Analisi armonica su dati campionati

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Analisi armonica su dati campionati"

Transcript

1 Sistemi di misura digitali Analisi armonica su dati campionati - 1 Analisi armonica su dati campionati 1 - Troncamento del segnale Distorsione di leakage L analisi di Fourier è un metodo ben noto per ottenere informazioni sullo spettro di un segnale e può essere impiegata anche su segnali campionati. Tuttavia occorre soffermarci su alcuni aspetti particolari e mettere in evidenza alcune considerazioni importanti. Si è già visto che l analisi di Fourier si applica formalmente a segnali di durata infinitamente estesa e pertanto anche la sequenza dei campioni che rappresenta il segnale in forma discreta dovrà essere teoricamente di lunghezza infinita. Tale ipotesi non è realizzabile nella pratica, tuttavia può essere approssimata quando si tratti di segnali di durata molto estesa rispetto all intervallo di campionamento. In generale, con riferimento a un processo di campionamento reale, la sequenza dei campioni avrà necessariamente un inizio e una fine, e pertanto il numero dei campioni a disposizione sarà in numero finito. Per esaminare il problema è utile considerare il segnale di durata limitata come una porzione del segnale generico s(t), prelevata attraverso una opportuna finestra temporale w(t) (window), detta anche finestra di troncamento o di osservazione. L effetto del troncamento sul segnale si può rappresentare nel seguente modo: s w ( t) = s( t) w( t) (1.1) La trasformata di Fourier del segnale troncato risulta dalla convoluzione degli spettri: S w ( f ) = S( f ) W ( f ) (1.2) La convoluzione della trasformata S(f) del segnale con la trasformata W(f) della finestra di troncamento introduce un nuovo tipo di distorsione, detta di dispersione (leakage). In pratica se lo spettro del segnale originario S(f) contiene delle transizioni nette, ad esempio componenti armoniche impulsive come nel caso di un segnale periodico nel tempo, tali transizioni vengono smussate e lo spettro del segnale periodico troncato si disperde in frequenza, tanto più quanto più è stretta la finestra di troncamento. Si consideri, per fissare le idee, un segnale sinusoidale s(t) di frequenza f che presenta uno spettro costituito da due impulsi a frequenza ±f. In presenza di troncamento con una finestra rettangolare w(t) di durata T w, la convoluzione degli impulsi in frequenza con la funzione W(f)=sin(x)/x, produce l effetto rappresentato in Fig.1.1. L entità della dispersione in frequenza dipende dalla durata T w della finestra di osservazione e dal suo andamento temporale. In particolare l andamento nel tempo della finestra di troncamento determina l ampiezza dei lobi laterali della dispersione e risulta quindi direttamente responsabile della accuratezza con cui viene stimato lo spettro del segnale

2 Sistemi di misura digitali Analisi armonica su dati campionati - 2 troncato. Sotto questo aspetto, concreti vantaggi possono essere ottenuti utilizzando finestre temporali non rettangolari, ma con transizione più graduale delle estremità (smoothing windows). Tali finestre infatti sono caratterizzate da spettri con lobi laterali meno pronunciati. Fig Dispersione dello spettro per un segnale sinusoidale troncato. Segnale campionato e troncato Si consideri ora il campionamento di un segnale troncato, osservato attraverso la finestra rettangolare w(t) di durata T w =NT c, essendo N il numero di impulsi considerati e T c l intervallo di campionamento. In tale ipotesi il segnale campionato e troncato sarà individuato dai campioni: s( itc ) ( i =,1, 2,..., ) (1.3) e può essere analiticamente rappresentato nella forma (vedi Fig.1.2): N 1 c, w( t) = s( itc ) δ( t itc ) s (1.4) La trasformata di Fourier della sequenza di campioni risulta, applicando la proprietà di traslazione nel tempo: S j2π f it c c, w ( f ) = s( itc ) e (1.5) Questa espressione costituisce un altro modo di rappresentare lo spettro a repliche di un segnale campionato. Tale spettro può essere inteso come una serie di funzioni esponenziali, nel dominio della frequenza, pesate con le ampiezze dei vari campioni. Fig Segnale campionato e troncato.

3 Sistemi di misura digitali Analisi armonica su dati campionati - 3 Si osserva che lo spettro del segnale campionato e troncato risulta ancora una funzione continua nella frequenza (Fig.1.2), formata da repliche dello spettro in banda base. Tuttavia a causa del troncamento del segnale nel tempo, sarà in generale presente nello spettro in banda base una distorsione più o meno pronunciata di leakage. In conseguenza di questo fatto nascerà anche una distorsione di aliasing nel replicare lo spettro. Si vedano in Fig.1.2 le code delle repliche in S c,w (f). 2 - Analisi per segnali periodici campionati e troncati Trasformata discreta di Fourier (DFT) Dal punto di vista della conoscenza dell informazione sullo spettro di un segnale campionato e troncato (quindi caratterizzato da N numeri) sarebbe strettamente sufficiente conoscere l andamento dello spettro solo nell intervallo di ripetizione in frequenza ( f c ). La trasformata discreta di Fourier (Discrete Fourier Transform, DFT) consente di valutare il contenuto armonico in tale intervallo mediante un numero N di componenti discrete. Il passaggio a una rappresentazione discreta dello spettro risulta concettualmente semplice, osservando che la sequenza finita di N campioni nel tempo può essere considerata appartenente a una successione di sequenze di periodo T w =NT c che si ripetono indefinitamente dando luogo a un segnale periodico s c,p (t) con frequenza f w =1/T w (Fig.2.1). Lo spettro S c,p (f) della sequenza di campioni replicata nel tempo con periodo T w, risulta allora uno spettro a righe, spaziate di f w =1/T w. La ripetizione dello spettro in frequenza dipende dal campionamento nel tempo, così come il campionamento in frequenza è dovuto alla periodicità del segnale nel tempo. Il legame di trasformazione fra i campioni nel tempo s i =s(it c ) e i campioni in frequenza S k =S(kf w ) è dato dalla trasformata discreta diretta e inversa di Fourier. Fig Corrispondenza fra sequenze nel tempo e nella frequenza. Poichè le trasformazioni discrete di Fourier (diretta e inversa) coinvolgono solo campioni (sia nel dominio del tempo che della frequenza) vengono definite in forma normalizzata rispetto a

4 Sistemi di misura digitali Analisi armonica su dati campionati - 4 variabili indipendenti di tipo adimensionale: pertanto la variabile tempo diventa l indice i, mentre la variabile frequenza diventa l indice k. La definizione delle componenti armoniche a frequenze multiple di f w, cioè multiple di f c /N, è la seguente: S k = 2π j k i j2π k f f w itc N c s( itc ) e = s( itc ) e con fw = (2.1) N In pratica, di tutte le possibili armoniche di ordine k, solo le prime N/2 sono significative e portano informazione (le successive N/2 risultano speculari rispetto alla frequenza di folding f c /2 e coniugate). Spesso si definisce, per comodità, l operatore: W = 2π j N e Quindi la trasformata discreta di Fourier (DFT) risulta, in forma compatta: k i Sk = si W ( k =,1, 2,... ) In modo analogo viene definita la trasformata inversa (IDFT): (2.2) (2.3) N 1 1 = k i si Sk W ( i =,1, 2,... ) (2.4) N = k Si osservi infine che taluni Autori adottano altre definizioni per la trasformazione diretta e inversa, per esempio scambiando il segno meno all esponente di W oppure scambiando in fattore 1/N, fra le due definizioni. Ciò non cambia il senso della trasformazione. Utilizzando la tipica struttura di queste relazioni sono stati messi a punto algoritmi efficienti per il calcolo veloce delle diverse componenti armoniche. Qualora il numero di campioni risulti una potenza di due, gli algoritmi FFT (Fast Fourier Transform) risultano particolarmente utili e sono ormai consolidati nell analisi armonica dei segnali tramite elaboratore o microprocessori dedicati. DFT di segnali periodici I segnali periodici sono di particolare interesse pratico. In tali casi, l analisi armonica mediante DFT richiede una certa cautela, soprattutto in relazione alla scelta della finestra di troncamento e al fatto che la frequenza di campionamento sia o meno sincronizzata con la frequenza fondamentale del segnale da analizzare. Per comprendere tali aspetti, si consideri, come esempio, un segnale sinusoidale di frequenza f e si supponga che venga campionato alla frequenza f c sufficiente a garantire il rispetto del teorema del campionamento. Riferendosi alla Fig.2.2, si possono sottolineare le seguenti relazioni generali: la finestra di osservazione T w contiene un numero m di periodi T del segnale da analizzare: T w = mt (dove m può essere intero o frazionario); detto N il numero totale di campioni che cadono in tale finestra, la frequenza di campionamento risulta f c = Nf w = Nf /m. Per il caso particolare rappresentato nella Fig.2.2 si verifica facilmente che: m=6 è intero e pertanto T w = 6T ; N=24 e pertanto f c = 24f w = 4f.

5 Sistemi di misura digitali Analisi armonica su dati campionati - 5 In tal caso, ripetere la finestra di osservazione T w indefinitamente nel tempo, significa riprodurre in forma esatta la funzione periodica. Fig Spettro di una sinusoide campionata e troncata: T w = 6T e T = 4T c. E infatti il calcolo della DFT per le diverse componenti kf w fornisce componenti tutte nulle tranne proprio l unica componente armonica effettivamente presente alla frequenza f = 6f w, come rappresentato nello spettro di Fig.2.2. Si consideri ora un secondo esempio, rappresentato in Fig.2.3, dove la finestra di osservazione T w non risulta un multiplo intero m del periodo T e sia T w = 6,5T, quindi f = 6,5f w. Fig Spettro di una sinusoide campionata e troncata: T w = 6,5T e T = (24/6,5)T c. Per agevolare il confronto dei due esempi, la durata di osservazione T w è stata assunta uguale nei due casi, pertanto risultano anche uguali gli step f w nel dominio della frequenza. Supponiamo inoltre che nel tempo T w si prelevino ancora N=24 campioni, allora la frequenza di campionamento risulta: f c = 24f w = (24/6,5)f = 3,692f. In pratica, con le ipotesi fatte, la frequenza di campionamento f c è uguale a quella del caso precedente, ma è cambiato il suo rapporto con la frequenza f del segnale sinusoidale. In questo caso, la ripetizione nel tempo del segnale campionato e troncato non riprodurrà esattamente la funzione periodica originaria, con una conseguente distorsione nello spettro. Questo fatto trova riscontro nella DFT, che evidenzierà, in tal caso, componenti armoniche non presenti nello spettro del segnale periodico originario, come si vede in Fig.2.3. Per concludere l analisi di questo esempio, si consideri ora la Fig.2.4. La finestra di osservazione ha ancora durata T w mentre vengono prelevati N=26 campioni. In tal caso, la frequenza di campionamento è f c = 26f w = (26/6,5)f = 4f ma le cose non cambiano, con riferimento alla dispersione delle righe spettrali, come si osserva nella Fig.2.4.

6 Sistemi di misura digitali Analisi armonica su dati campionati - 6 Dall esame dei semplici casi riportati, si conclude che, per una corretta analisi armonica di segnali periodici mediante DFT, riveste particolare importanza la scelta della finestra di troncamento e il fatto che la frequenza di campionamento sia sincronizzata con la frequenza fondamentale del segnale da analizzare. Fig Spettro di una sinusoide campionata e troncata: T w = 6,5T e T = (26/6,5)T c. Qualora non si riesca a rendere la finestra di osservazione esattamente multipla del periodo del segnale, un modo per limitare l inconveniente può essere quello di impiegare finestre molto ampie rispetto al periodo della fondamentale e soprattutto del tipo con transizione graduale delle estremità (smoothing windows). Infine, per concludere, si deve tenere presente che: Il concetto di armoniche si riferisce a condizioni di regime; quindi il segnale deve essere stazionario, per ottenere risultati accurati nell uso della DFT. La forma d onda non deve contenere frequenze interarmoniche, cioè componenti con frequenze che non sono multipli interi della frequenza fondamentale.

In realtà i segnali con i quali dobbiamo confrontarci più frequentemente sono limitati nel tempo

In realtà i segnali con i quali dobbiamo confrontarci più frequentemente sono limitati nel tempo Segnali trattati sino ad ora: continui, durata infinita,.. Su essi sono stati sviluppati strumenti per analizzare output di circuiti e caratteristiche del segnale: Risposta all impulso, prodotto di convoluzione,

Dettagli

SEGNALI STAZIONARI: ANALISI SPETTRALE

SEGNALI STAZIONARI: ANALISI SPETTRALE SEGNALI STAZIONARI: ANALISI SPETTRALE Analisi spettrale: rappresentazione delle componenti in frequenza di un segnale (ampiezza vs. frequenza). Fornisce maggiori dettagli rispetto all analisi temporale

Dettagli

CAMPIONAMENTO E RICOSTRUZIONE DI SEGNALI

CAMPIONAMENTO E RICOSTRUZIONE DI SEGNALI CAMPIONAMENTO E RICOSTRUZIONE DI SEGNALI 1 Fondamenti di segnali Fondamenti e trasmissione TLC Segnali in formato numerico Nei moderni sistemi di memorizzazione e trasmissione i segnali in ingresso sono

Dettagli

ANALISI SPETTRALE NUMERICA (Aspetti di misura)

ANALISI SPETTRALE NUMERICA (Aspetti di misura) ANALISI SPETTRALE NUMERICA (Aspetti di misura) ARGOMENTI Problemi di misura con la FFT Aliasing Spectral leakage (dispersione spettrale) Funzioni finestra Uso e importanza Caratteristiche Ricadute positive

Dettagli

Analisi di segnali campionati

Analisi di segnali campionati Analisi nel dominio della frequenza Analisi di segnali ampionati - 1 Analisi di segnali ampionati 1 Analisi dei segnali nel dominio della frequenza I prinipali metodi di analisi dei segnali di misura possono

Dettagli

Edoardo Milotti - Metodi di trattamento del segnale 1

Edoardo Milotti - Metodi di trattamento del segnale 1 Edoardo Milotti - Metodi di trattamento del segnale 1 Consideriamo un certo processo di campionamento in cui si prendono N campioni con intervallo di campionamento Δt: in questo caso il tempo di campionamento

Dettagli

La Trasformata di Fourier Discreta. e sue applicazioni

La Trasformata di Fourier Discreta. e sue applicazioni Prof. Lucio Cadeddu Giorgia Tranquilli Università degli Studi di Cagliari Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica La Trasformata di Fourier Discreta e sue applicazioni Relatore: Tesi

Dettagli

CONTROLLI AUTOMATICI Ingegneria Gestionale ANALISI ARMONICA

CONTROLLI AUTOMATICI Ingegneria Gestionale  ANALISI ARMONICA CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI ARMONICA Ing. Federica Grossi Tel. 059 2056333 e-mail: [email protected]

Dettagli

Dispense del corso di Elettronica L Prof. Guido Masetti

Dispense del corso di Elettronica L Prof. Guido Masetti Dispense del corso di Elettronica L Prof. Guido Masetti Teoria dei Segnali e Sistemi Sommario Architettura dei sistemi per l'elaborazione dell'informazione Informazione e segnali Teoria dei segnali Analisi

Dettagli

I Segnali nella comunicazione

I Segnali nella comunicazione I Segnali nella comunicazione Nella lingua italiana il termine segnale indica una convenzione, la cui unzione è quella di comunicare qualcosa ( segnale di Partenza, segnale di aiuto, segnale stradale ecc.).

Dettagli

CANALE STAZIONARIO CANALE TEMPO INVARIANTE

CANALE STAZIONARIO CANALE TEMPO INVARIANTE CANALE STAZIONARIO Si parla di un Canale Stazionario quando i fenomeni che avvengono possono essere modellati da processi casuali e le proprietà statistiche di tali processi sono indipendenti dal tempo.

Dettagli

Campionamento ideale e segnali a banda limitata campionamento la ricostruzione perfetta di un segnale analogico banda limitata

Campionamento ideale e segnali a banda limitata campionamento la ricostruzione perfetta di un segnale analogico banda limitata Campionamento ideale e segnali a banda limitata Il campionamento di una grandezza analogica è ottimale se non comporta perdita di informazioni, ovvero se è possibile ricostruire perfettamente la grandezza

Dettagli

ANALISI ARMONICA. G(s) Analisi armonica. Funzione di risposta armonica

ANALISI ARMONICA. G(s) Analisi armonica. Funzione di risposta armonica CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI ARMONICA Analisi

Dettagli

Richiami teorici sull analisi del segnale

Richiami teorici sull analisi del segnale 7 6 5 4 3 2 9 8 7 6 5 4 3 2 Richiami teorici sull analisi del segnale Trasformata discreta di Fourier DFT viene impiegata per analizzare segnali discreti (tipicamente provenienti da un operazione di campionamento)

Dettagli

CAMPIONAMENTO E RICOSTRUZIONE. Y(f) Y(f-15) Y(f+15) f[hz] Yc(f) Y(f) Y(f-17.5) Y(f+17.5) Yc(f) Esercizio 1

CAMPIONAMENTO E RICOSTRUZIONE. Y(f) Y(f-15) Y(f+15) f[hz] Yc(f) Y(f) Y(f-17.5) Y(f+17.5) Yc(f) Esercizio 1 CAMPIONAMENTO E RICOSTRUZIONE Esercizio 1 Dato il segnale y(t), con trasformata di Fourier Y(f) rappresentata in figura, rappresentare lo spettro del segnale ottenuto campionando idealmente y(t) con a)

Dettagli

Gianfranco Cariolaro, Gianfranco Pierobon, Giancarlo Calvagno Segnali e sistemi Indice analitico

Gianfranco Cariolaro, Gianfranco Pierobon, Giancarlo Calvagno Segnali e sistemi Indice analitico Gianfranco Cariolaro, Gianfranco Pierobon, Giancarlo Calvagno Segnali e sistemi Indice analitico Copyright The McGraw-Hill Companies srl A aliasing, 443 fenomeno dell, 424f AMI, codificatore, 315 analiticità

Dettagli

Campionamento e quantizzazione

Campionamento e quantizzazione Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Campionamento e quantizzazione A.A. 2008-09 Alberto Perotti DELEN-DAUIN Conversione analogico-digitale L elaborazione

Dettagli

Teoria dei Segnali Densità spettrale di energia e di potenza; campionamento e teorema di Shannon

Teoria dei Segnali Densità spettrale di energia e di potenza; campionamento e teorema di Shannon Teoria dei Segnali Densità spettrale di energia e di potenza; campionamento e teorema di Shannon Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano [email protected] Teoria

Dettagli

Esercitazione: Elaborazione Numerica di Segnali Tempovarianti

Esercitazione: Elaborazione Numerica di Segnali Tempovarianti Laboratorio di Misura delle Vibrazioni Anno Accademico 215-16 Esercitazione: Elaborazione Numerica di Segnali Tempovarianti 1) Algebra complessa in Excel Excel consente di eseguire calcoli anche con valori

Dettagli

ANALISI DI SEGNALI TEMPO VARIANTI

ANALISI DI SEGNALI TEMPO VARIANTI ANALISI DI SEGNALI TEMPO VARIANTI Nel corso di questa esercitazione verrà illustrato come utilizzare Excel per eseguire la FFT di un segnale. Algebra complessa Excel consente di eseguire calcoli anche

Dettagli

Ascoltare Fourier. Segnali audio. ω o. θ è l angolo di fase

Ascoltare Fourier. Segnali audio. ω o. θ è l angolo di fase Ascoltare Fourier Jean Baptiste Joseph Fourier 1768 Auxerre 1830 Parigi Matematico francese, partecipò alla rivoluzione francese e seguì Napoleone in Egitto come membro della spedizione scientifica. Studiò

Dettagli

La Trasformata di Fourier

La Trasformata di Fourier La Trasformata di Fourier Preliminari: Spazi di Hilbert Da Wikipedia In matematica uno spazio di Hilbert è uno spazio vettoriale che generalizza la nozione di spazio euclideo. Gli spazi di Hilbert sono

Dettagli

Conversione analogico-digitale

Conversione analogico-digitale Conversione analogico-digitale Vantaggi dell'elaborazione digitale: -Minore sensibilità ai disturbi- bassa incertezza con costi relativamente contenuti-maggiore versatilità-compatibilità intrinseca con

Dettagli

Analizzatore di spettro. Generalità sull analisi spettrale. Analizzatori a scansione. Analizzatori a doppia conversione. Analizzatore di spettro

Analizzatore di spettro. Generalità sull analisi spettrale. Analizzatori a scansione. Analizzatori a doppia conversione. Analizzatore di spettro Analizzatore di spettro Analizzatore di spettro Analizzatori a scansione Analizzatori a doppia conversione 2 2006 Politecnico di Torino 1 Obiettivi della lezione Metodologici come eseguire l analisi spettrale

Dettagli

SEGNALE ANALOGICO. Un segnale analogico ha un ampiezza che varia in maniera continua nel tempo

SEGNALE ANALOGICO. Un segnale analogico ha un ampiezza che varia in maniera continua nel tempo ACQUISIZIONE SEGNALE ANALOGICO 6 5 4 3 2 t Un segnale analogico ha un ampiezza che varia in maniera continua nel tempo CONVERTITORE A/D Dispositivo che realizza la conversione tra i valori analogici del

Dettagli

Introduzione al Campionamento e

Introduzione al Campionamento e Introduzione al Campionamento e all analisi analisi in frequenza Presentazione basata sul Cap.V di Introduction of Engineering Experimentation, A.J.Wheeler, A.R.Ganj, Prentice Hall Campionamento L'utilizzo

Dettagli

Audio Digitale. Cenni sulle onde. Multimedia 1

Audio Digitale. Cenni sulle onde. Multimedia 1 Audio Digitale Cenni sulle onde 1 Suono e Audio Il suono è un insieme di onde meccaniche longitudinali. L oggetto che origina il suono produce una vibrazione che si propaga attraverso un mezzo modificando

Dettagli

08. Analisi armonica. Controlli Automatici

08. Analisi armonica. Controlli Automatici 8. Analisi armonica Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Alessio Levratti ARSControl - DISMI - Università di Modena e Reggio Emilia E-mail: {nome.cognome}@unimore.it http://www.arscontrol.org/teaching

Dettagli

06. Analisi Armonica. Controlli Automatici. Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti

06. Analisi Armonica. Controlli Automatici. Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti Controlli Automatici 6. Analisi Armonica Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti ARSControl - DISMI - Università di Modena e Reggio Emilia E-mail: {nome.cognome}@unimore.it http://www.arscontrol.org/teaching

Dettagli

Comunicazioni Elettriche II

Comunicazioni Elettriche II Comunicazioni Elettriche II Laurea Magistrale in Ingegneria Elettronica Università di Roma La Sapienza A.A. 2017-2018 Orthogonal Frequency Division Multiplexing OFDM Orthogonal Frequency Division Multiplexing

Dettagli

Teoria dei Segnali Quantizzazione dei segnali; trasformata zeta

Teoria dei Segnali Quantizzazione dei segnali; trasformata zeta Teoria dei Segnali Quantizzazione dei segnali; trasformata zeta Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano [email protected] Teoria dei Segnali Quantizzazione;

Dettagli

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI 1 Fondamenti di segnali Fondamenti e trasmissione TLC Introduzione Se il segnale d ingresso di un sistema Lineare Tempo-Invariante (LTI e un esponenziale

Dettagli

Il tema proposto può essere risolto seguendo due ipotesi:

Il tema proposto può essere risolto seguendo due ipotesi: Per la trattazione delle tecniche TDM, PM e Trasmissione dati si rimanda alle schede 41, 42, 43, 44, 45, 46, 47 e 48 del libro Le Telecomunicazioni del Prof. F. Dell Aquila. Il tema proposto può essere

Dettagli

2.2.5 Approssimazione di un segnale in una base biortogonale (segnali rettangolari) Esercizi proposti... 46

2.2.5 Approssimazione di un segnale in una base biortogonale (segnali rettangolari) Esercizi proposti... 46 Indice 1 Operazioni elementari, convoluzione, correlazione 1 1.1 Operazioni elementari........................ 1 1.1.1 Ribaltamento, traslazione, scalatura............ 1 1.2 Convoluzione.............................

Dettagli

CALCOLO NUMERICO. Rappresentazione virgola mobile (Floating Point)

CALCOLO NUMERICO. Rappresentazione virgola mobile (Floating Point) ASA Marzo Docente Salvatore Mosaico Introduzione al Calcolo Numerico (parte ) CALCOLO NUMERICO Obiettivo del calcolo numerico è quello di fornire algoritmi numerici che, con un numero finito di operazioni

Dettagli

CORSO%DI%% A.A.% % Sezione%03c% SPETTRO ACUSTICO FISICA%TECNICA%AMBIENTALE%

CORSO%DI%% A.A.% % Sezione%03c% SPETTRO ACUSTICO FISICA%TECNICA%AMBIENTALE% 1 CORSO%DI%% FISICA%TECNICA%AMBIENTALE% A.A.%201352014% Sezione%03c%!! Prof. Ing. Sergio Montelpare! Dipartimento INGEO! Università G. d Annunzio Chieti-Pescara" 2 Le caratteristiche fondamentali del suono"

Dettagli

Analisi dei segnali nel dominio delle frequenze 21/12/2006 11/01/2007

Analisi dei segnali nel dominio delle frequenze 21/12/2006 11/01/2007 Analisi dei segnali nel dominio delle frequenze 2/2/26 //27 INDICE 2 Indice Esercizio Serie di Fourier 3 2 Trasformata di Fourier 3 3 Esercizio Trasformata di Fourier 6 4 Note: finestratura 9 5 Note: averaging

Dettagli

Corso di Fondamenti di Telecomunicazioni Esercizi Teoria dei segnali Prof. Giovanni Schembra

Corso di Fondamenti di Telecomunicazioni Esercizi Teoria dei segnali Prof. Giovanni Schembra Corso di Fondamenti di Telecomunicazioni Esercizi Teoria dei segnali Prof. Giovanni Schembra Sommario CARATTERISTICHE DEI SEGNALI DETERMINATI.... ESERCIZIO.... ESERCIZIO... 5.3 ESERCIZIO 3 CONVOLUZIONE...

Dettagli

Analisi del segnale. Analisi dei segnali: Nel dominio del tempo (d.t.), con l oscilloscopio Nel dominio della frequenza

Analisi del segnale. Analisi dei segnali: Nel dominio del tempo (d.t.), con l oscilloscopio Nel dominio della frequenza Analisi del segnale Analisi dei segnali: Nel dominio del tempo (d.t.), con l oscilloscopio Nel dominio della frequenza Strumenti: - per evidenziare aspetti difficilmente visibili nel d.t. presenza di armoniche,

Dettagli

TEOREMA DEL CAMPIONAMENTO

TEOREMA DEL CAMPIONAMENTO 1 TEOREMA DEL CAMPIONAMENTO nota per il orso di Teleomuniazioni a ura di F. Benedetto G. Giunta 1. Introduzione Il proesso di ampionamento è di enorme importanza ai fini della realizzazione dei dispositivi

Dettagli

Elaborazione numerica dei segnali

Elaborazione numerica dei segnali Massimiliano Laddomada Marina Mondin Elaborazione numerica dei segnali 0)+)2(% %VKSQIRXSXVEXXEXSEPI^MSRI %VKSQIRXSXVEXXEXSEPI^MSRIMRQSHSTEV^MEPIS HMJJIVIRXIVMJIVMVWMEKPMETTYRXM %VKSQIRXSEGGIRREXSEPI^MSRIVMJIVMVWMEKPMETTYRXM

Dettagli

Autorità per le Garanzie nelle Comunicazioni

Autorità per le Garanzie nelle Comunicazioni Autorità per le Garanzie nelle Comunicazioni METODO PER IL RENDERING DEI DIAGRAMMI DI IRRADIAZIONE VERTICALI BASATO SUI DATI PREVISTI DALLE SPECIFICHE DI FORMATO DEL CATASTO AGCOM 1. Premessa Per calcolare

Dettagli

Reti di Calcolatori a.a

Reti di Calcolatori a.a Analogico e digitale 2 Corso di laurea in Informatica Reti di Calcolatori a.a. 2007-2008 Prof. Roberto De Prisco Capitolo 3 Dati e segnali Per essere trasmessi i dati devono essere trasformati in segnali

Dettagli

ANALISI DI FOURIER. Segnali tempo continui:

ANALISI DI FOURIER. Segnali tempo continui: ANALISI DI FOURIER Segnali tempo continui: Segnali aperiodici Introduzione alla Trasformata Continua di - Derivazione intuitiva della TCF a partire dallo Sviluppo in Serie di - Spettro di ampiezza e fase

Dettagli

Esercizi sul campionamento

Esercizi sul campionamento Capitolo 5 Esercizi sul campionamento 5.1 Esercizio 1 Dato il segnale x(t) = s(t) cos (2π 0 t) con s(t) a banda limitata s e supponendo di introdurre il segnale x(t) come ingresso di un sistema non lineare

Dettagli

Il suono: periodo e frequenza

Il suono: periodo e frequenza Il suono: periodo e frequenza Effetti di risonanza e interferenza Un video Clic Analisi di suoni semplici e complessi Un altro video Clic IL DIAPASON (I) ll diapason è un oscillatore armonico. Il valore

Dettagli

L ANALISI ARMONICA DI UN SEGNALE PERIODICO

L ANALISI ARMONICA DI UN SEGNALE PERIODICO L ANALISI ARMONICA DI UN SEGNALE PERIODICO Il segnale elettrico è una grandezza fisica (in genere una tensione) che varia in funzione del tempo e che trasmette un'informazione. Quasi tutti i segnali che

Dettagli

Serie di Fourier di segnali PWM

Serie di Fourier di segnali PWM Serie di Fourier di segnali PWM Ivan Furlan 1 14 settembre 2013 1 I. Furlan riceve il BSc in elettronica nel 2000 presso la SUPSI, ed il MSc in meccatronica nel 2009 presso il Politecnico di orino. Attualmente

Dettagli

Modulazione PAM Multilivello, BPSK e QPSK

Modulazione PAM Multilivello, BPSK e QPSK Modulazione PAM Multilivello, BPSK e QPSK P. Lombardo DIET, Univ. di Roma La Sapienza Modulazioni PAM Multilivello, BPSK e QPSK - 1 Rappresentazione analitica del segnale Sia {b(n)} una qualsiasi sequenza

Dettagli

Elementi di informatica musicale Conservatorio G. Tartini a.a Sintesi del suono. Sintesi del suono

Elementi di informatica musicale Conservatorio G. Tartini a.a Sintesi del suono. Sintesi del suono Elementi di informatica musicale Conservatorio G. Tartini a.a. 2001-2002 Sintesi del suono Ing. Antonio Rodà Sintesi del suono E neccessaria una tecnica di sintesi, ossia un particolare procedimento per

Dettagli

Conversione A/D e D/A

Conversione A/D e D/A Conversione A/D e D/A Per convertire un segnale analogico (continuo nel tempo e nelle ampiezze) in uno digitale occorrono due operazioni di discretizzazione: Campionamento: discretizzazione nel dominio

Dettagli

Corso di Visione Artificiale. Filtri parte II. Samuel Rota Bulò

Corso di Visione Artificiale. Filtri parte II. Samuel Rota Bulò Corso di Visione Artificiale Filtri parte II Samuel Rota Bulò Numeri complessi parte reale parte immaginaria in coordinate polari complesso coniugato formula di Eulero Trasformata di Fourier discreta (DFT)

Dettagli

Elementi di base delle vibrazioni meccaniche

Elementi di base delle vibrazioni meccaniche Elementi di base delle vibrazioni meccaniche Vibrazioni Le vibrazioni sono fenomeni dinamici che ci circondano costantemente. La luce, il suono, il calore sono i fenomeni vibratori a noi più evidenti.

Dettagli

Rappresentazione di Numeri Reali. Rappresentazione in virgola fissa (fixed-point) Rappresentazione in virgola fissa (fixed-point)

Rappresentazione di Numeri Reali. Rappresentazione in virgola fissa (fixed-point) Rappresentazione in virgola fissa (fixed-point) Rappresentazione di Numeri Reali Un numero reale è una grandezza continua Può assumere infiniti valori In una rappresentazione di lunghezza limitata, deve di solito essere approssimato. Esistono due forme

Dettagli

Esperimenti computazionali con Mathematica: la trasformata di Fourier

Esperimenti computazionali con Mathematica: la trasformata di Fourier Matematica Open Source http://www.extrabyte.info Quaderni di Analisi Matematica 06 Esperimenti computazionali con Mathematica: la trasformata di Fourier Marcello Colozzo 3 0 5 5 0 Ω LA TRASFORMATA DI FOURIER

Dettagli

La codifica digitale

La codifica digitale La codifica digitale Codifica digitale Il computer e il sistema binario Il computer elabora esclusivamente numeri. Ogni immagine, ogni suono, ogni informazione per essere compresa e rielaborata dal calcolatore

Dettagli

Tecniche di progettazione dei filtri FIR

Tecniche di progettazione dei filtri FIR Tecniche di progettazione dei filtri FIR 9.0 Introduzione I filtri FIR sono filtri nei quali la risposta all'impulso è generalmente limitata. I filtri FIR hanno la proprietà di essere facilmente vincolati

Dettagli

Il Campionameto dei segnali e la loro rappresentazione. 1 e prende il nome frequenza di

Il Campionameto dei segnali e la loro rappresentazione. 1 e prende il nome frequenza di Il Campionameto dei segnali e la loro rappresentazione Il campionamento consente, partendo da un segnale a tempo continuo ovvero che fluisce con continuità nel tempo, di ottenere un segnale a tempo discreto,

Dettagli

Rappresentazione digitale del suono

Rappresentazione digitale del suono Rappresentazione digitale del suono Perché rappresentazione del suono Trasmettere a distanza nel tempo e nello spazio un suono Registrazione e riproduzione per tutti Elaborazione del segnale audio per

Dettagli

TEORIA DELL INFORMAZIONE ED ENTROPIA FEDERICO MARINI

TEORIA DELL INFORMAZIONE ED ENTROPIA FEDERICO MARINI TEORIA DELL INFORMAZIONE ED ENTROPIA DI FEDERICO MARINI 1 OBIETTIVO DELLA TEORIA DELL INFORMAZIONE Dato un messaggio prodotto da una sorgente, l OBIETTIVO è capire come si deve rappresentare tale messaggio

Dettagli

SEGNALI STAZIONARI: ANALISI SPETTRALE

SEGNALI STAZIONARI: ANALISI SPETTRALE SEGNALI STAZIONARI: ANALISI SPETTRALE Analisi spettrale: rappresentazione delle componenti in frequenza di un segnale (ampiezza vs. frequenza). Fornisce maggiori dettagli rispetto all analisi temporale

Dettagli

Aritmetica dei Calcolatori Elettronici

Aritmetica dei Calcolatori Elettronici Aritmetica dei Calcolatori Elettronici Prof. Orazio Mirabella L informazione Analogica Segnale analogico: variabile continua assume un numero infinito di valori entro l intervallo di variazione intervallo

Dettagli

Codifica dei segnali audio

Codifica dei segnali audio FONDAMENTI DI INFORMATICA Prof. PIER LUCA MONTESSORO Facoltà di Ingegneria Università degli Studi di Udine Codifica dei segnali audio 2000 Pier Luca Montessoro (si veda la nota di copyright alla slide

Dettagli

Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 2

Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 2 Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: [email protected]

Dettagli

Teoria dei Segnali Richiami ai numeri complessi; serie e trasformata di Fourier

Teoria dei Segnali Richiami ai numeri complessi; serie e trasformata di Fourier Teoria dei Segnali Richiami ai numeri complessi; serie e trasformata di Fourier Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano [email protected] Teoria dei Segnali

Dettagli

ESERCIZI DI TEORIA DEI SEGNALI

ESERCIZI DI TEORIA DEI SEGNALI ESERCIZI DI EORIA DEI SEGNALI EX. 1 Si determini lo sviluppo in serie di Fourier del segnale cos[ m(t)] dove m(t) = m(t) = m(t k ) [ π 2 2π ] ( ) t t rect. EX. 2 Si siderino due segnali x 1 (t) e x 2 (t)

Dettagli

Capitolo IX. Convertitori di dati

Capitolo IX. Convertitori di dati Capitolo IX Convertitori di dati 9.1 Introduzione I convertitori di dati sono circuiti analogici integrati di grande importanza. L elaborazione digitale dei segnali è alternativa a quella analogica e presenta

Dettagli

Capitolo 8. Intervalli di confidenza. Statistica. Levine, Krehbiel, Berenson. Casa editrice: Pearson. Insegnamento: Statistica

Capitolo 8. Intervalli di confidenza. Statistica. Levine, Krehbiel, Berenson. Casa editrice: Pearson. Insegnamento: Statistica Levine, Krehbiel, Berenson Statistica Casa editrice: Pearson Capitolo 8 Intervalli di confidenza Insegnamento: Statistica Corso di Laurea Triennale in Economia Dipartimento di Economia e Management, Università

Dettagli

RICHIAMI SU PROCESSI ALEATORI E DENSITÀ SPETTRALE DI POTENZA

RICHIAMI SU PROCESSI ALEATORI E DENSITÀ SPETTRALE DI POTENZA RICHIAMI SU PROCESSI ALEATORI E DENSITÀ SPETTRALE DI POTENZA Paolo Bestagini Ph.D. Student [email protected] http://home.deib.polimi.it/bestagini Sommario 2 Segnali deterministici Continui Discreti

Dettagli

CAMPIONAMENTO E RICOSTRUZIONE DI SEGNALI. 1 Fondamenti Segnali e Trasmissione

CAMPIONAMENTO E RICOSTRUZIONE DI SEGNALI. 1 Fondamenti Segnali e Trasmissione CAMPIONAMENTO E RICOSTRUZIONE DI SEGNALI Fondamenti Segnali e Trasmissione Numerizzazione dei segnali Nei moderni sistemi di memorizzazione e trasmissione i segnali in ingresso sono di tipo numerio, normalmente

Dettagli

Problemi di base di Elaborazione Numerica dei Segnali

Problemi di base di Elaborazione Numerica dei Segnali Universita' di Roma TRE Corso di laurea in Ingegneria Elettronica Corso di laurea in Ingegneria Informatica Universita' di Roma "La Sapienza" Corso di laurea in Ingegneria delle Telecomunicazioni Problemi

Dettagli

La codifica dei suoni

La codifica dei suoni La codifica dei suoni I suoni costituiscono un tipo di informazione con cui siamo costantemente a contatto (linguaggio parlato, musica, rumori) Anche i suoni possono essere rappresentati in forma digitale

Dettagli