REALTÀ E MODELLI SCHEDA DI LAVORO
|
|
|
- Teodoro Casini
- 10 anni fa
- Visualizzazioni
Transcript
1 REALTÀ E MODELLI SCHEDA DI LAVORO Bagaglio a mano Le regole per il bagaglio a mano di diverse compagnie aeree stabiliscono che la valigia (o borsa) deve avere un peso massimo di 5 kg e che la somma dei lati non deve superare i 5 cm In molti modelli le borse per bagaglio a mano hanno una larghezza che supera di 5 cm la profondità Approssimando la forma della valigia a un parallelepipedo, esprimi il volume in funzione della profondità e studia il segno della funzione volume Costruisci per punti una rappresentazione grafica approssimata della funzione volume e stabilisci con quali dimensioni (all incirca) si ottiene la capienza massima della borsa Indicata con la profondità della borsa, la sua larghezza è 5 e la sua altezza massima deve essere 5 --( 5) = 00-2 Il volume è dato da v ( ) = ( 5)( 00-2) La funzione è una cubica passante per l origine (0; 0) e per i punti (-5; 0), (50; 0) Il segno della funzione si ottiene studiando il segno di ogni fattore e applicando la regola dei segni Figura v() Dallo studio del segno e dal calcolo del valore della funzione in alcuni punti, si deduce che la funzione deve avere un andamento di questo genere: Figura 2 v() (cm 3 ) O (cm)
2 Dal grafico si nota che il valore massimo per il volume si ottiene per - 30 cm; infatti in un suo intorno si ha: v(25) = cm 3 = 50 dm 3, v(30) = cm 3 = 54 dm 3, v(35) = cm 3 = 52,5 dm 3 In tal caso la borsa ha le seguenti dimensioni: 30 cm, 45 cm, 40 cm 2 Stivali di qualità Un calzaturificio produce un modello di stivali con una spesa fissa mensile di 4500 e un costo unitario di 85 al paio, che aumenta a 98 per ciascun paio prodotto dopo i primi 500 nel mese Il prezzo di vendita è fissato in 220, ma la vendita comporta un ulteriore costo complessivo pari a 20 volte il quantitativo mensile di produzione La capacità produttiva mensile dell azienda è di 000 paia di stivali Esprimi le funzioni costo, ricavo e guadagno in funzione del numero di stivali prodotti e rappresentale sul piano cartesiano Individua il dominio di tali funzioni e stabilisci in quali intervalli sono crescenti e decrescenti Calcola il numero di paia di stivali che l azienda deve produrre (e vendere) per non essere in perdita e il massimo guadagno Indichiamo con il numero di paia di stivali prodotto mensilmente Le funzioni richieste sono perciò: Costo: se 0 # # 500 c ( ) = ( $ $ ( - 500) 20 se 50 # # 000 ovvero: se 0 # # 500 c ( ) = ' se 50 # # 000 Ricavo: r ( ) = se 0 # # 500 Guadagno: g ( ) = r ( ) - c ( ) = ' se 50 # # 000 Rappresentiamo le tre funzioni in un grafico 0 4 Figura 3 20 r() 0 c() g() n paia stivali 2
3 Il dominio delle funzioni è 0 # # 000; le tre funzioni sono sempre crescenti Per non essere in perdita deve essere: g ( ) 2 0 " " 2 39, 3, perciò l azienda deve produrre (e vendere) almeno 40 paia di stivali al mese Poiché la funzione guadagno è crescente, il guadagno massimo si ha con la massima produzione, cioè per = 000, e in tal caso il guadagno è di Rivendita dei biglietti Supponi che in una via periferica di Milano vengano predisposte quattro fermate di autobus che distano l una dall altra 370 m, 445 m, 300 m Nella zona manca una rivendita di biglietti che possa essere raggiunta abbastanza comodamente a piedi da chi si trova a una delle fermate m 445 m 300 m Dov è più opportuno posizionare la rivendita, sulla stessa via, in modo che la distanza complessiva dalle quattro fermate alla rivendita sia la minima possibile? Posizioniamo le quattro fermate su una retta orientata; mettiamo: la fermata F nell origine; la fermata F 2 nella posizione di ascissa 370; la fermata F 3 nella posizione di ascissa = 85; la fermata F 4 nella posizione di ascissa = 5 Indichiamo con l ascissa della posizione in cui si metterà la rivendita R; sarà ovviamente 0 5 Bisogna trovare in modo che sia minima la somma delle distanze dalle quattro fermate alla rivendita, perciò bisogna trovare il minimo della funzione: f() = dist(f, R) dist(f 2, R) dist(f 3, R) dist(f 4, R) Con le limitazioni poste su sarà: Perciò: dist(f, R) = ; dist(f 2, R) = ; dist(f 3, R) = - 85 ; dist(f 4, R) = 5 - f ( ) = = Per rappresentare il grafico della funzione conviene esplicitare i valori assoluti: = se 0 # 370 f ( ) = * = 560 se 370 # = 2-70 se
4 y (m) Figura F F2 F3 F4 (m) Rappresentando la funzione nel piano cartesiano notiamo che il valore minimo di f() si ottiene con tutti i valori di compresi tra 370 e 85, perciò bisogna posizionare la rivendita in un punto qualunque compreso tra la seconda e la terza fermata 4 La roulette Nel gioco della roulette, la giocata sul singolo numero prevede, se vincente, un compenso di 35 : (per ogni euro puntato, si incassa l euro giocato più altri 35); la giocata sul rosso o sul nero, invece, viene pagata : Alan ha deciso di tentare la fortuna giocando sempre sul rosso Punta inizialmente 0 e raddoppia la giocata in caso di perdita, altrimenti incassa la vincita e si ritira dal tavolo Barney, invece, gioca sul singolo numero: punta inizialmente 50 e aumenta di una certa quota fissa a ogni giocata successiva in caso di perdita, altrimenti anche lui incassa la vincita e si ritira Sapendo che il rosso esce alla quarta giocata, quanto avrà guadagnato o perso Alan? E se il rosso fosse uscito alla dodicesima tornata? Di quanto deve essere la quota fissa massima che rilancia a ogni puntata Barney, se vuole garantirsi almeno 30 giocate e il suo budget per la serata è di ? Indichiamo con a n le giocate di Alan Sarà allora (i valori si riferiscono agli euro): a = 0; a 2 = 2 $ a = 20; a 3 = 2 $ a 2 = 40; a 4 = 2 $ a 3 = 80 Alla quarta giocata, Alan avrà complessivamente puntato: s 4 = a a 2 a 3 a 4 = = 50 e poiché la giocata è vincente, incassa v 4 = 2$ a4 = 2$ 80 = 60 Il guadagno è quindi pari a v 4 - s 4 = = 0 Le giocate di Alan sono in progressione geometrica di primo termine a = 0 e ragione q = 2 Se la giocata vincente fosse la dodicesima, allora si avrebbe: 2 q a2 = 2 $ a = 2 $ 0 = , s2 = a $ = 0 $ = 0 $ ( 2 - ) = q - 2- In questo caso la vincita è v 2 = 2 $ a 2 = 2$ = e il guadagno è ancora pari a: v 2 - s 2 = = 0 Le giocate di Barney seguono l andamento di una progressione aritmetica di primo termine b = 50 e ragione d (da determinare) Nella trentesima giocata punta quindi: b = b ( n- ) $ d " b = 50 (30 - ) $ d = $ d n 30 4
5 e in totale ha giocato: s n b b n s 29 $ d n = $ " 30 = $ = 5 $ (00 29 $ d) 2 2 Il totale giocato s 30 deve essere inferiore o uguale al budget a disposizione, quindi: $ ( $ d) # " d # Barney, quindi, deve rilanciare al più 42 (circa) ad ogni puntata per assicurarsi almeno 30 giocate al tavolo 5
Per poter affrontare il problema abbiamo bisogno di parlare di probabilità (almeno in maniera intuitiva). Analizziamo alcune situazioni concrete.
Parliamo di probabilità. Supponiamo di avere un sacchetto con dentro una pallina rossa; posso aggiungere tante palline bianche quante voglio, per ogni pallina bianca che aggiungo devo pagare però un prezzo
Chi non risolve esercizi non impara la matematica.
96 matematica per l economia Esercizio 65. Consideriamo ancora il problema 63 dell azienda vinicola, aggiungendo la condizione che l azienda non può produrre più di 200 bottiglie al mese. Soluzione. La
Ai fini economici i costi di un impresa sono distinti principalmente in due gruppi: costi fissi e costi variabili. Vale ovviamente la relazione:
1 Lastoriadiun impresa Il Signor Isacco, che ormai conosciamo per il suo consumo di caviale, decide di intraprendere l attività di produttore di caviale! (Vuole essere sicuro della qualità del caviale
Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili
Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili Il modello matematico 2: Funzioni obiettivo: ma.min, Min-ma Tipologie di Vincoli Funzione obiettivo ma-min: Esempio Scommesse Il signor
CLASSE TERZA - COMPITI DELLE VACANZE A.S. 2014/15 MATEMATICA
Risolvere le seguenti disequazioni: 0 ) x x ) x x x 0 CLASSE TERZA - COMPITI DELLE VACANZE A.S. 04/ MATEMATICA x 6 x x x x 4) x x x x x 4 ) 6) x x x ( x) 0 x x x x x x 6 0 7) x x x EQUAZIONI CON I MODULI
SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 2015
SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 015 1. Indicando con i minuti di conversazione effettuati nel mese considerato, la spesa totale mensile in euro è espressa dalla funzione f()
Schemi delle Lezioni di Matematica Generale. Pierpaolo Montana
Schemi delle Lezioni di Matematica Generale Pierpaolo Montana A volte i fenomeni economici che ci interessano non variano con continuitá oppure non possono essere osservati con continuitá, ma solo a intervalli
Forze come grandezze vettoriali
Forze come grandezze vettoriali L. Paolucci 23 novembre 2010 Sommario Esercizi e problemi risolti. Per la classe prima. Anno Scolastico 2010/11 Parte 1 / versione 2 Si ricordi che la risultante di due
Il concetto di valore medio in generale
Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo
LEZIONE 7. Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2. 2, x3 +2x +3.
7 LEZIONE 7 Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2 2 6x, x3 +2x 2 6x, 3x + x2 2, x3 +2x +3. Le derivate sono rispettivamente,
Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...
Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.
PROBLEMI DI SCELTA. Problemi di. Scelta. Modello Matematico. Effetti Differiti. A Carattere Continuo. A più variabili d azione (Programmazione
1 PROBLEMI DI SCELTA Problemi di Scelta Campo di Scelta Funzione Obiettivo Modello Matematico Scelte in condizioni di Certezza Scelte in condizioni di Incertezza Effetti Immediati Effetti Differiti Effetti
Paperone e Rockerduck: a cosa serve l antitrust?
Paperone e Rockerduck: a cosa serve l antitrust? Paperone Anna Torre, Rockerduck Ludovico Pernazza 1-14 giugno 01 Università di Pavia, Dipartimento di Matematica Concorrenza Due imprese Pap e Rock operano
Successioni ESEMPI: Matematica con Elementi di Statistica, Anna Torre a.a. 2013-2014
Successioni Vi sono fenomeni naturali e situazioni concrete che presentano sviluppi significativi in tempi discreti. Vale a dire è naturale che i controlli per quei dati fenomeni o per quelle date situazioni
Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto:
PROBLEMA 1. Il piano tariffario proposto da un operatore telefonico prevede, per le telefonate all estero, un canone fisso di 10 euro al mese, più 10 centesimi per ogni minuto di conversazione. Indicando
Teoria dei Giochi. Anna Torre
Teoria dei Giochi Anna Torre Almo Collegio Borromeo 14 marzo 2013 email: [email protected] sito web del corso:www-dimat.unipv.it/atorre/borromeo2013.html IL PARI O DISPARI I II S T S (-1, 1) (1, -1)
PROBLEMI DI SCELTA IN CONDIZIONI DI CERTEZZA dipendenti da una sola variabile di scelta con effetti immediati
prof. Guida PROBLEMI DI SCELTA IN CONDIZIONI DI CERTEZZA dipendenti da una sola variabile di scelta con effetti immediati sono quei problemi nei quali gli effetti della scelta sono noti e immediati ESERCIZIO
1 Giochi a due, con informazione perfetta e somma zero
1 Giochi a due, con informazione perfetta e somma zero Nel gioco del Nim, se semplificato all estremo, ci sono due giocatori I, II e una pila di 6 pedine identiche In ogni turno di gioco I rimuove una
Macroeconomia. Lezione n. 2 Il Prodotto Interno Lordo (PIL) e le sue componenti. Luca Deidda. UNISS, DiSEA, CRENoS
Macroeconomia Lezione n. 2 Il Prodotto Interno Lordo (PIL) e le sue componenti Luca Deidda UNISS, DiSEA, CRENoS Luca Deidda (UNISS, DiSEA, CRENoS) 1 / 22 Scaletta Scaletta della lezione Definizione di
B. Vogliamo determinare l equazione della retta
Risoluzione quesiti ordinamento Quesito N.1 Indicata con α la misura dell angolo CAB, si ha che: 1 Area ( ABC ) = AC AB sinα = 3 sinα π 3 sinα = 3 sinα = 1 α = Il triangolo è quindi retto in A. La misura
Marco Tolotti - Corso di Esercitazioni di Matematica 12 Cfu - A.A. 2010/2011 1
Marco Tolotti - Corso di Esercitazioni di Matematica 1 Cfu - A.A. 010/011 1 Esercitazione 1: 4/09/010 1. Determinare il dominio delle seguenti funzioni: log a) f() = 5 ( 1). b) g() = log 3 (3 6) log 13.
Capitolo 13: L offerta dell impresa e il surplus del produttore
Capitolo 13: L offerta dell impresa e il surplus del produttore 13.1: Introduzione L analisi dei due capitoli precedenti ha fornito tutti i concetti necessari per affrontare l argomento di questo capitolo:
PIANO CARTESIANO: un problema di programmazione lineare
PIANO CARTESIANO: un problema di programmazione lineare In un laboratorio sono disponibili due contatori A, B di batteri. Il contatore A può essere azionato da un laureato che guadagna 20 euro per ora.
Statistica e biometria. D. Bertacchi. Variabili aleatorie. V.a. discrete e continue. La densità di una v.a. discreta. Esempi.
Iniziamo con definizione (capiremo fra poco la sua utilità): DEFINIZIONE DI VARIABILE ALEATORIA Una variabile aleatoria (in breve v.a.) X è funzione che ha come dominio Ω e come codominio R. In formule:
Lezione 6 (16/10/2014)
Lezione 6 (16/10/2014) Esercizi svolti a lezione Esercizio 1. La funzione f : R R data da f(x) = 10x 5 x è crescente? Perché? Soluzione Se f fosse crescente avrebbe derivata prima (strettamente) positiva.
Esercizi di Ricerca Operativa II
Esercizi di Ricerca Operativa II Raffaele Pesenti January 12, 06 Domande su utilità 1. Determinare quale è l utilità che un giocatore di roulette assegna a 100,00 Euro, nel momento che gioca tale cifra
La Minimizzazione dei costi
La Minimizzazione dei costi Il nostro obiettivo è lo studio del comportamento di un impresa che massimizza il profitto sia in mercati concorrenziali che non concorrenziali. Ora vedremo la fase della minimizzazione
VINCERE AL BLACKJACK
VINCERE AL BLACKJACK Il BlackJack è un gioco di abilità e fortuna in cui il banco non può nulla, deve seguire incondizionatamente le regole del gioco. Il giocatore è invece posto continuamente di fronte
Fallimenti del mercato: Il monopolio
Corso di Scienza Economica (Economia Politica) prof. G. Di Bartolomeo Fallimenti del mercato: Il monopolio Facoltà di Scienze della Comunicazione Università di Teramo Concorrenza imperfetta La concorrenza
Le scelte del consumatore in condizione di incertezza (cap.5)
Le scelte del consumatore in condizione di incertezza (cap.5) Che cos è il rischio? Come possiamo indicare le preferenze del consumatore riguardo al rischio? C è chi acquista assicurazione (non ama il
Punto 1 Dopo aver scelto come unità di misura (dm), dai dati si ricava che la curva deve passare per i punti, B C e D
Problema 1: Il porta scarpe da viaggio Risoluzione Punto 1 Dopo aver scelto come unità di misura (dm), dai dati si ricava che la curva deve passare per i punti, B C e D a) L' equazione è da scartare perchè
9. Urti e conservazione della quantità di moto.
9. Urti e conservazione della quantità di moto. 1 Conservazione dell impulso m1 v1 v2 m2 Prima Consideriamo due punti materiali di massa m 1 e m 2 che si muovono in una dimensione. Supponiamo che i due
Soluzione degli esercizi sul moto rettilineo uniformemente accelerato
Liceo Carducci Volterra - Classe 3 a B Scientifico - Francesco Daddi - 8 novembre 00 Soluzione degli esercizi sul moto rettilineo uniformemente accelerato Esercizio. Un corpo parte da fermo con accelerazione
Viene lanciata una moneta. Se esce testa vinco 100 euro, se esce croce non vinco niente. Quale è il valore della mia vincita?
Viene lanciata una moneta. Se esce testa vinco 00 euro, se esce croce non vinco niente. Quale è il valore della mia vincita? Osserviamo che il valore della vincita dipende dal risultato dell esperimento
Esercizi sul moto rettilineo uniformemente accelerato
Liceo Carducci Volterra - Classe 3 a B Scientifico - Francesco Daddi - 8 novembre 010 Esercizi sul moto rettilineo uniformemente accelerato Esercizio 1. Un corpo parte da fermo con accelerazione pari a
e il calcolo percentuale
SCHEDA 1 Le proporzioni e il calcolo percentuale Gli obiettivi didattici Conoscere i concetti di proporzionalità diretta e inversa Conoscere il calcolo percentuale Saper applicare il calcolo percentuale
Esercitazione 23 maggio 2016
Esercitazione 5 maggio 016 Esercitazione 3 maggio 016 In questa esercitazione, nei primi tre esercizi, analizzeremo il problema del moral hazard nel mercato. In questo caso prenderemo in considerazione
Programmazione lineare
Programmazione lineare Un modello matematico per un problema di programmazione lineare Problema 1. Un reparto di un azienda di elettrodomestici può produrre giornalmente non più di 6 lavatrici, delle quali
Master della filiera cereagricola. Impresa e mercati. Facoltà di Agraria Università di Teramo. Giovanni Di Bartolomeo Stefano Papa
Master della filiera cereagricola Giovanni Di Bartolomeo Stefano Papa Facoltà di Agraria Università di Teramo Impresa e mercati Parte prima L impresa L impresa e il suo problema economico L economia studia
REALTÀ E MODELLI SCHEDA DI LAVORO
REALTÀ E MDELLI SCHEDA DI LAVR 1 La mansarda Per ultimare l edificazione di una villetta occorre costruire il tetto a due spioventi sopra la mansarda Come dato di progetto è noto quanto segue: considerata
STUDIO DI UNA FUNZIONE
STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)
Esercizi di Matematica Finanziaria - Corso Part Time scheda 1 - Leggi finanziarie, rendite ed ammortamenti
Esercizi di Matematica Finanziaria - Corso Part Time scheda 1 - Leggi finanziarie, rendite ed ammortamenti 1. Un capitale d ammontare 100 viene investito, in regime di interesse semplice, al tasso annuo
Traduzione e adattamento a cura di Gylas per Giochi Rari
Traduzione e adattamento a cura di Gylas per Giochi Rari Versione 1.0 Luglio 2001 NOTA. La presente traduzione non sostituisce in alcun modo il regolamento originale del gioco; il presente documento è
Misure di base su una carta. Calcoli di distanze
Misure di base su una carta Calcoli di distanze Per calcolare la distanza tra due punti su una carta disegnata si opera nel modo seguente: 1. Occorre identificare la scala della carta o ricorrendo alle
Matematica Finanziaria A - corso part time prova d esame del 21 Aprile 2010 modalità A
prova d esame del 21 Aprile 2010 modalità A 1. Un tizio ha bisogno di 600 euro che può chiedere, in alternativa, a due banche: A e B. La banca A propone un rimborso a quote capitale costanti mediante tre
Premessa: Nella traccia non è specificato cosa accade se si effettuano per esempio 2,3 minuti di conversazione.
Esame di stato 5 - Proposta di risoluzione del problema Il piano tariffario proposto da un operatore telefonico prevede, per le telefonate all estero, un canone fisso di euro al mese, più centesimi per
5 10 17 26 37 2,,,,,,... 2 3 4 5 6
MATEMATICA GENERALE 2014 - CTF Funzioni e successioni - Esercizi Docente: ALESSANDRO GAMBINI 1. a) Rappresenta mediante espressione analitica la seguente successione numerica. Motiva la tua risposta. 5
Scelte in condizioni di rischio e incertezza
CAPITOLO 5 Scelte in condizioni di rischio e incertezza Esercizio 5.1. Tizio ha risparmiato nel corso dell anno 500 euro; può investirli in obbligazioni che rendono, in modo certo, il 10% oppure in azioni
Calcolo delle probabilitá: esercizi svolti fino all 8 febbraio
Calcolo delle probabilitá: esercizi svolti fino all 8 febbraio Alessandro Sicco [email protected] Lezione 1. Calcolo combinatorio, formula delle probabilitá totali, formula di Bayes Esercizio 1.1. 7 bambini
Matematica finanziaria: svolgimento prova di esame del 21 giugno 2005 (con esercizio 1 corretto)
Matematica finanziaria: svolgimento prova di esame del giugno 5 (con esercizio corretto). [6 punti cleai, 6 punti altri] Si possiede un capitale di e e lo si vuole impiegare per anni. Supponendo che eventuali
Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014
Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 14 Problema 1 Punto a) Osserviamo che g (x) = f(x) e pertanto g () = f() = in quanto Γ è tangente all asse delle ascisse,
Introduzione. Preparazione. 4) Ordina i titoli azionari di ogni Compagnia in una pila separata vicino alla plancia di gioco.
Introduzione I giocatori comprano e vendono titoli azionari al fine di aumentare i propri capitali. A volte è meglio essere un semplice investitore, altre volte essere il Presidente di una Compagnia. E'
Il funzionamento di prezzipazzi, registrazione e meccanismi
Prima di spiegare prezzipazzi come funziona, facciamo il punto per chi non lo conoscesse. Nell ultimo periodo si fa un gran parlare di prezzipazzi ( questo il sito ), sito che offre a prezzi veramente
2. Leggi finanziarie di capitalizzazione
2. Leggi finanziarie di capitalizzazione Si chiama legge finanziaria di capitalizzazione una funzione atta a definire il montante M(t accumulato al tempo generico t da un capitale C: M(t = F(C, t C t M
La distribuzione Normale. La distribuzione Normale
La Distribuzione Normale o Gaussiana è la distribuzione più importante ed utilizzata in tutta la statistica La curva delle frequenze della distribuzione Normale ha una forma caratteristica, simile ad una
Kangourou della Matematica 2011 Coppa a squadre Kangourou Semifinale turno A Cervia, 7 maggio 2011. Quesiti
Kangourou della Matematica 2011 Coppa a squadre Kangourou Semifinale turno A Cervia, 7 maggio 2011 Quesiti 1. Un lungo viaggio Quando a Londra sono le 17.00, a S. Francisco sono le 09.00 (dello stesso
Il mercato di monopolio
Il monopolio Il mercato di monopolio Il monopolio è una struttura di mercato caratterizzata da 1. Un unico venditore di un prodotto non sostituibile. Non ci sono altre imprese che possano competere con
La detrazione fiscale del 50% non è da confondere con quella del 65%!!!
Gli impianti fotovoltaici realizzati sul tetto di casa, al pari di qualsiasi altra ristrutturazione edilizia, beneficiano da parte del governo di un interessante forma di sostegno: le detrazioni fiscali
b. Che cosa succede alla frazione di reddito nazionale che viene risparmiata?
Esercitazione 7 Domande 1. L investimento programmato è pari a 100. Le famiglie decidono di risparmiare una frazione maggiore del proprio reddito e la funzione del consumo passa da C = 0,8Y a C = 0,5Y.
Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...
Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.
Logica Numerica Approfondimento 1. Minimo Comune Multiplo e Massimo Comun Divisore. Il concetto di multiplo e di divisore. Il Minimo Comune Multiplo
Logica Numerica Approfondimento E. Barbuto Minimo Comune Multiplo e Massimo Comun Divisore Il concetto di multiplo e di divisore Considerato un numero intero n, se esso viene moltiplicato per un numero
Capitolo 6. Soluzione degli esercizi a cura di Rosa Falotico
Capitolo 6 Soluzione degli esercizi a cura di Rosa Falotico Esercizio 6.1 Dopo aver notato che quando le modalità si presentano con frequenze unitarie, la formula per il calcolo della media si semplifica,
Problemi su proporzioni e percentuali - Giulia Menconi. Proporzioni: Riepilogo sulle proprietà
Problemi su proporzioni e percentuali - Giulia Menconi Proporzioni: Riepilogo sulle proprietà proporzione valida: una proporzione è valida se e solo se il prodotto dei medi è uguale al prodotto degli estremi
Produzione e forza lavoro
Produzione e forza lavoro Testo Un azienda produce i modelli I, II e III di un certo prodotto a partire dai materiali grezzi A e B, di cui sono disponibili 4000 e 6000 unità, rispettivamente. In particolare,
1. PRIME PROPRIETÀ 2
RELAZIONI 1. Prime proprietà Il significato comune del concetto di relazione è facilmente intuibile: due elementi sono in relazione se c è un legame tra loro descritto da una certa proprietà; ad esempio,
RICERCA OPERATIVA. Questi due tipi di costi contribuiscono a determinare il costo totale di produzione così definito:
RICERCA OPERATIVA Prerequisiti Rappresentazione retta Rappresentazione parabola Equazioni e disequazioni Ricerca Operativa Studio dei metodi e delle strategie al fine di operare scelte e prendere decisioni
Risposte agli esercizi del Capitolo 6
Risposte agli esercizi del Capitolo 6 Se non siete in grado di rispondere correttamente a qualche esercizio, è opportuno che rileggiate le pagine che la precedono prima di proseguire. 6.1 Se Raffaele non
Esercitazione 5 Dinamica del punto materiale
Problema 1 Un corpo puntiforme di massa m = 1.0 kg viene lanciato lungo la superficie di un cuneo avente un inclinazione θ = 40 rispetto all orizzontale e altezza h = 80 cm. Il corpo viene lanciato dal
Le basi della Partita Doppia in 1.000 parole Facile e comprensibile. Ovviamente gratis.
Le basi della Partita Doppia in 1.000 parole Facile e comprensibile. Ovviamente gratis. Qual è la differenza tra Dare e Avere? E tra Stato Patrimoniale e Conto Economico? In 1.000 parole riuscirete a comprendere
MATEMATICA E STATISTICA CORSO A SCIENZE BIOLOGICHE MOLECOLARI ESERCIZI PER LA PRIMA PROVA IN ITINERE DI RECUPERO
MATEMATICA E STATISTICA CORSO A SCIENZE BIOLOGICHE MOLECOLARI ESERCIZI PER LA PRIMA PROVA IN ITINERE DI RECUPERO ARGOMENTO: PERCENTUALI 1-Se in un anno in una popolazione i nuovi nati sono l 1,2% della
Economia Applicata ai sistemi produttivi. 06.05.05 Lezione II Maria Luisa Venuta 1
Economia Applicata ai sistemi produttivi 06.05.05 Lezione II Maria Luisa Venuta 1 Schema della lezione di oggi Argomento della lezione: il comportamento del consumatore. Gli economisti assumono che il
BlackJack. regole del gioco
BlackJack regole del gioco Il gioco viene aperto dalle parole del croupier Fate il vostro gioco. I giocatori devono effettuare le proprie puntate sui vari Box. Il croupier annuncia Nulla va più, dopo questo
Calcolo delle Probabilita, INGEGNERIA INFORMATICA, semestre II, laurea (ord. Leonardo.
Capitolo 1 9 Ottobre 00 Calcolo delle Probabilita, INGEGNERIA INFORMATICA, semestre II, laurea (ord. Leonardo. 000, Milano Esercizio 1.0.1 (svolto in classe [II recupero Ing. Matematica aa.00-0-rivisitato]nel
Istituto Professionale di Stato per i Servizi Alberghieri e la Ristorazione. San Pellegrino Terme. Compiti per le Vacanze.
Istituto Professionale di Stato per i Servizi Alberghieri e la Ristorazione San Pellegrino Terme Compiti per le Vacanze Classe Quarta F anno scolastico 2012-2013 Soluzioni Esercizio 1 Le percentuali e
FUNZIONE ESPONENZIALE e INTERESSE COMPOSTO. Ipotizziamo di avere a nostra disposizione all'inizio del primo anno (tempo in ascissa
FUNZIONE ESPONENZIALE e INTERESSE COMPOSTO Ipotizziamo di avere a nostra disposizione all'inizio del primo anno (tempo in ascissa t o = 0 ) una somma C o (detta capitale iniziale ) e di volerla investire
a) Determinare i numeri indice a base fissa del fatturato con base 2007=100 e commentare i risultati ottenuti per gli anni 2008 e 2012
ESERCIZIO 1 Nella tabella che segue sono riportate le variazioni percentuali, rispetto all anno precedente, del fatturato di un azienda. Sulla base dei dati contenuti in tabella a) Determinare i numeri
LA COMBINAZIONE DEI FATTORI PRODUTTIVI CAP. 5
LA COMBINAZIONE DEI FATTORI PRODUTTIVI CAP. 5 Appunti di estimo Il fine economico dell imprenditore Le motivazioni che spingono un imprenditore ad avviare attività di impresa sono: Produrre beni e servizi,
era applicato uno sconto del 35%, quale era il prezzo iniziale del vestito?
QA00001 Un contadino vende 450 Kg di mele per un totale di a) 2,5 b) 2 c) 3 d) 1,60 b 630. Il commerciante che ha acquistato le mele le rivende con un guadagno di 60 centesimi al Kg. A quanto le ha vendute?
Lezione 27: L offerta di moneta e la LM
Corso di Economia Politica prof. S. Papa Lezione 27: L offerta di moneta e la LM Facoltà di Economia Università di Roma Sapienza Offerta di moneta Offerta di moneta. È la quantità di mezzi di pagamento
ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi 4
ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016 1. Esercizi 4 Piani di ammortamento Esercizio 1. Un debito di 1000e viene rimborsato a tasso annuo i = 10%
mese 1 2 3 4 5 richiesta 6000 7000 8000 9500 11000
1.7 Servizi informatici. Un negozio di servizi informatici stima la richiesta di ore di manutenzione/consulenza per i prossimi cinque mesi: mese 1 2 3 4 5 richiesta 6000 7000 8000 9500 11000 All inizio
Albez edutainment production. Economia Aziendale I. I calcoli percentuali
Albez edutainment production Economia Aziendale I I calcoli percentuali 1 Sommario 1. Rapporti e proporzioni 2. Terminologia 3. Proprietà fondamentale 4. Conseguenze della proprietà fondamentale 5. Esempi
Esame di Stato 2015 - Tema di Matematica
Esame di Stato 5 - Tema di Matematica PROBLEMA Il piano tariffario proposto da un operatore telefonico prevede, per le telefonate all estero, un canone fisso di euro al mese, più centesimi per ogni minuto
SOLUZIONI D = (-1,+ ).
SOLUZIONI. Data la funzione f() ( ) ln( ) a) trova il dominio di f b) indica quali sono gli intervalli in cui f() risulta positiva e quelli in cui risulta negativa c) determina le eventuali intersezioni
ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi: lezione 24/11/2015
ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016 1. Esercizi: lezione 24/11/2015 Valutazioni di operazioni finanziarie Esercizio 1. Un operazione finanziaria
LABORATORIO DI MATEMATICA I PROBLEMI DI SCELTA IN CONDIZIONI DI INCERTEZZA CON EXCEL
LABORATORIO DI MATEMATICA I PROBLEMI DI SCELTA IN CONDIZIONI DI INCERTEZZA CON EXCEL ESERCITAZIONE GUIDATA I problemi di scelta Problema. Una ditta produttrice di detersivi per lavatrice ha costi al litro
2. Scomporre la seconda rata in quota di capitale e quota d interesse.
Esercizi di matematica finanziaria Rate e ammortamenti Esercizio.. Un finanziamento di 0000 euro deve essere rimborsato con tre rate annue costanti d ammontare R. Il tasso contrattuale è 2% annuo (composto)..
Ipotesi sulle preferenze
La teoria delle scelte del consumatore La teoria delle scelte del consumatore Descrive come i consumatori distribuiscono i propri redditi tra differenti beni e servizi per massimizzare il proprio benessere.
Come giocare a Scrabble Una piccola guida al gioco dal vivo A cura di Claudia Braun e Fabrizio Mereu, Scrabble Club Milano.
Come giocare a Scrabble Una piccola guida al gioco dal vivo A cura di Claudia Braun e Fabrizio Mereu, Scrabble Club Milano. Contenuto di una scatola Una confezione di Scrabble presenta il seguente contenuto:
Esame di stato di istruzione secondaria superiore Indirizzi: Scientifico e Scientifico opzione scienze applicate Tema di matematica
wwwmatematicamenteit maturità 5 Esame di stato di istruzione secondaria superiore Indirizzi: Scientiico e Scientiico opzione scienze applicate Tema di matematica Il candidato risolva uno dei due problemi
Esercizi di riepilogo Statistica III canale, anno 2008
Esercizio 1 - Esercizio 5 esame 22 giugno 2004 Esercizi di riepilogo Statistica III canale, anno 2008 Data la seguente distribuzione di 100 dipendenti di un azienda in base al tempo impiegato (in minuti)
= variazione diviso valore iniziale, il tutto moltiplicato per 100. \ Esempio: PIL del 2000 = 500; PIL del 2001 = 520:
Fig. 10.bis.1 Variazioni percentuali Variazione percentuale di x dalla data zero alla data uno: x1 x 0 %x = 100% x 0 = variazione diviso valore iniziale, il tutto moltiplicato per 100. \ Esempio: PIL del
Istituzioni di Economia
Corso di laurea in Servizio Sociale Istituzioni di Economia I costi di produzione (Capitolo 13) I costi di produzione La legge dell offerta P Offerta Le imprese sono disposte a produrre e vendere quantità
Interesse, sconto, ratei e risconti
TXT HTM PDF pdf P1 P2 P3 P4 293 Interesse, sconto, ratei e risconti Capitolo 129 129.1 Interesse semplice....................................................... 293 129.1.1 Esercizio per il calcolo dell
Equivalenza economica
Equivalenza economica Calcolo dell equivalenza economica [Thuesen, Economia per ingegneri, capitolo 4] Negli studi tecnico-economici molti calcoli richiedono che le entrate e le uscite previste per due
IL CAPITALE. 1) Domanda di capitale 2) Offerta di capitale
IL CAPITALE 1) Domanda di capitale 2) Offerta di capitale CAPITALE FINANZIARIO E CAPITALE REALE Col termine capitale i si può riferire a due concetti differenti Il capitale finanziario è costituito dalla
Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R
Studio di funzione Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R : allo scopo di determinarne le caratteristiche principali.
ELASTICITÀ. Sarebbe conveniente per il produttore aumentare ulteriormente il prezzo nella stessa misura del caso
Esercizio 1 Data la funzione di domanda: ELASTICITÀ Dire se partendo da un livello di prezzo p 1 = 1.5, al produttore converrà aumentare il prezzo fino al livello p 2 = 2. Sarebbe conveniente per il produttore
15. Analisi del rapporto tra costi, volumi e risultati. Ragioneria Generale ed Applicata Sede di Fano
15. Analisi del rapporto tra costi, volumi e risultati Ragioneria Generale ed Applicata Sede di Fano UNO STRUMENTO PER L ANALISI CONGIUNTA DELL ANDAMENTO DEI COSTI, RICAVI, RISULTATI B.E.P.= break even
Biblioteca di Economia aziendale
Approfondimenti I calcoli finanziari Il montante e i problemi inversi I problemi inversi si hanno quando, noto il suo ammontare, l incognita è rappresentata dal capitale iniziale o dal tasso d interesse
