Serie di Fourier Richiami di teoria. Funzioni periodiche. Ci poniamo il problema dello sviluppo in serie di Fourier per funzioni f 1 : R R

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Serie di Fourier Richiami di teoria. Funzioni periodiche. Ci poniamo il problema dello sviluppo in serie di Fourier per funzioni f 1 : R R"

Transcript

1 Serie di Fourier Richiami di teoria Funzioni periodiche Ci poniamo il problema dello sviluppo in serie di Fourier per funzioni f 1 : R R 2π-periodiche. Esempio 1. Consideriamo il prolungamento 2π-periodico f 1 : R R di { f1 : [, 2π) R f 1 (x) := x f 1 : R R Esempio 2. Data { f2 : [, 1) R f 2 (x) := x la prolunghiamo a una funzione f 2 : R R 1-periodica. Osservazioni: Le funzioni prolungate f 1 e f 2 hanno infiniti punti di discontinuità di tipo salto su R. In effetti le serie di Fourier si configurano come strumenti di approssimazione di funzioni non necessariamente continue. Si confronti questo con le serie di aylor per funzioni C, analitiche..

2 La teoria delle serie di Fourier si dà per funzioni g : R R, -periodiche, con > generico, riconducibili a funzioni f : R R 2π-periodiche ponendo ( ) f(x) = g 2π x infatti ( ) f(x + 2π) = g (x + 2π) 2π ( ) ( ) = g 2π x + = g 2π x = f(x). Coefficienti di Fourier Data una funzione f : R R, 2π-periodica, quale è la serie trigonometrica α k cos(kx) + β k sin(kx) k= candidata ad approssimare f? f : R R 2π-periodica Ipotesi di base: f integrabile su [, 2π]. Conseguenze: 2π f(x) dx = a+2π f(x) dx a R, a f 2 integrabile su [, 2π].

3 Problema: Sia S n := {polinomi trigonometrici di ordine n} e si consideri il problema di minimizzare lo scarto quadratico medio f(x) P n (x) 2 dx fra f e il generico polinomio trigonometrico di ordine n n P n (x) = α k cos(kx) + β k sin(kx). k= Si dimostra che per ogni n N il polinomio S n che risolve il problema di minimo, cioè f(x) S n (x) 2 dx f(x) P n (x) 2 dx P n S n è il polinomio trigonometrico di Fourier associato a f S n (x) = a n 2 + a k cos(kx) + b k sin(kx) k=1 con coefficienti (i coefficienti di Fourier associati a f) a n = 1 π b n = 1 π f(x) cos(nx) dx, n =, 1, 2,... f(x) sin(nx) dx, n = 1, 2,... che danno luogo alla serie di Fourier associata a f a n=1 a n cos(nx) + b n sin(nx)

4 Osservazioni Grazie all ipotesi di integrabilità su f, gli (a k ) k (b k ) k sono ben definiti. e I coefficienti si possono ottenere integrando su un periodo (=intervallo di lunghezza 2π) qualsiasi di f, ad esempio su [ π, π]. il calcolo degli (a k ) k e (b k ) k si semplifica in presenza di simmetrie: f pari a n = 1 π = 2 π π π π b n = n 1, f(x) cos(nx) dx f(x) cos(nx) dx, n f si sviluppa in serie di soli coseni a n = n f dispari b n = 1 π = 2 π π π π f(x) sin(nx) dx f(x) sin(nx) dx, n 1 f si sviluppa in serie di soli seni

5 Se f è periodica con periodo >, le formule diventano a n = 2 ( ) 2π f(x) cos nx dx, n =, 1, 2,... b n = 2 f(x) sin ( ) 2π nx dx, n = 1, 2,... Convergenza della serie di Fourier Sia S n la ridotta n-esima: S n (x) = a n 2 + a k cos(kx) + b k sin(kx) k=1 come converge la successione di funzioni S n a f? utti i risultati che enunceremo valgono con ovvie modifiche per funzioni -periodiche. eorema 1: convergenza in media quadratica Sotto l ipotesi di base f : R R 2π-periodica f integrabile su [, 2π] la successione (S n ) converge a f in in media quadratica, cioè S n (x) f(x) 2 dx =, n +

6 da cui n + n + S n (x) 2 dx = S n (x) dx = Inoltre vale l identità di Parseval f 2 (x) dx, f(x) dx. 1 π f 2 (x) dx = a n=1 (a 2 n + b2 n ). Osservazioni: Corollario (teorema di Riemann-Lebesgue): n n f(x) cos(nx) dx = f(x) sin(nx) dx = (poiché la serie + n=1 (a2 n + b 2 n) converge, la successione a 2 n + b2 n è infinitesima..) Se f è periodica con periodo >, l identità di Parseval è e si ha 2 n + f 2 (x) dx = a n=1 (a 2 n + b2 n ) S n (x) f(x) 2 dx =.

7 La convergenza in media quadratica NON implica la convergenza puntuale, cioè non implica lo sviluppo f(x) = a 2 + a k cos(kx) + b k sin(kx) x R. k=1 Si migliora il tipo di convergenza (media quadratica puntuale uniforme convergenza delle derivate) aumentando le ipotesi di regolarità su f. eorema 2: convergenza puntuale Se f : R R, 2πperiodica è continua a tratti in [, 2π] (quindi integrabile su [, 2π]) in x R f è derivabile, oppure f è continua in x e ed esistono finite la derivata destra f + (x ) e la derivata sinistra f (x ), oppure f ha un punto di salto in x e ed esistono finite la pseudoderivata destra x x + e la pseudoderivata sinistra x x allora S n converge in x a f(x+ )+f(x ) 2. f(x) f(x + ) x x f(x) f(x ) x x (oppure, Criterio di Dirichlet: f itata e monotona a tratti). cioè f è continua in [, 2π] tranne che in al più un numero finito di punti {x 1,..., x m } tali che per ogni i = 1,..., m f ha in x i una discontinuità di tipo salto

8 eorema 3: convergenza uniforme Sia f : R R, 2π-periodica. Supponiamo che 1. f C ((, 2π)) 2. f : [, 2π] R sia C 1 a tratti su [, 2π]. Allora per ogni [a, b] (, 2π) S n f uniformemente su [a, b]. Se oltre alle condizioni 1 & 2 si ha anche che f è continua in e in 2π (quindi f C (R)) allora S n f uniformemente su [, 2π] (e quindi uniformente su R). Osservazione: Si noti che f C (R) è condizione necessaria per la convergenza uniforme su R perché le S n sono funzioni continue e la convergenza uniforme preserva la continuità. L ipotesi f è continua in e in 2π è scritta in modo ridondante: in effetti la continuità in (che significa f( + ) = f() = f( )) da sola implica, per periodicità, anche f(2π + ) = f(2π) = f(2π ). cioè f è derivabile in [, 2π] tranne che in al più un numero finito di punti {x 1,..., x m } tali che per ogni i = 1,..., m esistono finite le derivate destre e sinistre f + (x i) e f (x i) e inoltre f è di classe C 1 sull intervallo (x i 1, x i )

9 Se la funzione di partenza è solo data sull intervallo [, 2π), la condizione f è continua in sulla sua prolungata 2π-periodica f si traduce, a livello di f, nella richiesta che f() = f( + ) = f(2π ). eorema 4: convergenza delle derivate Sia f : R R, 2π-periodica. Supponiamo che f C (R) e f C 1 ((, 2π)) e f C (R) e f : [, 2π] R sia C 1 a tratti su [, 2π] Allora la serie di Fourier si può derivare termine a termine, cioè f (x) = (a k cos(kx) + b k sin(kx)) x R. n= Osservazione: la condizione f C (R) significa che deve valere f () = f ( + ) = f (2π ).

Serie di Fourier. Hynek Kovarik. Analisi Matematica 2. Università di Brescia

Serie di Fourier. Hynek Kovarik. Analisi Matematica 2. Università di Brescia Serie di Fourier Hynek Kovarik Università di Brescia Analisi Matematica 2 Hynek Kovarik (Università di Brescia) Serie di Fourier Analisi Matematica 2 1 / 37 Polinomi trigonometrici Definizione Si dice

Dettagli

Serie trigonometriche e di Fourier Ci occuperemo di serie le cui ridotte N-esime sono polinomi trigonometrici di grado (o ordine) N:

Serie trigonometriche e di Fourier Ci occuperemo di serie le cui ridotte N-esime sono polinomi trigonometrici di grado (o ordine) N: Serie trigonometriche e di Fourier Ci occuperemo di serie le cui ridotte N-esime sono polinomi trigonometrici di grado (o ordine) N: S N (x) = N n=0 (a n cos (nx) + b n sin (nx)), a n, b n R (periodiche

Dettagli

Limitiamoci dapprima a considerare una funzione f di periodo 2π. Cercheremo di approssimarla con polinomi trigonometrici di ordine n della forma

Limitiamoci dapprima a considerare una funzione f di periodo 2π. Cercheremo di approssimarla con polinomi trigonometrici di ordine n della forma Serie di Fourier L idea che sta alla base degli sviluppi in serie di Fourier è quella di approssimare, in qualche senso, le funzioni (integrabili periodiche per mezzo di funzioni più regolari e/o più facilmente

Dettagli

ANALISI DI FOURIER. 2πk. è periodica di periodo T. Più precisamente, essendo. T x + 2π = cos. s(x) = s x + T ) T +α. f(x) dx

ANALISI DI FOURIER. 2πk. è periodica di periodo T. Più precisamente, essendo. T x + 2π = cos. s(x) = s x + T ) T +α. f(x) dx ANALISI DI FOURIER Sia >. Una funzione f, definita per x R, si dice periodica di periodo, se f(x + = f(x, x R. ( Se una funzione è periodica di periodo, essa è anche periodica di periodo, 3,..., k,....

Dettagli

Serie di Fourier - Esercizi svolti

Serie di Fourier - Esercizi svolti Serie di Fourier - Esercizi svolti Esercizio 1 È data la funzione f con domf) = R, periodica di periodo, tale che onda quadra) 1 se < x < fx) = se x = e x = 1 se < x < 1) 1 Calcolare i coefficienti di

Dettagli

Analisi Matematica 3/Analisi 4 - SOLUZIONI (20/01/2016)

Analisi Matematica 3/Analisi 4 - SOLUZIONI (20/01/2016) Corso di Laurea in Matematica Docente: Claudia Anedda Analisi Matematica 3/Analisi 4 - SOLUZIONI (//6) ) i) Dopo averla classificata, risolvere l equazione differenziale tẋ x = t cos(t), t >. ii) Scrivere

Dettagli

Spazi di Hilbert: Proiezioni e Serie di Fourier

Spazi di Hilbert: Proiezioni e Serie di Fourier Spazi di Hilbert: Proiezioni e Serie di Fourier Docente:Alessandra Cutrì Spazi di Hilbert Uno spazio vettoriale dotato di prodotto scalare che è completo rispetto alla norma indotta dal prodotto scalare

Dettagli

Serie di Fourier. Tra queste funzioni definiamo un prodotto scalare nel seguente modo: date f, g V poniamo f (x) g (x) dx. f (x) [g (x) + h (x)] dx

Serie di Fourier. Tra queste funzioni definiamo un prodotto scalare nel seguente modo: date f, g V poniamo f (x) g (x) dx. f (x) [g (x) + h (x)] dx Serie di Fourier Indichiamo con V l insieme delle funzioni f : R R che siano periodiche di periodo π, si abbia cioè f ( + π) = f (), e che risultino integrabili nell intervallo [, π]. Tra queste funzioni

Dettagli

Registro delle lezioni

Registro delle lezioni Complementi di Analisi Matematica - a.a. 2006-07 Corso di Laurea Specialistica in Ingegneria Civile (CIS) Registro delle lezioni Laura Poggiolini e Gianna Stefani 2 ottobre 2006, 2 ore, LP Il campo dei

Dettagli

COMPLEMENTI DI ANALISI MATEMATICA II. Prova scritta del 20 gennaio 2014

COMPLEMENTI DI ANALISI MATEMATICA II. Prova scritta del 20 gennaio 2014 Prova scritta del 2 gennaio 214 Studiare la convergenza puntuale e uniforme della serie di potenze n=1 n x 2n 2n + e n. Valutare poi la misurabilità e l integrabilità secondo Lebesgue della funzione somma

Dettagli

E, la successione di numeri {f n (x 0. n f n(x) (15.1)

E, la successione di numeri {f n (x 0. n f n(x) (15.1) Capitolo 15 15.1 Successioni e serie di funzioni Sia {f n } una successione di funzioni, tutte definite in un certo insieme E dello spazio R n ; si dice che essa è convergente nell insieme E se, comunque

Dettagli

Note sulle serie di Fourier

Note sulle serie di Fourier Note sulle serie di Fourier Rodica oader, a.a. 3/4 versione provvisoria (aggiornata al 3//7 Convergenza uniforme Data una funzione f : R R, periodica di periodo >, supponiamo di poter definire i coefficienti

Dettagli

Corso di Analisi Matematica Limiti di funzioni

Corso di Analisi Matematica Limiti di funzioni Corso di Analisi Matematica Limiti di funzioni Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 39 1 Definizione di ite 2 Il calcolo dei

Dettagli

Analisi di Fourier e alcune equazioni della fisica matematica 1. TERZA LEZIONE Serie di funzioni Serie di potenze

Analisi di Fourier e alcune equazioni della fisica matematica 1. TERZA LEZIONE Serie di funzioni Serie di potenze Analisi di Fourier e alcune equazioni della fisica matematica 1 TERZA LEZIONE Serie di funzioni Serie di potenze 1 prof. Claudio Saccon, Dipartimento di Matematica Applicata, Via F. Buonarroti 1/C email:

Dettagli

Analisi a più variabili: Integrale di Lebesgue

Analisi a più variabili: Integrale di Lebesgue Analisi a più variabili: Integrale di Lebesgue 1 Ripasso delle definizioni di Algebre, σ-algebre, misure additive, misure σ-additive, Proprietà della misura astratta, misura esterna. Definizione (Insieme

Dettagli

Serie e Trasformata di Fourier

Serie e Trasformata di Fourier Serie e Trasformata di Fourier Corso di Analisi Funzionale Prof. Paolo Nistri Cancelli, D Angelo, Giannetti Polinomio di Fourier Si consideri la successione costituita dalle restrizioni delle funzioni

Dettagli

Analisi di Fourier e alcune equazioni della fisica matematica 1. SESTA e SETTIMA Lezione Serie di Fourier

Analisi di Fourier e alcune equazioni della fisica matematica 1. SESTA e SETTIMA Lezione Serie di Fourier Analisi di Fourier e alcune equazioni della fisica matematica 1 SESTA e SETTIMA Lezione Serie di Fourier 1 prof. Claudio Saccon, Dipartimento di Matematica Applicata, Via F. Buonarroti 1/C email: saccon@mail.dm.unipi.it

Dettagli

Analisi Matematica II 6 aprile sin[π(x 2 + y 2 /5)] x 2 + y2

Analisi Matematica II 6 aprile sin[π(x 2 + y 2 /5)] x 2 + y2 Analisi Matematica II 6 aprile 07 Cognome: Nome: Matricola:. (0 punti) Si consideri la seguente corrispondenza tra R ed R f(x, y) = Determinare l insieme di definizione A R di f e sin[π(x + y /5)] x +

Dettagli

Diario del corso di Analisi Matematica 1 (a.a. 2017/18)

Diario del corso di Analisi Matematica 1 (a.a. 2017/18) Diario del corso di Analisi Matematica 1 (a.a. 2017/18) 22 settembre 2017 (2 ore) Presentazione del corso. Numeri naturali, interi, razionali, reali. 2 non è razionale. Come si risolve 2 + 1 = 0? 25 settembre

Dettagli

3.2 Funzioni periodiche e sviluppi in Serie di Fourier

3.2 Funzioni periodiche e sviluppi in Serie di Fourier 3. Funzioni periodiche e sviluppi in Serie di Fourier Una prima classe di funzioni per cui si può effettuare l analisi armonica (3.5 contiene le funzioni periodiche (di periodo, tali cioè che f(t + = f(t,

Dettagli

[a n cos(nx) + b n sin(nx)] (35) n=1

[a n cos(nx) + b n sin(nx)] (35) n=1 5 Serie di Fourier Sia f : R R una funzione periodica di periodo π, cioè f(x + π) = f(x) x R. Vogliamo rappresentare la funzione f tramite funzioni trigonometriche elementari aventi la stessa proprietà

Dettagli

Serie di Fourier. 1. Introduzione Le funzioni somme di funzioni trigonometriche

Serie di Fourier. 1. Introduzione Le funzioni somme di funzioni trigonometriche Serie di Fourier. Introduzione Le funzioni somme di funzioni trigonometriche, sin(x), cos(x), sin(2x), cos(2x),...ecc. P (x) = 2 a + a cos(x) + b sin(x) +... + b n sin(x) si dicono polinomi trigonometrici:

Dettagli

Diario del corso di Analisi Matematica 1 (a.a. 2016/17)

Diario del corso di Analisi Matematica 1 (a.a. 2016/17) Diario del corso di Analisi Matematica 1 (a.a. 2016/17) 16 settembre 2016 (2 ore) Presentazione del corso. Numeri naturali, interi, razionali, reali. 2 non è razionale. Come si risolve 2 + 1 = 0? 19 settembre

Dettagli

ANALISI MATEMATICA 4. Prova scritta del 24 gennaio 2013

ANALISI MATEMATICA 4. Prova scritta del 24 gennaio 2013 Prova scritta del 24 gennaio 2013 Esercizio 1. Sia Ω R 3 un insieme misurabile secondo Lebesgue e di misura finita. Sia {f n } n N una successione di funzioni f n : Ω R misurabili e tali che 1) f n (x)

Dettagli

f n (x) 3 1. x Essendo g(x) = 3 1

f n (x) 3 1. x Essendo g(x) = 3 1 Secondo esonero di Analisi eale 6//9 a.a. 8-9 ) Studiare la convergenza in L p ((, )), p +, della successione di funzioni cos(nx) e nx f n (x) = 3. x Si vede facilmente che la successione f n converge

Dettagli

ANALISI MATEMATICA L-C, B-S

ANALISI MATEMATICA L-C, B-S ANALISI MAEMAICA L-C, B-S 25-6 SERIE DI FOURIER MASSIMO CICOGNANI Per la pubblicazione in rete di queste dispense si deve ringraziare Marco Frison che le ha trascritte interamente in Latex 1 Lo spazio

Dettagli

Breviario sulle serie di Fourier

Breviario sulle serie di Fourier Breviario sulle serie di Fourier Franco Rampazzo November 6, 2008 1 Approssimazione quadratica 1.1 Spazi finito-dimensionali R N è uno spazio munito di un prodotto scalare: < f, g >. = f n g n, dove f

Dettagli

5π/2. 3π/2. y = f(x) π π. -5π/2-2π -3π/2 -π -π/2 π/2 π 3π/2 2π 5π/2 3π 7π. -π/2

5π/2. 3π/2. y = f(x) π π. -5π/2-2π -3π/2 -π -π/2 π/2 π 3π/2 2π 5π/2 3π 7π. -π/2 Corso di Laurea in Matematica Analisi 4 - SOLUZIONI /9/8) Docente: Claudia Anedda ) Data la funzione yx) x + π, x, π) prolungarla su tutto R in modo tale che sia una funzione π-periodica pari, disegnare

Dettagli

Laurea triennale in Informatica - Corso B (M-Z) Prova scritta di Analisi Matematica Teoria

Laurea triennale in Informatica - Corso B (M-Z) Prova scritta di Analisi Matematica Teoria 13 giugno 2016 1. In base alla teoria studiata e giustificando la risposta, determinare (a) se la funzione f(x) = cos x è pari, dispari o nessuna delle due cose; x 5 (b) se la funzione g(x) = 2 x + x 3

Dettagli

ANALISI C & Complementi di Analisi Matematica di Base. Prova scritta del 23 gennaio 2007

ANALISI C & Complementi di Analisi Matematica di Base. Prova scritta del 23 gennaio 2007 Prova scritta del 23 gennaio 2007 Esercizio 1. Sia f : R R una funzione misurabile e non negativa; si consideri la successione di funzioni f n (x) = max3f(x) 2n, 0}, x R, n N. Provare che se f è integrabile

Dettagli

Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Esercizi svolti su misura e integrale di Lebesgue, spazi L p, operatori lineari continui

Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Esercizi svolti su misura e integrale di Lebesgue, spazi L p, operatori lineari continui Corso di Metodi Matematici per l Ingegneria A.A. 26/27 Esercizi svolti su misura e integrale di Lebesgue, spazi L p, operatori lineari continui Marco Bramanti Politecnico di Milano December 4, 26 Esercizi

Dettagli

Diario del corso di Analisi Matematica 1 (a.a. 2018/19)

Diario del corso di Analisi Matematica 1 (a.a. 2018/19) Diario del corso di Analisi Matematica 1 (a.a. 2018/19) 17 settembre 2018 (2 ore) [Presentazione del corso di studi, da parte del Direttore di Dipartimento.] 19 settembre 2018 (2 ore) Presentazione del

Dettagli

COMPLEMENTI DI ANALISI MATEMATICA DI BASE. Prova scritta del 26 gennaio 2005

COMPLEMENTI DI ANALISI MATEMATICA DI BASE. Prova scritta del 26 gennaio 2005 Prova scritta del 26 gennaio 2005 Esercizio 1. Posto B = x R 2 : x 2 2}, sia f n } una successione di funzioni (misurabili e) integrabili in B tali che f n f q.o. in B e, per ogni n N, f n (x) 2 x 3 per

Dettagli

f(n)r n e inx lim Se f(x) C(T) allora f S (r) f(x) = lim e inx

f(n)r n e inx lim Se f(x) C(T) allora f S (r) f(x) = lim e inx 17.1. Analisi di Fourier III. 17.1.1. Teorema di approssimazione di Weierstrass. Un polinomio trigonometrico è una qualunque funzione della forma n

Dettagli

ANALISI MATEMATICA I, Compito scritto del 5/07/2016 Corso di Laurea in Matematica. COGNOME e NOME... MATR T

ANALISI MATEMATICA I, Compito scritto del 5/07/2016 Corso di Laurea in Matematica. COGNOME e NOME... MATR T ANALISI MATEMATICA I, Compito scritto del 5/7/6 Corso di Laurea in Matematica COGNOME e NOME... MATR... 3 4 T Nelle risposte devono essere riportati anche i conti principali e le motivazioni principali.

Dettagli

Analisi Matematica III modulo

Analisi Matematica III modulo Università del Salento Dipartimento di Matematica Ennio de Giorgi Michele Carriero Lucia De Luca Appunti di Analisi Matematica III modulo Corso di Laurea in Matematica Indice Introduzione 1 Capitolo 1.

Dettagli

COMPLEMENTI DI ANALISI MATEMATICA II. Prova scritta del 20 gennaio 2014

COMPLEMENTI DI ANALISI MATEMATICA II. Prova scritta del 20 gennaio 2014 Prova scritta del 20 gennaio 2014 Studiare la convergenza puntuale e uniforme della serie di potenze n x 2n 2n + e n. Valutare poi la misurabilità e l integrabilità secondo Lebesgue della funzione somma

Dettagli

Analisi 2. Roberto Monti. Appunti del Corso - Versione 5 Ottobre 2012

Analisi 2. Roberto Monti. Appunti del Corso - Versione 5 Ottobre 2012 Analisi 2 Roberto Monti Appunti del Corso - Versione 5 Ottobre 212 Indice Capitolo 1. Programma 5 Capitolo 2. Convergenza uniforme 7 1. Convergenza uniforme e continuità 7 2. Criterio di Abel Dirichlet

Dettagli

Convergenza puntuale ed uniforme delle serie di Fourier

Convergenza puntuale ed uniforme delle serie di Fourier Convergenza puntuale ed uniforme delle serie di Fourier 8 aprile 009 In questi appunti prendiamo in considerazione funzioni di variabile reale che possono assumere però valori complessi. Una funzione F

Dettagli

Serie di Fourier. prof. Sergio Zoccante 27 gennaio 2011

Serie di Fourier. prof. Sergio Zoccante 27 gennaio 2011 Serie di Fourier prof. Sergio Zoccante 27 gennaio 2011 1 Le serie di Fourier Gli sviluppi in serie di Taylor hanno applicazioni numerosissime. Tuttavia, le condizioni alle quali una funzione deve soddisfare

Dettagli

2. Si esponga il problema della migliore approssimazione in norma, e si dica in quali spazi esso ha certamente soluzione, e quale è questa soluzione.

2. Si esponga il problema della migliore approssimazione in norma, e si dica in quali spazi esso ha certamente soluzione, e quale è questa soluzione. COMPLEMENTI DI MATEMATICA Corso di Laurea Magistrale in Ingegneria Elettrotecnica CM98sett.tex 6..2009 - lunedì (2 ore) Esercitazione del 6..2009 Risolvere tre esercizi per pagina, a scelta.. Si definisca

Dettagli

SVILUPPO IN SERIE DI FOURIER

SVILUPPO IN SERIE DI FOURIER SVILUPPO IN SERIE DI FOURIER Prof. Attampato Daniele DispensediMatematica prof.attampatodaniele SVILUPPO IN SERIE DI UNA FUNZIONE Uno dei problemi più frequenti in matematica è legato alla necessità di

Dettagli

Corso di laurea in STM Analisi di Fourier

Corso di laurea in STM Analisi di Fourier Corso di laurea in STM Analisi di Fourier 2016-17 Dettaglio delle lezioni svolte e programma del corso 07/03 Ortogonalità in L 2 del sistema trigonometrico. Sviluppo di Fourier in forma reale e complessa.

Dettagli

1 Successioni di funzioni

1 Successioni di funzioni Analisi Matematica 2 Successioni di funzioni CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 6 SERIE DI POTENZE Supponiamo di associare ad ogni n N (rispettivamente ad ogni n p, per qualche

Dettagli

INTRODUZIONE ALLE SERIE DI FOURIER REALI E COMPLESSE

INTRODUZIONE ALLE SERIE DI FOURIER REALI E COMPLESSE INTRODUZIONE ALLE SERIE DI FOURIER REALI E COMPLESSE 1. Nozioni geometriche e definizioni di base Prendiamo in esame funzioni periodiche a valori reali e complesse, quindi funzioni f : R R, o f : R C tali

Dettagli

è un segnale periodico di periodo T0 1 equazioni di analisi e di sintesi stabiliscono

è un segnale periodico di periodo T0 1 equazioni di analisi e di sintesi stabiliscono PROPRIEA ELEMENARI Se x( t) è un segnale periodico di periodo 0 di classe C 1 -tratti e normalizzato, le equazioni di analisi e di sintesi stabiliscono una corrispondenza fra x( t) e la sequenza dei suoi

Dettagli

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica DIPARTIMENTO DI MATEMATICA Università degli Studi di Trento Via Sommarive - Povo (TRENTO) Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata,

Dettagli

Argomento della lezione N. 1. Argomento della lezione N. 2. Argomento della lezione N. 12. Argomento della lezione N. 11

Argomento della lezione N. 1. Argomento della lezione N. 2. Argomento della lezione N. 12. Argomento della lezione N. 11 C. Presilla Modelli e Metodi Matemacici della Fisica a.a. 2011/2012 2 Argomento della lezione N. 1 Fondamenti assiomatici. L unità immaginaria Argomento della lezione N. 2 Moduli e coniugati. Disuguaglianza

Dettagli

Appendice B ANALISI FUNZIONALE. 1 Spazi di Banach

Appendice B ANALISI FUNZIONALE. 1 Spazi di Banach Appendice B ANALISI FUNZIONALE In questo capitolo si introducono gli spazi di Banach e di Hilbert, gli operatori lineari e loro spettro. Inoltre si discutono gli operatori compatti su uno spazio di Hilbert.

Dettagli

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria Formule di Taylor Ottobre 2012

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria Formule di Taylor Ottobre 2012 Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@polimi.it Formule di Taylor Ottobre 2012 Indice 1 Formule di Taylor 1 1.1 Il polinomio di Taylor...............................

Dettagli

Appunti di ANALISI MATEMATICA II Corso di Laurea Triennale in Matematica

Appunti di ANALISI MATEMATICA II Corso di Laurea Triennale in Matematica Appunti di ANALISI MATEMATICA II Corso di Laurea Triennale in Matematica Umberto Massari Anno accademico 3-4 SUCCESSIONI E SERIE DI FUNZIONI. Successioni di funzioni: convergenza puntuale ed uniforme Sia

Dettagli

CAPITOLO 9. Le serie di potenze

CAPITOLO 9. Le serie di potenze CAPITOLO 9 Le serie di potenze Ahlfors, pag. 33,..,45 Bozza da rivedere Le funzioni analitiche sono piú o meno polinomi in z, o i loro limiti, somme di serie di potenze in z. Prerequisiti fondamentali

Dettagli

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame COGNOME NOME Matr. A Analisi Matematica (Corso di Laurea in Informatica e Bioinformatica) Firma dello studente Tempo: 3 ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni

Dettagli

Serie di Fourier. (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi. DIMS Università di Trento. anno accademico 2008/2009

Serie di Fourier. (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi. DIMS Università di Trento. anno accademico 2008/2009 Serie di Fourier (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi DIMS Università di Trento anno accademico 8/9 Serie di Fourier 1 / 48 Jean Baptiste Joseph Fourier (1768 183) Serie di Fourier

Dettagli

Esercizi svolti su serie di Fourier

Esercizi svolti su serie di Fourier Esercizi svolti su serie di Fourier Esercizio. (Onda quadra. Determinare i coefficienti di Fourier della funzione x [, f(x = x [, prolungata a una funzione -periodica su R (d ora in poi denoteremo con

Dettagli

Analisi in più variabili II, Anno Accademico , Matematica. Alberti, Tortorelli. III foglio di esercizi dal 23 ottobre al 6 novembre 2012

Analisi in più variabili II, Anno Accademico , Matematica. Alberti, Tortorelli. III foglio di esercizi dal 23 ottobre al 6 novembre 2012 Analisi in più variabili II, Anno Accademico 0-03, Matematica Alberti, Tortorelli III foglio di esercizi dal 3 ottobre al 6 novembre 0 Testi da cui si è preso spunto: H.Dym H.P.Mc Kean Fourier series and

Dettagli

Analisi Reale e Complessa - a.a. 2008/2009

Analisi Reale e Complessa - a.a. 2008/2009 Terzo appello Esercizio Analisi Reale e Complessa - a.a. 8/9 Sia (a) Si provi che f L (R); f(x) eix x i. (b) Si calcoli con metodi di variabile complessa la trasformata di Fourier di f. (a) Si osservi

Dettagli

ESERCIZI DI ANALISI MATEMATICA 1

ESERCIZI DI ANALISI MATEMATICA 1 ESERCIZI DI ANALISI MATEMATICA 1 GRAZIANO CRASTA 1. SPAZI METRICI Esercizio 1.1. ([2, Ex. 2.11]) Stabilire quali fra le seguenti funzioni sono metriche in R. d 1 (x, y) = (x y) 2, d 2 (x, y) = x y, d 3

Dettagli

Analisi Matematica 1 (prof. G. Cupini) (CdS Astronomia - Univ. Bologna) REGISTRO DELLE LEZIONI A.A

Analisi Matematica 1 (prof. G. Cupini) (CdS Astronomia - Univ. Bologna) REGISTRO DELLE LEZIONI A.A Analisi Matematica 1 (prof. G. Cupini) (CdS Astronomia - Univ. Bologna) REGISTRO DELLE LEZIONI A.A.2015-2016 22 SETTEMBRE 2015 3 ore 14-17 Insiemi e operazioni tra insiemi. Numeri reali. Assiomi dei numeri

Dettagli

Esonero di Analisi Matematica II (A)

Esonero di Analisi Matematica II (A) Esonero di Analisi Matematica II (A) Ingegneria Edile, 8 aprile 3. Studiare la convergenza del seguente integrale improprio: + x log 3 x (x ) 3 dx.. Studiare la convergenza puntuale ed uniforme della seguente

Dettagli

Dimostrazione. Indichiamo con α e β (finiti o infiniti) gli estremi dell intervallo I. Poniamo

Dimostrazione. Indichiamo con α e β (finiti o infiniti) gli estremi dell intervallo I. Poniamo C.6 Funzioni continue Pag. 114 Dimostrazione del Corollario 4.25 Corollario 4.25 Sia f continua in un intervallo I. Supponiamo che f ammetta, per x tendente a ciascuno degli estremi dell intervallo, iti

Dettagli

Nota: A meno che non sia specificato diversamente, si intende che i teoremi, lemmi, proposizioni sotto menzionati siano stati dimostrati a lezione.

Nota: A meno che non sia specificato diversamente, si intende che i teoremi, lemmi, proposizioni sotto menzionati siano stati dimostrati a lezione. Programma di Analisi Matematica 1 (Canale ICM) svolto per lezioni - A. Languasco - C. Vagnoni 1 Nota: A meno che non sia specificato diversamente, si intende che i teoremi, lemmi, proposizioni sotto menzionati

Dettagli

Proposizioni. Negazione di una proposizione. Congiunzione e disgiunzione di due proposizioni. Predicati. Quantificatori.

Proposizioni. Negazione di una proposizione. Congiunzione e disgiunzione di due proposizioni. Predicati. Quantificatori. Corso di laurea in Ingegneria elettronica e informatica - A13 Programma di Analisi matematica 1 - A13106 Anno accademico 2015-2016 Prof. Giulio Starita 1 - Insiemi, logica, numeri I concetti primitivi.

Dettagli

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni Soluzioni dello scritto di Analisi Matematica II - /7/9 C.L. in Matematica e Matematica per le Applicazioni Proff. K. Payne, C. Tarsi, M. Calanchi Esercizio. a La funzione f è limitata e essendo lim fx

Dettagli

Analisi Matematica 3 - Programma (A.A. 2016/2017)

Analisi Matematica 3 - Programma (A.A. 2016/2017) Analisi Matematica 3 - Programma (A.A. 2016/2017) Propedeuticità: ANALISI MATEMATICA 2: - calcolo differenziale in R n e funzioni implicite (PS1 cap. 7); - curve e integrali curvilinei (PS2 cap. 1); -

Dettagli

Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno

Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno Programma del Corso di Matematica A Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno Premessa (D) dopo un teorema o una proposizione citati sta ad

Dettagli

Richiami di topologia di R n e di calcolo differenziale in più variabili

Richiami di topologia di R n e di calcolo differenziale in più variabili Anno accademico: 2016-2017 Corso di laurea in Ingegneria Aerospaziale e Ingegneria dell Autoveicolo Programma di Analisi Matematica II (6 CFU) (codice: 22ACILZ e 22ACILN) Docente: Lancelotti Sergio Richiami

Dettagli

PROVE SCRITTE DI ANALISI MATEMATICA II (V.O.), ANNO 2002

PROVE SCRITTE DI ANALISI MATEMATICA II (V.O.), ANNO 2002 PROVE SCRITTE DI ANALISI MATEMATICA II (V.O.), ANNO 22 Prova scritta del 1/1/22 Si esamini la serie di funzioni: 1 log x (e n + n), definita per x IR. Si determini l insieme S in cui tale serie converge,

Dettagli

ANALISI MATEMATICA 4. Prova scritta del 24 gennaio 2013

ANALISI MATEMATICA 4. Prova scritta del 24 gennaio 2013 Prova scritta del 24 gennaio 2013 Esercizio 1. Sia Ω R 3 un insieme misurabile secondo Lebesgue e di misura finita. Sia {f n } n N una successione di funzioni f n : Ω R misurabili e tali che 1) f n (x)

Dettagli

PROGRAMMA di Analisi Matematica 1 A.A , canale 3, prof.: Francesca Albertini Ingegneria area dell Informazione

PROGRAMMA di Analisi Matematica 1 A.A , canale 3, prof.: Francesca Albertini Ingegneria area dell Informazione PROGRAMMA di Analisi Matematica A.A. 204-205, canale 3, prof.: Francesca Albertini Ingegneria area dell Informazione Testo Consigliato: - Analisi Matematica, Teoria e Applicazioni, A. Marson, P. Baiti,

Dettagli

3. CALCOLO DIFFERENZIALE PER FUNZIONI DI UNA VARIABILE REALE.

3. CALCOLO DIFFERENZIALE PER FUNZIONI DI UNA VARIABILE REALE. 3. CALCOLO DIFFERENZIALE PER FUNZIONI DI UNA VARIABILE REALE. Molto spesso y = f(x) rappresenta l evoluzione di un fenomeno al passare del tempo x.se siamo interessati a sapere con che rapidità il fenomeno

Dettagli

Esercitazione di riepilogo su serie di funzioni, e in particolare serie di Fourier

Esercitazione di riepilogo su serie di funzioni, e in particolare serie di Fourier Esercitazione di riepilogo su serie di funzioni, e in particolare serie di Fourier Serie di funzioni e convergenza totale Tenere presente: De nizione di convergenza puntuale e convergenza totale per una

Dettagli

Prova scritta di Analisi Matematica III

Prova scritta di Analisi Matematica III 18 luglio 2016 f n (x) = 1 n e (x n)2 (x R, n N ). 2. Si scriva la disuguaglianza di Bessel per la funzione f, periodica di periodo 2π, tale che 0 x [ π, 0) f (x) = 2 x x [0, π). 3. Si consideri l equazione

Dettagli

2 Introduzione ai numeri reali e alle funzioni

2 Introduzione ai numeri reali e alle funzioni 1 CORSO DI LAUREA in Fisica Canale A-CO (canale 4) docente P. Vernole Il programma d esame comprende tutti gli argomenti svolti durante il corso. Dopo ogni sezione sono indicate le parti delle Dispense

Dettagli

Gruppo N 2. Il candidato risolva tutti gli esercizi sotto indicati, illustrando con chiarezza, rigore e sintesi i procedimenti. Esercizio (1) Si ponga

Gruppo N 2. Il candidato risolva tutti gli esercizi sotto indicati, illustrando con chiarezza, rigore e sintesi i procedimenti. Esercizio (1) Si ponga Gruppo N Il candidato risolva tutti gli esercizi sotto indicati, illustrando con chiarezza, rigore e sintesi i procedimenti utilizzati. Esercizio (1) Si ponga (a) F(x) = ln(3 + sin t )dt. Giustificando

Dettagli

Esercitazione sulle serie di Fourier

Esercitazione sulle serie di Fourier Esercitazione sulle serie di Fourier 3 novembre. Calcolo dei coefficienti di Fourier e di somme di serie speciali Esercizio. Si consideri il segnale u : R R, -periodico, definito nell intervallo, π, da

Dettagli

Analisi Matematica. Calcolo integrale

Analisi Matematica. Calcolo integrale a.a. 2014/2015 Laurea triennale in Informatica Analisi Matematica Calcolo integrale Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli studenti. Parte

Dettagli

La Trasformata di Fourier: basi matematiche ed applicazioni. Parte II

La Trasformata di Fourier: basi matematiche ed applicazioni. Parte II Metodi di Calcolo per la Chimica A.A. 2016-2017 Marco Ruzzi La Trasformata di Fourier: basi matematiche ed applicazioni Parte II Showing a Fourier transform to a physics student generally produces the

Dettagli

Michela Eleuteri ANALISI MATEMATICA. Serie di Fourier

Michela Eleuteri ANALISI MATEMATICA. Serie di Fourier Michela Eleuteri ANALISI MATEMATICA Serie di Fourier A Giulia con la speranza che almeno nella matematica non assomigli al papà Indice Serie di Fourier 5. Cenni sulle serie di funzioni.............................

Dettagli

ANALISI VETTORIALE COMPITO IN CLASSE DEL 8/11/2013

ANALISI VETTORIALE COMPITO IN CLASSE DEL 8/11/2013 ANALISI VETTORIALE COMPITO IN CLASSE DEL 8//3 Premessa (Cfr. gli Appunti di Analisi Vettoriale / del Prof. Troianiello) Nello studio degli integrali impropri il primo approccio all utilizzo del criterio

Dettagli

3. (Da Medicina e Odontoiatria 2012) Determinare quale delle seguenti funzioni soddisfa la relazione f(-x) = -f(x), per ogni numero reale x.

3. (Da Medicina e Odontoiatria 2012) Determinare quale delle seguenti funzioni soddisfa la relazione f(-x) = -f(x), per ogni numero reale x. QUESITI 1 TRIGONOMETRIA 1. (Da Veterinaria 2014) Calcolare il valore dell espressione: cosπ + cos2π + cos3π + cos4π + + cos10π [gli angoli sono misurati in radianti] a) -10 b) -1 c) 0 d) 1 e) 10 2. (Da

Dettagli

DIARIO DELLE LEZIONI DEL CORSO DI ANALISI MATEMATICA I (L Z) CORSO DI LAUREA IN INGEGNERIA AEROSPAZIALE

DIARIO DELLE LEZIONI DEL CORSO DI ANALISI MATEMATICA I (L Z) CORSO DI LAUREA IN INGEGNERIA AEROSPAZIALE DIARIO DELLE LEZIONI DEL CORSO DI ANALISI MATEMATICA I (L Z) 2011-2012 CORSO DI LAUREA IN INGEGNERIA AEROSPAZIALE DANIELE ANDREUCCI DIP. SCIENZE DI BASE E APPLICATE PER L INGEGNERIA UNIVERSITÀ LA SAPIENZA

Dettagli

Integrali (M.S. Bernabei & H. Thaler)

Integrali (M.S. Bernabei & H. Thaler) Integrali (M.S. Bernabei & H. Thaler) Integrali. Motivazione Che cos é un integrale? Sia f 0 e limitata b a f ( x) dx area f ( x, y) dxdy volume Definizione di integrale: b a dove f ( x) dx lim n n k b

Dettagli

MATEMATICA Laurea Triennale in Scienze Geologiche Prof. Giuseppe Maria COCLITE anno accademico 2013/2014

MATEMATICA Laurea Triennale in Scienze Geologiche Prof. Giuseppe Maria COCLITE anno accademico 2013/2014 MATEMATICA Laurea Triennale in Scienze Geologiche Prof. Giuseppe Maria COCLITE anno accademico 2013/2014 Preliminari. I numeri razionali e irrazionali. Irrazionalità di 2. Densità di Q in R. Classi separate.

Dettagli

Serie di funzioni: esercizi svolti

Serie di funzioni: esercizi svolti Serie di funzioni: esercizi svolti Gli esercizi contrassegnati con il simbolo * presentano un grado di difficoltà maggiore. Esercizio. seguenti serie di funzioni: Studiare la convergenza normale, uniforme,

Dettagli

1 Successioni di funzioni

1 Successioni di funzioni Successioni di Esercizio.. Studiare la convergenza puntuale ed uniforme della seguente successione di (.) f n (x) = n x Osserviamo che fissato x R f n(x) = + n x x R. x ( n + x ) = pertanto la successione

Dettagli

Esercitazione di Analisi Matematica I Esercizi e soluzioni 19/04/2013 TOPOLOGIA

Esercitazione di Analisi Matematica I Esercizi e soluzioni 19/04/2013 TOPOLOGIA Esercitazione di Analisi Matematica I Esercizi e soluzioni 9/04/203 TOPOLOGIA Mostrare che uno spazio infinito con la metrica discreta non può essere compatto Soluzione: Per la metrica discreta d : X X

Dettagli

Argomento delle lezioni del corso di Analisi A.A

Argomento delle lezioni del corso di Analisi A.A Argomento delle lezioni del corso di Analisi A.A.2011-2012 30 gennaio 2012 Lezione 1-2 (5 ottobre 2011) Numeri naturali, interi, razionali. Definizione intuitiva dei reali attraverso la retta. Definizione

Dettagli

A.A. 2015/16 REGISTRO ELETTRONICO DELLE LEZIONI

A.A. 2015/16 REGISTRO ELETTRONICO DELLE LEZIONI A.A. 2015/16 ISTITUZIONI DI ANALISI SUPERIORE 12 crediti, I semestre Docenti: Prof. Gennaro Infante per i primi 6 crediti ed io per i rimanenti 6 crediti. REGISTRO ELETTRONICO DELLE LEZIONI IMPORTANTE:

Dettagli

Esame di Metodi Matematici per l Ingegneria Seconda prova in itinere. Gennaio 2018 A.A. 2017/2018. Prof. M. Bramanti Tema A

Esame di Metodi Matematici per l Ingegneria Seconda prova in itinere. Gennaio 2018 A.A. 2017/2018. Prof. M. Bramanti Tema A Esame di Metodi Matematici per l Ingegneria Seconda prova in itinere. Gennaio 18 A.A. 17/18. Prof. M. Bramanti Tema A Cognome: Nome N matr. o cod. persona: Dom 1 Dom Dom 3 Es 1 Es Es 3 Tot. Punti Domande

Dettagli

SUCCESSIONI E SERIE NUMERICHE E DI FUNZIONI

SUCCESSIONI E SERIE NUMERICHE E DI FUNZIONI SERIE NUMERICHE Si consideri una successione di elementi. Si definisce serie associata ad la somma Per ogni indice della successione, si definisce successione delle somme parziali associata a la somma

Dettagli

PROVE SCRITTE DI ANALISI MATEMATICA II (V.O.), ANNO 2005

PROVE SCRITTE DI ANALISI MATEMATICA II (V.O.), ANNO 2005 PROVE SRITTE DI ANALISI MATEMATIA II (V.O.), ANNO 25 Prova scritta del 6/4/25 Si consideri la serie di potenze n=1 2n 2n 1 (2n + 1)!. Dopo aver determinato il suo insieme E di convergenza, si trovi una

Dettagli

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2016/2017

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2016/2017 Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2016/201 Primitive quasi elementari = + 1 = ln + = + + 1 sin = cos+ cos = sin + 1 + " = arctan + = arcsin+ &1 " Tecnica di integrazione

Dettagli

1. Martedì 1/10/2013, ore: 2(2) Introduzione al corso: problemi ben posti, condizionamento, stabilità, complessità

1. Martedì 1/10/2013, ore: 2(2) Introduzione al corso: problemi ben posti, condizionamento, stabilità, complessità Registro delle lezioni di MATEMATICA APPLICATA Corsi di Laurea in Biomedica 6 CFU - A.A. 2013/2014 docente: Dott.ssa Luisa Fermo ultimo aggiornamento: 18 dicembre 2013 1. Martedì 1/10/2013, 12 14. ore:

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I

TEMI D ESAME DI ANALISI MATEMATICA I TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea quadriennale) in Fisica a.a. 003/04 Prova scritta del 3 aprile 003 ] Siano a, c parametri reali. Studiare l esistenza e, in caso affermativo, calcolare

Dettagli

Analisi Matematica 1 Soluzioni prova scritta n. 1

Analisi Matematica 1 Soluzioni prova scritta n. 1 Analisi Matematica Soluzioni prova scritta n Corso di laurea in Matematica, aa 008-009 5 giugno 009 Sia a n la successione definita per ricorrenza: a n+ 3 a n a 3 n, a 3 a n+ 3 a n a 3 n, a 3 a n+ 3 a

Dettagli

Esercizi di riepilogo 2: soluzioni ( Verifica di analisi funzionale e serie di Fourier)

Esercizi di riepilogo 2: soluzioni ( Verifica di analisi funzionale e serie di Fourier) Esercizi di riepilogo 2: soluzioni ( Verifica di analisi funzionale e serie di Fourier) Spazi Vettoriali e Funzionali 1. Risposte: (a) Spazio vettoriale complesso. (b) Spazio vettoriale reale. (c) Non

Dettagli

Gli argomenti denotati con un asterisco tra parentesi (e solo quelli) sono stati dimostrati.

Gli argomenti denotati con un asterisco tra parentesi (e solo quelli) sono stati dimostrati. Corso di laurea: Fisica ed Astronomia Programma di Analisi Matematica 2 a.a. 2018/19 Docente: Fabio Paronetto Gli argomenti denotati con un asterisco tra parentesi (e solo quelli) sono stati dimostrati.

Dettagli

DIARIO DELLE LEZIONI DEL CORSO DI FISICA MATEMATICA A.A. 2012/2013 CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCANICA

DIARIO DELLE LEZIONI DEL CORSO DI FISICA MATEMATICA A.A. 2012/2013 CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCANICA DIARIO DELLE LEZIONI DEL CORSO DI FISICA MATEMATICA A.A. 2012/2013 CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCANICA DANIELE ANDREUCCI DIP. SCIENZE DI BASE E APPLICATE PER L INGEGNERIA UNIVERSITÀ LA SAPIENZA

Dettagli

Diario del Corso Analisi Matematica I

Diario del Corso Analisi Matematica I Diario del Corso Analisi Matematica I 1. Martedì 1 ottobre 2013 Presentazione del corso. Nozioni di Teoria degli Insiemi. Numeri Naturali, loro proprietà, rappresentazione geometrica, sommatoria, principio

Dettagli