Dato un processo x(k,t) = (B+6)sen(2πf 0 t - θ + π/5), dove B e θ sono 2 variabili aleatorie indipendenti aventi densità di probabilità distribuite uniformemente rispettivamente tra -10 e 4, e 0 e 2π, se ne studi la 9. Data una variabile aleatoria X avente densità di probabilità f X (x) = λe -2 λ X (λ > 0), si calcoli la densità di probabilità della variabile aleatoria Y = -4 X e se ne disegni l andamento grafico. 10. Si consideri il segnale aleatorio x(k,t) = Σ k A k rect((t - 2kT - τ)/2t), costituito da una sequenza di impulsi di durata 2T e di ampiezza casuale A k. Le ampiezze A k, espresse in volt, assumono solo i valori (-3, -1, +1,+3) e possono essere assimilate a variabili aleatorie indipendenti caratterizzate dalle probabilità: P(-3) = 0.2, P(-1) = 0.4, P(+1) = 0.2, P(+3) = 0.2. La sequenza di impulsi non è sincronizzata e il ritardo τ rispetto tra 0 e 2T. Sapendo che τ è indipendente da A k k, si calcoli la densità spettrale di potenza media del processo e la percentuale di potenza contenuta nella componente in continua. Vecchio ->

Corso di Fondamenti di Telecomunicazioni Esercizi Teoria dei segnali Prof. Giovanni Schembra

Corso di Fondamenti di Telecomunicazioni Esercizi Teoria dei segnali Prof. Giovanni Schembra Corso di Fondamenti di Telecomunicazioni Esercizi Teoria dei segnali Prof. Giovanni Schembra Sommario CARATTERISTICHE DEI SEGNALI DETERMINATI.... ESERCIZIO.... ESERCIZIO... 5.3 ESERCIZIO 3 CONVOLUZIONE...

Dettagli

Conversione analogico-digitale

Conversione analogico-digitale Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Campionamento e quantizzazione A.A. 2004-05 Alberto Perotti DELEN-DAUIN Conversione analogico-digitale L elaborazione

Dettagli

Campionamento e quantizzazione

Campionamento e quantizzazione Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Campionamento e quantizzazione A.A. 2008-09 Alberto Perotti DELEN-DAUIN Conversione analogico-digitale L elaborazione

Dettagli

Comunicazioni Elettriche anno accademico Esercitazione 1

Comunicazioni Elettriche anno accademico Esercitazione 1 Comunicazioni Elettriche anno accademico 003-004 Esercitazione Esercizio Un processo aleatorio a tempo discreto X(n) è definito nel seguente modo: Viene lanciata una moneta. Se il risultato è testa X(n)=

Dettagli

Laboratorio II, modulo

Laboratorio II, modulo Laboratorio II, modulo 2 206-207 Banda di un segnale e filtri (cfr. http://wpage.unina.it/verdoliv/tds/appunti/appunti_03.pdf e http://wpage.unina.it/verdoliv/tds/appunti/appunti_04.pdf e http://wpage.unina.it/verdoliv/tds/appunti/appunti_05.pdf

Dettagli

CAMPIONAMENTO E RICOSTRUZIONE. Y(f) Y(f-15) Y(f+15) f[hz] Yc(f) Y(f) Y(f-17.5) Y(f+17.5) Yc(f) Esercizio 1

CAMPIONAMENTO E RICOSTRUZIONE. Y(f) Y(f-15) Y(f+15) f[hz] Yc(f) Y(f) Y(f-17.5) Y(f+17.5) Yc(f) Esercizio 1 CAMPIONAMENTO E RICOSTRUZIONE Esercizio 1 Dato il segnale y(t), con trasformata di Fourier Y(f) rappresentata in figura, rappresentare lo spettro del segnale ottenuto campionando idealmente y(t) con a)

Dettagli

CANALE STAZIONARIO CANALE TEMPO INVARIANTE

CANALE STAZIONARIO CANALE TEMPO INVARIANTE CANALE STAZIONARIO Si parla di un Canale Stazionario quando i fenomeni che avvengono possono essere modellati da processi casuali e le proprietà statistiche di tali processi sono indipendenti dal tempo.

Dettagli

Prova di AUTOVALUTAZIONE (novembre 2009). nota: l esame ha validità solo se incluso nel piano degli studi per l anno accademico corrente.

Prova di AUTOVALUTAZIONE (novembre 2009). nota: l esame ha validità solo se incluso nel piano degli studi per l anno accademico corrente. UNIVERSITA DEGLI STUDI ROMA TRE CdS in Ingegneria Informatica corso di FONDAMENTI DI TELECOMUNICAZIONI Prova di AUTOVALUTAZIONE (novembre 2009). COMPITO A nota: l esame ha validità solo se incluso nel

Dettagli

SEGNALI E SISTEMI Proff. L. Finesso, M. Pavon e S. Pinzoni (a.a ) Homework assignment #2 Testo e Soluzione

SEGNALI E SISTEMI Proff. L. Finesso, M. Pavon e S. Pinzoni (a.a ) Homework assignment #2 Testo e Soluzione SEGNALI E SISTEMI Proff. L. Finesso, M. Pavon e S. Pinzoni (a.a. 00-005) Homework assignment # Testo e Soluzione Esercizio Si consideri l equazione differenziale ordinaria, lineare a coefficienti costanti

Dettagli

Laboratorio II, modulo

Laboratorio II, modulo Laboratorio II, modulo 2 205-206 Banda di un segnale, filtri e cavi coassiali (cfr. http://wpage.unina.it/verdoliv/tds/appunti/appunti_03.pdf e http://wpage.unina.it/verdoliv/tds/appunti/appunti_04.pdf

Dettagli

Segnali analogici. Segnali aleatori. Segnali determinati Trasmissione ideale Trasmissione perfetta. Trasmissione imperfetta

Segnali analogici. Segnali aleatori. Segnali determinati Trasmissione ideale Trasmissione perfetta. Trasmissione imperfetta Segnali determinati Trasmissione ideale Trasmissione perfetta Segnali analogici 40 20 Segnali aleatori Trasmissione imperfetta Laboratorio di Segnali Segnali modulati Segnali tempo discreto e segnali in

Dettagli

2.2.5 Approssimazione di un segnale in una base biortogonale (segnali rettangolari) Esercizi proposti... 46

2.2.5 Approssimazione di un segnale in una base biortogonale (segnali rettangolari) Esercizi proposti... 46 Indice 1 Operazioni elementari, convoluzione, correlazione 1 1.1 Operazioni elementari........................ 1 1.1.1 Ribaltamento, traslazione, scalatura............ 1 1.2 Convoluzione.............................

Dettagli

Esercizio 1 (12 punti) Si consideri il segnale s(t) in figura e se ne calcoli la Trasformata Continua di Fourier. A vale 2 V e T è paria a 1 s.

Esercizio 1 (12 punti) Si consideri il segnale s(t) in figura e se ne calcoli la Trasformata Continua di Fourier. A vale 2 V e T è paria a 1 s. ASB 17/01/12 (270) Esercizio 1 (12 punti) Si consideri il segnale s(t) in figura e se ne calcoli la Trasformata Continua di Fourier. A vale 2 V e T è paria a 1 s. A 0 T 2T 3T t - A Si consideri il segnale

Dettagli

Stazionarietà. IDENTIFICAZIONE dei MODELLI e ANALISI dei DATI. Lezione 3: Processi Stocastici 3-1

Stazionarietà. IDENTIFICAZIONE dei MODELLI e ANALISI dei DATI. Lezione 3: Processi Stocastici 3-1 IDENTIFICAZIONE dei MODELLI e ANALISI dei DATI Lezione 3: Processi Stocastici Motivazioni Esempi Definizione Dualitá Stazionarietà 3-1 Motivazioni In molti settori scientifici sia tecnologici che economico-sociali

Dettagli

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A Alberto Perotti, Roberto Garello

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A Alberto Perotti, Roberto Garello Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2006-07 Alberto Perotti, Roberto Garello DELEN-DAUIN Processi casuali Sono modelli probabilistici

Dettagli

Campionamento. Campionamento: problema

Campionamento. Campionamento: problema Posizione del problema uniforme Ricostruzione Teorema del campionamento Significato della formula di ricostruzione Sistema di conversione A/D sample & hold quantizzazione Sistema di conversione D/A : problema

Dettagli

Segnali (processi) aleatori (casuali)

Segnali (processi) aleatori (casuali) Segnali (processi) aleatori (casuali) Definizione di processo aleatorio Descrizione statistica di un processo aleatorio Media, potenza, varianza Autocorrelazione e autocovarianza Filtraggio di un processo

Dettagli

u(t)=u s (t)+u n (t)

u(t)=u s (t)+u n (t) (gli esercizi contrassegnati con (*) non sono obbligatori) Esercizio (rumore filtrato) Dato il sistema in figura, s(t) n(t) + x(t) H(f) u(t)=u s (t)+u n (t) t=to u(to) L ingresso del filtro e il segnale

Dettagli

Corso di Fondamenti di Segnali e Trasmissione - Esame del 7 Febbraio 2006

Corso di Fondamenti di Segnali e Trasmissione - Esame del 7 Febbraio 2006 Corso di Fondamenti di Segnali e Trasmissione - Esame del 7 Febbraio 6 Gli esercizi devono essere risolti solo sui ogli dei colori indicati. Per esiti e soluzioni si veda il sito web del corso: http://www.elet.polimi.polimi.it/dsp/courses/st.

Dettagli

Ripasso segnali e processi casuali. Trasmissione dell Informazione

Ripasso segnali e processi casuali. Trasmissione dell Informazione Ripasso segnali e processi casuali 1 Breve ripasso di segnali e trasformate Dato un segnale s(t), la sua densità spettrale si calcola come dove S(f) è la trasformata di Fourier. L energia di un segnale

Dettagli

Elementi di Teoria dei Segnali

Elementi di Teoria dei Segnali Elementi di Teoria dei Segnali Ing. Michele Scarpiniti michele.scarpiniti@uniroma1.it http://ispac.ing.uniroma1.it/scarpiniti/index.htm Master "Tecniche per la Multimedialità" 1 Il concetto di segnale

Dettagli

Corso di Fondamenti di Segnali e Trasmissione - Esame del 21 Febbraio 2006

Corso di Fondamenti di Segnali e Trasmissione - Esame del 21 Febbraio 2006 Corso di Fondamenti di Segnali e Trasmissione - Esame del Febbraio 006 Gli esercizi devono essere risolti solo sui ogli dei colori indicati. Per esiti e soluzioni si veda il sito web del corso: http://www.elet.polimi.polimi.it/dsp/courses/st.

Dettagli

Pulse Amplitude Modulation (PAM) 2 Scelta delle risposte impulsive dei filtri in trasmissione e ricezione

Pulse Amplitude Modulation (PAM) 2 Scelta delle risposte impulsive dei filtri in trasmissione e ricezione Pulse Amplitude Modulation (PAM 1 Definizione La trasmissione di una sequenza di numeri {a k } mediante un onda PAM consiste nel generare, a partire dalla sequenza {a k } il segnale a tempo continuo u(t

Dettagli

CAMPIONAMENTO. y(t) = x 1 (t) x 2 (t) Σ δ(t - kt c. ) k. Figure 1:

CAMPIONAMENTO. y(t) = x 1 (t) x 2 (t) Σ δ(t - kt c. ) k. Figure 1: CAMPIONAMENTO 1) Si considerino i due segnali a banda limitata x 1 (t) con banda B 1 e x 2 (t) con banda B 2. Si costruisca il segnale y(t) come y(t) = x 1 (t) x 2 (t) Volendo applicare il principio del

Dettagli

Teoria dei Segnali (19 dicembre 2002)

Teoria dei Segnali (19 dicembre 2002) Teoria dei Segnali (9 dicembre ) II Provetta Esercizio N. (per gli studenti della laurea quinquennale) All ingresso del modulatore in figura c è il segnale m() t cos( Ωt) l inviluppo complesso del segnale

Dettagli

ESERCIZI DI TEORIA DEI SEGNALI

ESERCIZI DI TEORIA DEI SEGNALI ESERCIZI DI EORIA DEI SEGNALI EX. 1 Si determini lo sviluppo in serie di Fourier del segnale cos[ m(t)] dove m(t) = m(t) = m(t k ) [ π 2 2π ] ( ) t t rect. EX. 2 Si siderino due segnali x 1 (t) e x 2 (t)

Dettagli

MASB AA10/11 21/01/11 test #1 1

MASB AA10/11 21/01/11 test #1 1 MASB 20/06/11 AA20102011test #1. Esercizio 1. Illustrare lo schema generale di un apparecchiatura per l acquisizione di segnali spontanei, descrivendo brevemente i diversi componenti. Fornire una descrizione

Dettagli

SEGNALI E SISTEMI (a.a ) Proff. L. Finesso, M. Pavon e S. Pinzoni Prova scritta 15 dicembre 2003 Testo e Soluzione

SEGNALI E SISTEMI (a.a ) Proff. L. Finesso, M. Pavon e S. Pinzoni Prova scritta 15 dicembre 2003 Testo e Soluzione Esercizio 1 [punti 4] SEGNALI E SISTEMI (a.a. 003-004) Proff. L. Finesso, M. Pavon e S. Pinzoni Prova scritta 15 dicembre 003 Testo e Soluzione Per ciascuno dei seguenti segnali dire se è periodico e,

Dettagli

( ) ( ) = ( )* ( ) Z f X f Y f. sin 2 f. 0 altrove. Esempio di Modulazione

( ) ( ) = ( )* ( ) Z f X f Y f. sin 2 f. 0 altrove. Esempio di Modulazione Esempio di Modulazione z ( t) = x( t) y ( t) dove x( t ) e y () t ammetto trasformata di Fourier X ( f ) e Y ( f ) Per z ( t ) si ha (convoluzione degli spettri): Ad esempio se: ( ) = sin( 2π f t) x t

Dettagli

Teoria dei segnali terza edizione

Teoria dei segnali terza edizione Capitolo 9 Segnali aleatori a tempo continuo e a tempo discreto SOLUZIONI DEGLI ESERCIZI Soluzione dell esercizio 9.3 Si osservi innanzitutto che, essendo il processo () t Gaussiano, anche il processo

Dettagli

6 dbm, mentre il secondo ha una potenza di 3 dbm. Quale sarà la

6 dbm, mentre il secondo ha una potenza di 3 dbm. Quale sarà la DECIBEL, FILTRAGGIO, PROCESSI Esercizio 9 (sui decibel) Un segnale con potenza media di 0 dbm viene amplificato attraverso un dispositivo elettronico la cui H(f) è costante per ogni frequenza e pari a

Dettagli

QUANTIZZAZIONE E CONVERSIONE IN FORMA NUMERICA. 1 Fondamenti Segnali e Trasmissione

QUANTIZZAZIONE E CONVERSIONE IN FORMA NUMERICA. 1 Fondamenti Segnali e Trasmissione UANTIZZAZIONE E CONVERSIONE IN FORMA NUMERICA Fondamenti Segnali e Trasmissione Campionamento e quantizzazione di un segnale analogico Si consideri il segnale x(t) campionato con passo T c. Campioni del

Dettagli

Esercizi sul campionamento

Esercizi sul campionamento Capitolo 5 Esercizi sul campionamento 5.1 Esercizio 1 Dato il segnale x(t) = s(t) cos (2π 0 t) con s(t) a banda limitata s e supponendo di introdurre il segnale x(t) come ingresso di un sistema non lineare

Dettagli

Teoria dei Segnali Processo di Poisson e rumore granulare

Teoria dei Segnali Processo di Poisson e rumore granulare Teoria dei Segnali Processo di Poisson e rumore granulare Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Teoria dei Segnali Processo di Poisson e

Dettagli

Esame di Teoria dei Segnali e Comunicazioni Elettriche

Esame di Teoria dei Segnali e Comunicazioni Elettriche Esame di Teoria dei Segnali e Comunicazioni Elettriche Appello del 3/02/204 È dato il seguente circuito: u(t) + y(t) z(t) d τ Σ" dt τ 2 t+ Il segnale u(t) in ingresso è descritto dalla relazione: u ( t)

Dettagli

Modulazioni di ampiezza

Modulazioni di ampiezza Modulazioni di ampiezza 1) Si consideri un segnale z(t) modulato in ampiezza con soppressione di portante dal segnale di informazione x(t): z(t) = Ax(t)cos(2πf 0 t) Il canale di comunicazione aggiunge

Dettagli

RICHIAMI SU PROCESSI ALEATORI E DENSITÀ SPETTRALE DI POTENZA

RICHIAMI SU PROCESSI ALEATORI E DENSITÀ SPETTRALE DI POTENZA RICHIAMI SU PROCESSI ALEATORI E DENSITÀ SPETTRALE DI POTENZA Paolo Bestagini Ph.D. Student bestagini@elet.polimi.it http://home.deib.polimi.it/bestagini Sommario 2 Segnali deterministici Continui Discreti

Dettagli

esame di Teoria dei Segnali 26 marzo 1999 Ex.1: Sia X U(0; 1). Calcolare la distribuzione di probabilita della v.a. Y = g(x),

esame di Teoria dei Segnali 26 marzo 1999 Ex.1: Sia X U(0; 1). Calcolare la distribuzione di probabilita della v.a. Y = g(x), Consorzio NETTUNO, Polo Tecnologico di Napoli esame di Teoria dei Segnali 26 marzo 1999 Ex.1: Sia X U(0; 1). Calcolare la distribuzione di probabilita della v.a. Y = g(x), dove ; i =1;2;:::;N g(x) =i=n;

Dettagli

S n π/2 -π MASB 21/01/11 1

S n π/2 -π MASB 21/01/11 1 MASB 1/01/11 Esercizio 1. Descrivere le differenze tra segnale temporale ed imagine, nei termini di informazione associata e dimensionalità del dato. Dire se tramite tali misure si possono descrivere fenomeni

Dettagli

Capitolo 6 Strato Fisico- Le Modulazioni Numeriche

Capitolo 6 Strato Fisico- Le Modulazioni Numeriche Capitolo 6 Strato Fisico- Le Modulazioni Numeriche 1 Modulazione e Demodulazione numerica segnale numerico segnale analogico...0010111001... modulatore numerico segnale numerico mezzo trasmissivo...0010011001...

Dettagli

S n π/2 -π MASB 21/01/11 1

S n π/2 -π MASB 21/01/11 1 MASB 1/01/11 Esercizio 1. Descrivere le differenze tra segnale temporale ed imagine, nei termini di informazione associata e dimensionalità del dato. Dire se tramite tali misure si possono descrivere fenomeni

Dettagli

Esercitazione ENS su periodogramma (27 e 28 Maggio 2008) Esercizio 1: Autocorrelazione e stima della densità spettrale di potenza

Esercitazione ENS su periodogramma (27 e 28 Maggio 2008) Esercizio 1: Autocorrelazione e stima della densità spettrale di potenza sercitazione S su periodogramma (7 e 8 Maggio 008 D. Donno sercizio : Autocorrelazione e stima della densità spettrale di potenza Si consideri la sequenza x n di lunghezza = 8 campioni. x n è somma di

Dettagli

Lezione 5: Processi Stocastici - Analisi in frequenza

Lezione 5: Processi Stocastici - Analisi in frequenza ELABORAZIONE dei SEGNALI nei SISTEMI di CONTROLLO Lezione 5: Processi Stocastici - Analisi in frequenza Motivazioni Spettro e densità spettrale TD Proprietà formali Esempi Trasformata inversa Spettro e

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica ST410 - Statistica 1 - A.A. 2014/2015 Appello B - 5 Febbraio 2015

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica ST410 - Statistica 1 - A.A. 2014/2015 Appello B - 5 Febbraio 2015 UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica ST410 - Statistica 1 - A.A. 2014/2015 Appello B - 5 Febbraio 2015 1 2 3 4 5 6 7 Tot. Avvertenza: Svolgere ogni esercizio nello spazio assegnato,

Dettagli

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI Fondamenti di Segnali e Trasmissione Risposta in requenza e banda passante La risposta in requenza di un sistema LTI e la trasormata di Fourier

Dettagli

Teoria dei Segnali Proprietà della trasformata di Fourier; correlazione tra segnali; autocorrelazione

Teoria dei Segnali Proprietà della trasformata di Fourier; correlazione tra segnali; autocorrelazione Teoria dei Segnali Proprietà della trasformata di Fourier; correlazione tra segnali; autocorrelazione p. 1 Teoria dei Segnali Proprietà della trasformata di Fourier; correlazione tra segnali; autocorrelazione

Dettagli

MASB AA10/11 21/01/11 test #1 1

MASB AA10/11 21/01/11 test #1 1 MASB 20/06/11 AA20102011test #1. Esercizio 1. Illustrare lo schema generale di un apparecchiatura per l acquisizione di segnali spontanei, descrivendo brevemente i diversi componenti. Fornire una descrizione

Dettagli

CORSO DI: TEORIA DEI SEGNALI

CORSO DI: TEORIA DEI SEGNALI Anno accademico 2018-2019 CORSO DI: TEORIA DEI SEGNALI Docente: prof. Claudio Sacchi INTRODUZIONE AL CORSO Contenuti Obbiettivi del corso; Programma del corso; Modalità di esame; Testi di riferimento;

Dettagli

Marco Listanti. Lo strato Fisico. Caratterizzazione dei canali di. comunicazioni digitali. DIET Dept

Marco Listanti. Lo strato Fisico. Caratterizzazione dei canali di. comunicazioni digitali. DIET Dept Marco Listanti Lo strato Fisico Parte 3 Caratterizzazione dei canali di comunicazione e limiti fondamentali delle comunicazioni digitali Canali di comunicazione 2 Per canale di comunicazione si intende

Dettagli

LA TECNICA DI TRASMISSIONE OFDM. Ing. Riccardo Pighi

LA TECNICA DI TRASMISSIONE OFDM. Ing. Riccardo Pighi LA TECNICA DI TRASMISSIONE OFDM Ing. Riccardo Pighi Dipartimento di Ingegneria dell Informazione Università degli Studi di Parma Parma, Venerdì 23 Gennaio 2004 Sommario della presentazione 1. OFDM: introduzione

Dettagli

Laboratorio II, modulo Segnali a tempo discreto (cfr.

Laboratorio II, modulo Segnali a tempo discreto (cfr. Laboratorio II, modulo 2 2012017 Segnali a tempo discreto (cfr. http://wpage.unina.it/verdoliv/tds/appunti/appunti_04.pdf e http://wpage.unina.it/verdoliv/tds/appunti/appunti_0.pdf Luise, Vitetta, D Amico

Dettagli

Teoria dei Segnali. Tema d'esame. Soluzione compito di Teoria dei Segnali

Teoria dei Segnali. Tema d'esame. Soluzione compito di Teoria dei Segnali Soluzione compito di 3/03/00 A cura di Francesco Alesiani Esercizio Si consideri un sistema di comunicazione che può essere modellizzato come la cascata di due canali simmetrici indipendenti con probabilità

Dettagli

Analisi armonica su dati campionati

Analisi armonica su dati campionati Sistemi di misura digitali Analisi armonica su dati campionati - 1 Analisi armonica su dati campionati 1 - Troncamento del segnale Distorsione di leakage L analisi di Fourier è un metodo ben noto per ottenere

Dettagli

Prima prova Intermedia

Prima prova Intermedia Carissimi studenti, scopoo di questa prima prova intermedia è quello di veriicare il vostroo grado di apprendimento sulla prima parte del corso. Il testo della prova vi viene reso disponibile nella serata

Dettagli

Università degli Studi di Enna Kore Facoltà di Ingegneria ed Architettura

Università degli Studi di Enna Kore Facoltà di Ingegneria ed Architettura Facoltà di Ingegneria ed Architettura Anno Accademico 2016 2017 A.A. Settore Scientifico Disciplinare CFU Insegnamento Ore di aula Mutuazione 2016/17 ING-INF/03 9 Teoria dei Segnali 72 No Classe Corso

Dettagli

Teoria dei Segnali IIa Prova Intracorso Prof. Francesco A. N. Palmieri giovedi 22 novembre 2018

Teoria dei Segnali IIa Prova Intracorso Prof. Francesco A. N. Palmieri giovedi 22 novembre 2018 UNIVERSITA DEGLI STUDI DELLA CAMPANIA Luigi Vanvitelli SCUOLA POLITECNICA E DELLE SCIENZE DI BASE Dipartimento di Ingegneria Industriale e dell Informazione Corso di Laurea in Ingegneria Elettronia e Informatica

Dettagli

Anno accademico Presentazione del Corso di Teoria dei Segnali Docente: G.Poggi

Anno accademico Presentazione del Corso di Teoria dei Segnali Docente: G.Poggi Anno accademico 2014-2015 Presentazione del Corso di Teoria dei Segnali Docente: G.Poggi Informazioni generali sul docente E-mail: poggi@unina.it Sito Web: https://www.docenti.unina.it/giovanni.poggi http://wpage.unina.it/verdoliv/tds/

Dettagli

Prof. Carlo Rossi DEIS - Università di Bologna Tel:

Prof. Carlo Rossi DEIS - Università di Bologna Tel: Prof. Carlo Rossi DEIS - Università di Bologna Tel: 051 2093024 email: carlo.rossi@unibo.it Introduzione Il teorema di Shannon, o del campionamento, stabilisce la connessione esistente tra i segnali fisici

Dettagli

Elenco dei simboli 9. Prefazione 10

Elenco dei simboli 9. Prefazione 10 Indice Elenco dei simboli 9 Prefazione 10 1 Analisi nel dominio del tempo 11 1.1 Segnali tempo discreto... 11 1.1.1 Segnali notevoli tempo discreto... 13 1.1.2 Alcuni criteri di classificazione di segnali

Dettagli

In realtà i segnali con i quali dobbiamo confrontarci più frequentemente sono limitati nel tempo

In realtà i segnali con i quali dobbiamo confrontarci più frequentemente sono limitati nel tempo Segnali trattati sino ad ora: continui, durata infinita,.. Su essi sono stati sviluppati strumenti per analizzare output di circuiti e caratteristiche del segnale: Risposta all impulso, prodotto di convoluzione,

Dettagli

MASB AA10/11 21/01/11 test #1 1

MASB AA10/11 21/01/11 test #1 1 MASB 20/06/11 AA20102011test #1. Esercizio 1. Illustrare lo schema generale di un apparecchiatura per l acquisizione di segnali spontanei, descrivendo brevemente i diversi componenti. Fornire una descrizione

Dettagli

INDICE. Capitolo 1 Introduzione 1. Capitolo 2 Rappresentazione di Fourier di segnali e sistemi 19. Capitolo 3 Modulazione d ampiezza 99

INDICE. Capitolo 1 Introduzione 1. Capitolo 2 Rappresentazione di Fourier di segnali e sistemi 19. Capitolo 3 Modulazione d ampiezza 99 INDICE Capitolo 1 Introduzione 1 1.1 Inquadramento storico 1 1.2 Applicazioni 4 1.3 Risorse principali e requisiti operativi 13 1.4 Teorie alla base dei sistemi di comunicazione 14 1.5 Osservazioni conclusive

Dettagli

Teoria dei Segnali Discrete Fourier Transform (DFT) e Fast Fourier Transform (FFT); filtri tempo-continui

Teoria dei Segnali Discrete Fourier Transform (DFT) e Fast Fourier Transform (FFT); filtri tempo-continui Teoria dei Segnali Discrete Fourier Transform (DFT) e Fast Fourier Transform (FFT); filtri tempo-continui Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it

Dettagli

Prof. Carlo Rossi DEIS - Università di Bologna Tel:

Prof. Carlo Rossi DEIS - Università di Bologna Tel: Prof. Carlo Rossi DEIS - Università di Bologna Tel: 051 2093020 email: carlo.rossi@unibo.it Sistemi Tempo-Discreti In questi sistemi i segnali hanno come base l insieme dei numeri interi: sono sequenze

Dettagli

Elaborazione numerica dei segnali: analisi delle caratteristiche dei segnali ed operazioni su di essi. Mauro Biagi

Elaborazione numerica dei segnali: analisi delle caratteristiche dei segnali ed operazioni su di essi. Mauro Biagi Elaborazione numerica dei segnali: analisi delle caratteristiche dei segnali ed operazioni su di essi Mauro Biagi Outline Dall analogico al digitale Quantizzazione dell inormazione Trasormate di Fourier

Dettagli

Teoria dei Segnali Densità spettrale di energia e di potenza; campionamento e teorema di Shannon

Teoria dei Segnali Densità spettrale di energia e di potenza; campionamento e teorema di Shannon Teoria dei Segnali Densità spettrale di energia e di potenza; campionamento e teorema di Shannon Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Teoria

Dettagli

Circuiti a tempo discreto Raffaele Parisi

Circuiti a tempo discreto Raffaele Parisi Università di Roma La Sapienza Laurea specialistica in Ingegneria Elettronica Circuiti a tempo discreto Raffaele Parisi : Risposta in frequenza dei circuiti TD Rappresentazione nel dominio della frequenza,

Dettagli

Conversione Analogico/Digitale

Conversione Analogico/Digitale Conversione Analogico/Digitale 1 Fondamenti di Segnali e Trasmissione Conversione analogico/digitale (A/D) Per rappresentare numericamente un segnale continuo nel tempo e nelle ampiezze è necessario: Campionare

Dettagli

COMUNICAZIONI ELETTRICHE

COMUNICAZIONI ELETTRICHE COMUNICAZIONI ELERICHE Diploma Universitario Ingegneria Elettronica - Ingegneria Inormatica ESERCIZIO : Si consideri il sistema mostrato in igura. Il iltro ha risposta in requenza H() = j segn (), dove

Dettagli

Ingegneria Informatica. Prof. Claudio Melchiorri DEIS-Università di Bologna Tel

Ingegneria Informatica. Prof. Claudio Melchiorri DEIS-Università di Bologna Tel CONTROLLI AUTOMATICI LS Ingegneria Informatica Sistemi a Dati Campionati Prof. DEIS-Università di Bologna Tel. 51 29334 e-mail: claudio.melchiorri@unibo.it http://www-lar lar.deis.unibo.it/people/cmelchiorri

Dettagli

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Il teorema di Shannon

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Il teorema di Shannon INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Il teorema di Shannon Prof. Carlo Rossi DEIS - Università di Bologna Tel: 051 2093024 email: crossi@deis.unibo.it Introduzione Il teorema di Shannon, o

Dettagli

Anno accademico

Anno accademico Anno accademico 2017-2018 Docente: prof. Claudio Sacchi INTRODUZIONE AL CORSO Obbiettivi del corso; Programma del corso; Modalità di esame; Testi di riferimento; Reperibilità docente 2 u Fornire agli studenti

Dettagli

4. Si supponga che il tempo impiegato da una lettera spedita dall Italia per arrivare a destinazione segua una distribuzione normale con media

4. Si supponga che il tempo impiegato da una lettera spedita dall Italia per arrivare a destinazione segua una distribuzione normale con media Esercizi sulle distribuzioni, il teorema limite centrale e la stima puntuale Corso di Probabilità e Inferenza Statistica, anno 007-008, Prof. Mortera 1. Sia X la durata in mesi di una valvola per radio.

Dettagli

Teoria dei Segnali Trasmissione binaria casuale; somma di processi stocastici

Teoria dei Segnali Trasmissione binaria casuale; somma di processi stocastici eoria dei Segnali rasmissione binaria casuale; somma di processi stocastici Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it eoria dei Segnali rasmissione

Dettagli

ELABORAZIONE NUMERICA DEI SEGNALI. E. Del Re Elaborazione Numerica dei segnali 1

ELABORAZIONE NUMERICA DEI SEGNALI. E. Del Re Elaborazione Numerica dei segnali 1 ELABORAZIONE NUMERICA DEI SEGNALI E. Del Re Elaborazione Numerica dei segnali 1 DIGITALIZZAZIONE DEI SEGNALI E. Del Re Elaborazione Numerica dei segnali 2 DIGITALIZZAZIONE DEI SEGNALI Conversione analogico

Dettagli

Teoria dei Segnali. 1 Proprietà della trasformata di Fourier. correlazione tra segnali; autocorrelazione

Teoria dei Segnali. 1 Proprietà della trasformata di Fourier. correlazione tra segnali; autocorrelazione Teoria dei Segnali Proprietà della trasformata di Fourier; correlazione tra segnali; autocorrelazione Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it

Dettagli

Trasformata di Fourier

Trasformata di Fourier Trasformata di Fourier Ø Risposta impulsiva e integrale di convoluzione Ø Rappresentazione di segnali nel tempo e in frequenza Ø Filtri idealmente e fisicamente realizzabili, stabilità Ø Trasformazioni

Dettagli

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08 Alberto Perotti, Roberto Garello DELEN-DAUIN Processi casuali Sono modelli probabilistici

Dettagli

FONDAMENTI DI SEGNALI E TRASMISSIONE 4 Laboratorio

FONDAMENTI DI SEGNALI E TRASMISSIONE 4 Laboratorio FONDAMENTI DI SEGNALI E TRASMISSIONE 4 Laboratorio Paolo Mazzucchelli mazzucch@elet.polimi.it MATLAB: generazione di numeri casuali Il comando che permette di generare una matrice (n r,n c ) composta da

Dettagli

Cap. 3. PROCESSI RAPPRESENTATI TRAMITE SERIE TEMPORALI

Cap. 3. PROCESSI RAPPRESENTATI TRAMITE SERIE TEMPORALI Cap. 3. PROCESSI RAPPRESENTATI TRAMITE SERIE TEMPORALI 3.1. PROCESSI REALI CON FATTORI ALEATORI Sovente si hanno processi rappresentati tramite una serie temporale infinita di segnali di energia noti,

Dettagli

PROCESSI CASUALI 1 Fondamenti di segnf a o lin d e a t m ra e s n mtii s T si L o C ne

PROCESSI CASUALI 1 Fondamenti di segnf a o lin d e a t m ra e s n mtii s T si L o C ne PROCESSI CASUALI Fondamenti di segnali Fondamenti e trasmissione TLC Segnali deterministici Un segnale (t) si dice deterministico se è una funzione nota di t, cioè se ad un qualsiasi istante di tempo t

Dettagli

3. Sistemi Lineari a Tempo Discreto

3. Sistemi Lineari a Tempo Discreto . Sistemi Lineari a Tempo Discreto .5 y(t), y(kt) 4 y(t), y(kt).5.5.5.5.5 4 5 4 5 Campionamento di un segnale continuo Fig. (a) Segnale discreto Fig. (b) Esprimono relazioni fra variabili campionate ad

Dettagli

MASB AA10/11 21/01/11 test #1 1

MASB AA10/11 21/01/11 test #1 1 MASB 20/06/11 AA20102011test #1. Esercizio 1. Illustrare lo schema generale di un apparecchiatura per l acquisizione di segnali spontanei, descrivendo brevemente i diversi componenti. Fornire una descrizione

Dettagli

6. Trasmissione Numerica in Banda Base

6. Trasmissione Numerica in Banda Base 1 INFO-COM Dpt. Dipartimento di Scienza e Tecnica dell Informazione e della Comunicazione Università degli Studi di Roma La Sapienza 6. Trasmissione Numerica in Banda Base TELECOMUNICAZIONI per Ingegneria

Dettagli

Formule di Teoria dei Segnali

Formule di Teoria dei Segnali Formule di trigonometria Formule di eoria dei Segnali L.Verdoliva cos(α + β = cos α cos β sin α sin β sin(α + β = sin α cos β + sin β cos α cos α = + cos α sin α = cos α sin α = sin α cos α cos α = cos

Dettagli

8. Sistemi di Modulazione Numerica in banda-base. Modulo TLC:TRASMISSIONI Modulazione numerica in banda base

8. Sistemi di Modulazione Numerica in banda-base. Modulo TLC:TRASMISSIONI Modulazione numerica in banda base 1 8. Sistemi di Modulazione Numerica in banda-base Modulazione e Demodulazione numerica 2 sequenza numerica segnale analogico...0010111001... modulatore numerico x(t) sequenza numerica...0010011001...

Dettagli

che coinciderà con la (2) se g[n] = g (n ), condizione verificata dal teorema di Poisson.

che coinciderà con la (2) se g[n] = g (n ), condizione verificata dal teorema di Poisson. La simulazione di sistemi analogici LTI per via digitale si è resa necessaria in quanto permette non solo la perfetta riproducibilità del fenomeno da studiare in situazioni ambientali anche molto diverse,

Dettagli

01CXGBN Trasmissione numerica. parte 10: Interferenza intersimbolica

01CXGBN Trasmissione numerica. parte 10: Interferenza intersimbolica CXGBN rasmissione numerica parte : Interferenza intersimbolica Interferenza intersimbolica Data una costellazione monodimensionale, ad esempio con baricentro nell origine, abbiamo visto che lo spettro

Dettagli

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Il teorema di Shannon. Il teorema di Shannon

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Il teorema di Shannon. Il teorema di Shannon INGEGNERIA E ECNOLOGIE DEI SISEMI DI CONROLLO Prof. Carlo Rossi DEIS - Università di Bologna el: 5 934 email: crossi@deis.unibo.it Introduzione, o del campionamento, stabilisce la connessione esistente

Dettagli

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI 1 Fondamenti di segnali Fondamenti e trasmissione TLC Introduzione Se il segnale d ingresso di un sistema Lineare Tempo-Invariante (LTI e un esponenziale

Dettagli

1) Entropia di variabili aleatorie continue. 2) Esempi di variabili aleatorie continue. 3) Canali di comunicazione continui. 4) Canale Gaussiano

1) Entropia di variabili aleatorie continue. 2) Esempi di variabili aleatorie continue. 3) Canali di comunicazione continui. 4) Canale Gaussiano Argomenti della Lezione 1) Entropia di variabili aleatorie continue ) Esempi di variabili aleatorie continue 3) Canali di comunicazione continui 4) Canale Gaussiano 5) Limite di Shannon 1 Entropia di una

Dettagli

Esercitazione ENS su processi casuali (13 e 14 Maggio 2008)

Esercitazione ENS su processi casuali (13 e 14 Maggio 2008) Esercitazione ES su processi casuali ( e 4 Maggio 2008) D. Donno Esercizio : Calcolo di autovalori e autovettori Si consideri un processo x n somma di un segnale e un disturbo: x n = Ae π 2 n + w n, n

Dettagli

QUANTIZZAZIONE E CONVERSIONE IN FORMA NUMERICA

QUANTIZZAZIONE E CONVERSIONE IN FORMA NUMERICA QUANTIZZAZIONE E CONVERSIONE IN FORMA NUMERICA 1 Fondamenti di segnali Fondamenti e trasmissione TLC Campionamento e quantizzazione di un segnale analogico Si consideri il segnale x(t) campionato con passo

Dettagli

DIPARTIMENTO DI INGEGNERIA DELL INFORMAZIONE

DIPARTIMENTO DI INGEGNERIA DELL INFORMAZIONE U N I V E R S I T À D E G L I S T U D I D I P I S A DIPARTIMENTO DI INGEGNERIA DELL INFORMAZIONE Cmunicazini numeriche Esercizi su sistemi di variabili aleatrie-e sui prcessi stcastici Sistemi di variabili

Dettagli

FONDAMENTI DI SEGNALI E TRASMISSIONE 4 Laboratorio

FONDAMENTI DI SEGNALI E TRASMISSIONE 4 Laboratorio FONDAMENTI DI SEGNALI E TRASMISSIONE 4 Laboratorio Paolo Mazzucchelli mazzucch@elet.polimi.it Campionamento di segnali In MATLAB, qualunque segnale continuo è approssimato da una sequenza campionata. Si

Dettagli

INDICE Esempi di segnali determinati: periodici e di energia Esempio di segnale aleatorio...4

INDICE Esempi di segnali determinati: periodici e di energia Esempio di segnale aleatorio...4 INDICE 1 Introduzione: definizione e classificazione dei segnali... 1 1.1 Introduzione all elaborazione numerica dei segnali... 1 1.2 Classificazione dei segnali... 2 1.2.1 Esempi di segnali determinati:

Dettagli