I teoremi sulle derivate: Lagrange e Cauchy

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "I teoremi sulle derivate: Lagrange e Cauchy"

Transcript

1 ed il Safety Tutor Monfalcone, 31 maggio 2018

2 ed il Safety Tutor Ricordiamo quanto afferma il teorema di Rolle Teorema di Rolle Data una funzione f(x) tale che f(x) è continua nell intervallo [a, b] f(x) è derivabile in (a, b) f(a) = f(b) allora esiste almeno un punto c, a < c < b, per il quale risulta f (c) = 0 e vediamone una generalizzazione

3 ed il Safety Tutor (Teorema del valor medio) Data una funzione f(x) tale che f(x) è continua in un intervallo chiuso [a, b] f(x) è derivabile in (a, b) allora esiste almeno un punto c, a < c < b, per cui vale: f (c) = b a

4 ed il Safety Tutor Dimostrazione Consideriamo i due punti A(a, f(a)) e B(b, f(b)) del grafico della funzione f(x) e la retta passante per questi, che ha equazione y = f(a) + f(b) f(a) b a (x a). Definiamo la seguente funzione: g(x) = f(x) f(a) b a (x a) g(x) è differenza di funzioni continue in [a, b] e derivabili in (a, b), quindi è continua in [a, b] e derivabile in (a, b).

5 ed il Safety Tutor g(a) = f(a) f(a) g(b) = f(b) f(a) b a (a a) = f(a) f(a) 0 = 0 (b a) = f(b) f(a) f(b)+f(a) = 0 b a Quindi g(a) = g(b) Valgono tutte e tre le ipotesi del teorema di Rolle, lo possiamo applicare a g(x): esiste almeno un punto c, a < c < b, tale che g (c) = 0. g (x) = f (x) f(b) f(a) b a, da g (c) = 0 segue che f (c) = f(b) f(a) b a

6 ed il Safety Tutor Un applicazione: il Safety Tutor Mentre l Autovelox rileva la velocità istantanea dei veicoli nei tratti in cui è presente il dispositivo, il Safety Tutor misura la velocità media tra due centrali di rilevamento poste anche a diversi chilometri di distanza. Che c entra questo con il teorema di Lagrange?

7 ed il Safety Tutor s(t) legge oraria del moto dell automobile s(t 1 ) s(t 0 ) t 1 t 0 velocità media nell intervallo di tempo [t 0, t 1 ] ci dice che esiste un istante c (t 0, t 1 ) nel quale s (c) = s(t 1) s(t 0 ) t 1 t 0 In c la velocità istantanea assume lo stesso valore della velocità media con la quale è stato percorso il tratto di strada. Quindi se la velocità media è superiore al limite consentito, si ha che nel percorrere l intero tragitto ci sarà stato sicuramente un istante in cui è stata raggiunta quella velocità multa!

8 ed il Safety Tutor Primo corollario del teorema di Lagrange Sia f(x) una funzione derivabile in un intervallo I e tale che f (x) = 0 per ogni x I. Allora f(x) è costante in I.

9 ed il Safety Tutor Secondo corollario del teorema di Lagrange Se f(x) e g(x) sono due funzioni derivabili in un intervallo I e tali che f (x) = g (x) per ogni x I, allora esiste una costante c R tale che f(x) = g(x) + c per ogni x I. Dimostrazione Consideriamo F (x) = f(x) g(x). Dalle ipotesi segue F (x) = f (x) g (x) = 0 per ogni x I, quindi per il corollario precedente si ha che F (x) è costante in I. Allora F (x) = c = f(x) g(x) e dunque f(x) = g(x) + c.

10 ed il Safety Tutor Date due funzioni f(x), g(x) tali che f(x) e g(x) sono continue nell intervallo [a, b] f(x) e g(x) sono derivabili in (a, b) g (x) 0 per ogni x appartenente ad (a, b) allora esiste almeno un punto c, a < c < b, in cui si ha g(b) g(a) = f (c) g (c) si può ottenere da quello di Cauchy in cui la funzione g(x) è g(x) = x.

11 ed il Safety Tutor Dimostrazione Consideriamo la funzione seguente: F (x) = g(x) [] f(x) [g(b) g(a)] Da continuità e derivabilità di f(x) e g(x) segue che anche F (x) è continua in [a, b] e derivabile in (a, b). F (a) = f(b)g(a) f(a)g(b) = F (b) quindi per Rolle esiste c, a < c < b, tale che F (c) = 0. Allora g (c) [] f (c) [g(b) g(a)] = 0. Abbiamo g(b) g(a) (altrimenti per Rolle g (x) si dovrebbe annullare in un punto di (a, b), contrariamente all ipotesi) e possiamo dividere per g (c) [g(b) g(a)], da cui segue g(b) g(a) f (c) g (c) = 0

Teoremi di Fermat, Rolle, Lagrange, Cauchy, de l Hôpital

Teoremi di Fermat, Rolle, Lagrange, Cauchy, de l Hôpital Teoremi di Fermat, Rolle, Lagrange, Cauchy, de l Hôpital Copyright c 2007 Pasquale Terrecuso Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Teoremi

Dettagli

Teoremi sulle funzioni derivabili. 18 febbraio 2013

Teoremi sulle funzioni derivabili. 18 febbraio 2013 Teoremi sulle funzioni derivabili 18 febbraio 2013 1 Indice 1 Teoremi sulle funzioni derivabili 3 1.1 Teorema di Fermat......................... 3 1.2 Teorema di Rolle.......................... 3 1.3 Teorema

Dettagli

DERIVATE. Equazione della retta tangente al grafico di f nel suo punto P(x 0 ;y 0 ):

DERIVATE. Equazione della retta tangente al grafico di f nel suo punto P(x 0 ;y 0 ): DERIVATE La derivata di una funzione in un punto c, quando esiste, rappresenta il coefficiente angolare della retta tangente al grafico della funzione nel suo punto di ascissa c: f ( c) = Df ( c) = m tg

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioni di Matematica 1 - I modulo Luciano Battaia 14 novembre 2008 L. Battaia - http://www.batmath.it Matematica 1 - I mod. Lezione del 14/11/2008 1 / 22 Cr-decr-max-min Esempio 1 Esempio 2 Esempio 3

Dettagli

Corso di Analisi Matematica

Corso di Analisi Matematica Corso di Laurea in Ingegneria Edile Corso di TEOREMI DEL CALCOLO DIFFERENZIALE Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche Teorema di Estremi locali Richiamiamo la

Dettagli

Teoremi di Cauchy e De l Hôpital

Teoremi di Cauchy e De l Hôpital Teoremi di Cauchy e De l Hôpital 1.1 Teorema di Cauchy Siano f, g : [a, b] R due funioni tali che a f e g sono continue in [a,b]; b f e g sono derivabili in a,b con g x per ogni x a,b. Allora esiste x

Dettagli

DERIVATA DI UNA FUNZIONE REALE. In quanto segue denoteremo con I un intervallo di IR e con f una funzione di I in IR.

DERIVATA DI UNA FUNZIONE REALE. In quanto segue denoteremo con I un intervallo di IR e con f una funzione di I in IR. DERIVATA DI UNA FUNZIONE REALE 1. Definizioni. In quanto segue denoteremo con I un intervallo di IR e con f una funzione di I in IR. DEFINIZIONE 1. Sia x 0 un elemento di I. Per ogni x (I \ {x 0 }) consideriamo

Dettagli

I TEOREMI DEL CALCOLO DIFFERENZIALE

I TEOREMI DEL CALCOLO DIFFERENZIALE I TEOREMI DEL CALCOLO DIFFERENZIALE 1. DEFINIZIONI. TEOREMI DEL CALCOLO DIFFERENZIALE.1 TEOREMA DELL ESTREMANTE LOCALE. TEOREMI DI ROLLE, CAUCHY, LAGRANGE.3 TEOREMI CONSEGUENTI AL T. DI LAGRANGE 3. DETERMINAZIONE

Dettagli

Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile

Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 41 1 Derivata

Dettagli

TEOREMI FONDAMENTALI DEL CALCOLO DIFFERENZIALE

TEOREMI FONDAMENTALI DEL CALCOLO DIFFERENZIALE TEOREMI FONDAMENTALI DEL CALCOLO DIFFERENZIALE Teorema di Rolle Se una funzione yf(x) continua nell intervallo chiuso [a, b] e derivabile in (a, b),assume agli estremi a e b dell intervallo valori uguali

Dettagli

Retta Tangente. y retta tangente. retta secante y = f(x) f(x )

Retta Tangente. y retta tangente. retta secante y = f(x) f(x ) Retta Tangente f(x ) 1 y P 1 retta secante y = f(x) y retta tangente y = f(x) f(x ) 0 P 0 f(x ) 0 P 0 O x 0 x 1 x quando P tende a P 0 1 O x 0 x Consideriamo una funzione continua f. Siano P 0 = (x 0,

Dettagli

CONTINUITA E DERIVABILITA

CONTINUITA E DERIVABILITA CONTINUITA E DERIVABILITA La continuità e la derivabilità di una unzione sono proprietà dierenti. TEOREMA: CONTINUITA DELLE FUNZIONI DERIVABILI Se è una unzione derivabile in un punto, allora è continua

Dettagli

Il Teorema di Lagrange. B. Sciunzi

Il Teorema di Lagrange. B. Sciunzi Il Teorema di Lagrange B. Sciunzi Department of Mathematics Università della Calabria February 10, 2014 B. Sciunzi (UNICAL) Lagrange February 10, 2014 1 / 14 Theorem Sia f : [a, b] R, continua in [a, b]

Dettagli

Universitá degli Studi Roma Tre - Corso di Laurea in Matematica. Tutorato di AM120

Universitá degli Studi Roma Tre - Corso di Laurea in Matematica. Tutorato di AM120 Universitá degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di AM0 A.A. 0-04 - Docente: Prof. G.Mancini Tutore: Matteo Bruno ed Emanuele Padulano Soluzioni - 8 Febbraio 04. Si considerino

Dettagli

Massimi, minimi, monotonia, e derivate

Massimi, minimi, monotonia, e derivate Massimi, minimi, monotonia, e derivate Punti di massimo, minimo per una funzione Definizione 1 Si dice che un punto c di un sottinsieme A di R e un punto interno ad A se e solo se c possiede qualche intorno

Dettagli

( ) ( ) DERIVATE. $ ed è finito lim

( ) ( ) DERIVATE. $ ed è finito lim DERIVATE La derivata di una unzione in un punto c, quando esiste, rappresenta il coeiciente angolare della retta tangente al graico della unzione nel suo punto di ascissa c: ( c) = D ( c) = m tg = tanα,

Dettagli

Laurea in Informatica Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile

Laurea in Informatica Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Laurea in Informatica Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Docente: Anna Valeria Germinario Università di Bari A.V.Germinario (Università di Bari) Analisi Matematica

Dettagli

QUESITI DI ANALISI Derivate versione senza graci

QUESITI DI ANALISI Derivate versione senza graci QUESITI DI ANALISI Derivate versione senza graci Dai la denizione di derivata di una funzione f(x) in un punto x 0, illustra il suo signicato geometrico e serviti di tale denizione per dimostrare che f

Dettagli

Americhe emisfero australe 2004 Sessione suppletiva - Questionario QUESITO 1

Americhe emisfero australe 2004 Sessione suppletiva - Questionario QUESITO 1 www.matefilia.it Americhe emisfero australe 4 Sessione suppletiva - Questionario QUESITO Si spieghi perché la superficie totale di un cilindro equilatero sta alla superficie della sfera ad esso circoscritta

Dettagli

Retta Tangente. y retta tangente. retta secante y = f(x) f(x )

Retta Tangente. y retta tangente. retta secante y = f(x) f(x ) Retta Tangente f(x ) 1 y P 1 retta secante y = f(x) y retta tangente y = f(x) f(x ) 0 P 0 f(x ) 0 P 0 O x 0 x 1 x quando P tende a P 0 1 O x 0 x Consideriamo una funzione continua f. Siano P 0 = (x 0,

Dettagli

29 ESERCIZI SUI POLINOMI DI TAYLOR

29 ESERCIZI SUI POLINOMI DI TAYLOR 9 ESERCIZI SUI POLINOMI DI TAYLOR Calcolare i seguenti polinomi di Taylor con centro in 0, usando ove possibile i polinomi di Taylor noti e le operazioni su polinomi di Taylor Calcolare T 3( cos x Usiamo

Dettagli

STUDIO di FUNZIONE. c Paola Gervasio - Analisi Matematica 1 - A.A. 2018/19 Studio di funzione cap6b.pdf 1

STUDIO di FUNZIONE. c Paola Gervasio - Analisi Matematica 1 - A.A. 2018/19 Studio di funzione cap6b.pdf 1 STUDIO di FUNZIONE c Paola Gervasio - Analisi Matematica 1 - A.A. 2018/19 Studio di funzione cap6b.pdf 1 Punti di estremo: punto di massimo assoluto Def. Sia 0 dom(f) = D. Si dice che 0 è un punto di massimo

Dettagli

ANALISI MATEMATICA. Ottavio Caligaris - Pietro Oliva

ANALISI MATEMATICA. Ottavio Caligaris - Pietro Oliva ANALISI MATEMATICA Ottavio Caligaris - Pietro Oliva CAPITOLO 9 LA DERIVABILITÀ. Consideriamo una funzione f continua in un punto x 0, avremo che, quando x si discosta di poco da x 0, f(x) è poco distante

Dettagli

Derivate. Rette per uno e per due punti. Rette per uno e per due punti

Derivate. Rette per uno e per due punti. Rette per uno e per due punti Introduzione Rette per uno e per due punti Rette per uno e per due punti Rette secanti e tangenti Derivata d una funzione in un punto successive Derivabilità a destra e a sinistra Rette per uno e per due

Dettagli

1. Teorema del valor medio D ora in poi ciascun intervallo considerato verra tacitamente assunto non ridotto

1. Teorema del valor medio D ora in poi ciascun intervallo considerato verra tacitamente assunto non ridotto Lezione del 22 ottobre. 1. Teorema del valor medio D ora in poi ciascun intervallo considerato verra tacitamente assunto non ridotto ad un punto. Data una funzione f definita su un intervallo [a, b], derivabile

Dettagli

Calcolo differenziale II

Calcolo differenziale II Calcolo differenziale II Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) Derivate (II) Analisi Matematica 1 1 / 36 Massimi e minimi Definizione Sia A R, f

Dettagli

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@poi.it Limiti di derivate. Punti angolosi e di cuspide. Ottobre 2012 Indice 1 Limiti della derivata e punti di non

Dettagli

IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero

IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero Il teorema degli zeri è fondamentale per determinare se una funzione continua in un intervallo chiuso [ a ; b ] si annulla in almeno un punto interno

Dettagli

y retta tangente retta secante y = f(x)

y retta tangente retta secante y = f(x) Retta tangente f(x ) 1 y P 1 retta secante y = f(x) y retta tangente y = f(x) f(x ) 0 P 0 f(x ) 0 P 0 O x 0 x 1 x quando P tende a P 0 1 O x 0 x Consideriamo una funzione continua f. Siano P 0 = (x 0,

Dettagli

Analisi Matematica per Bio-Informatici Esercitazione 08 a.a

Analisi Matematica per Bio-Informatici Esercitazione 08 a.a Analisi Matematica per Bio-Informatici Esercitazione 08 a.a. 007-008 Dott. Simone Zuccher 4 Gennaio 008 Nota. Queste pagine potrebbero contenere degli errori: chi li trova è pregato di segnalarli all autore

Dettagli

Definizione (Derivata come limite del rapporto incrementale) Se esiste finito (cioè, non + o ) il limite del rapporto incrementale

Definizione (Derivata come limite del rapporto incrementale) Se esiste finito (cioè, non + o ) il limite del rapporto incrementale Funzione derivabile. La derivata. Dati: f I R funzione; I R intervallo aperto ; x 0 I. Definizione (Derivata come ite del rapporto incrementale) Se esiste finito (cioè, non + o ) il ite del rapporto incrementale

Dettagli

f (x) = f(x 2) f(x 1 ) x 2 x 1

f (x) = f(x 2) f(x 1 ) x 2 x 1 Lezioni 29-30 86 Il Teorema di Lagrange o del Valor Medio Abbiamo visto che molte proprietà importanti delle funzioni (crescenza, decrescenza, iniettività, ecc.) si esprimono tramite proprietà del rapporto

Dettagli

Proprietà globali delle funzioni continue

Proprietà globali delle funzioni continue Limiti e continuità Teorema di esistenza degli zeri Teorema dei valori intermedi Teorema di Weierstrass Teoremi sulla continuità della funzione inversa 2 2006 Politecnico di Torino 1 Data una funzione

Dettagli

Matematica. Tutorato Attivo: Derivate. Alessio Bianchi. Matematica 20 maggio 2017

Matematica. Tutorato Attivo: Derivate. Alessio Bianchi. Matematica 20 maggio 2017 Matematica Tutorato Attivo: Derivate Alessio Bianchi email: alessio.bianchi02@universitadipavia.it Home page: https://bianchiunipv.wordpress.com/ Matematica 20 maggio 2017 Alessio Bianchi Tutorato Attivo:

Dettagli

SECONDO TEST DI ANALISI 1 per i CdL in FISICA e MATEMATICA, a.a. 2016/17 assegnato in data lim

SECONDO TEST DI ANALISI 1 per i CdL in FISICA e MATEMATICA, a.a. 2016/17 assegnato in data lim SECONDO TEST DI ANALISI per i CdL in FISICA e MATEMATICA, a.a. 06/7 assegnato in data 5..06. Sia f : R \ {(0, 0)} R 3 la funzione definita da ( ( 4 ) f(x, y) = x + y sin, + arctan(x y), x + y Si calcoli

Dettagli

ESERCIZI MATEMATICA GENERALE - Canale III Prof. A. Fabretti 1 A.A. 2009/2010

ESERCIZI MATEMATICA GENERALE - Canale III Prof. A. Fabretti 1 A.A. 2009/2010 ESERCIZI MATEMATICA GENERALE - Canale III Prof. A. Fabretti 1 A.A. 2009/2010 Calcolo derivate Calcolare le derivate delle seguenti funzioni 1) f(x) = 1 x2 4 2) f(x) = 3x2 +2x 1 x 2 +1 ( 3) f(x) = log (

Dettagli

Massimi e minimi : TEOREMI. Condizione necessaria del I ordine. Conseguenza del Teorema di Lagrange.

Massimi e minimi : TEOREMI. Condizione necessaria del I ordine. Conseguenza del Teorema di Lagrange. Massimi e minimi : TEOREMI Condizione necessaria del I ordine Teorema di Weierstrass Teorema di Rolle Teorema di Lagrange Conseguenza del Teorema di Lagrange. Data f: A R, f derivabile in x 0 A. Def.:

Dettagli

Funzioni implicite e teorema del Dini

Funzioni implicite e teorema del Dini Funzioni implicite e teorema del Dini Il succo dell argomento può essere presentato così. Sia f una funzione a valori reali, definita in un aperto G del piano euclideo R 2 e sufficientemente buona; consideriamo

Dettagli

Corso di Analisi Matematica. Calcolo differenziale

Corso di Analisi Matematica. Calcolo differenziale a.a. 2013/14 Laurea triennale in Informatica Corso di Analisi Matematica Calcolo differenziale Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli studenti.

Dettagli

Matematica e Statistica per Scienze Ambientali

Matematica e Statistica per Scienze Ambientali per Scienze Ambientali Derivate - Appunti 1 1 Dipartimento di Matematica Sapienza, Università di Roma Roma, Novembre 2013 Retta secante un grafico e rapporto incrementale Sia f una funzione e x 0 un punto

Dettagli

Retta Tangente. y retta tangente. retta secante y = f(x) f(x )

Retta Tangente. y retta tangente. retta secante y = f(x) f(x ) Retta Tangente f(x ) y P retta secante y = f(x) y retta tangente y = f(x) f(x ) 0 P 0 f(x ) 0 P 0 O x 0 x x quando P tende a P 0 O x 0 x Consideriamo una funzione continua f. Siano P 0 = (x 0, f(x 0 ))

Dettagli

Università di Trento Dip. di Ingegneria e Scienza dell Informazione

Università di Trento Dip. di Ingegneria e Scienza dell Informazione Cognome Nome Matricola Non scrivere qui A 1 3 4 5 6 Università di Trento Dip. di Ingegneria e Scienza dell Informazione CdL in Informatica - CdL in Ingegneria dell informazione e delle comunicazioni CdL

Dettagli

3. CALCOLO DIFFERENZIALE PER FUNZIONI DI UNA VARIABILE REALE.

3. CALCOLO DIFFERENZIALE PER FUNZIONI DI UNA VARIABILE REALE. 3. CALCOLO DIFFERENZIALE PER FUNZIONI DI UNA VARIABILE REALE. Molto spesso y = f(x) rappresenta l evoluzione di un fenomeno al passare del tempo x.se siamo interessati a sapere con che rapidità il fenomeno

Dettagli

Funzione derivabile. La derivata.

Funzione derivabile. La derivata. Funzione derivabile. La derivata. Dati: f I R funzione; I R intervallo aperto ; x 0 I. Definizione (Derivata come limite del rapporto incrementale) Se esiste finito (cioè, non + o ) il limite del rapporto

Dettagli

10 - Massimi, minimi e flessi

10 - Massimi, minimi e flessi Università degli Studi di Palermo Facoltà di Economia Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 10 - Massimi, minimi e flessi Anno Accademico 2015/2016

Dettagli

1 prof. Claudio Saccon, Dipartimento di Matematica Applicata, () December 30, / 26

1 prof. Claudio Saccon, Dipartimento di Matematica Applicata, () December 30, / 26 ANALISI 1 1 UNDICESIMA LEZIONE DODICESIMA LEZIONE TREDICESIMA LEZIONE Derivata - definizione e teoremi di calcolo delle derivate Massimi e minimi relativi e teorema di Fermat Teorema di Lagrange Monotonia

Dettagli

1. Mercoledì 07/03/2018, ore: 2(2) Introduzione e presentazione del corso. Richiami: i numeri naturali, interi, razionali e reali.

1. Mercoledì 07/03/2018, ore: 2(2) Introduzione e presentazione del corso. Richiami: i numeri naturali, interi, razionali e reali. Registro delle lezioni di MATEMATICA 2 Corso di Laurea in Chimica 6 CFU - A.A. 2017/2018 docente: Francesco Demontis ultimo aggiornamento: May 17, 2018 1. Mercoledì 07/03/2018, 9 11. ore: 2(2) Introduzione

Dettagli

Calcolo differenziale I

Calcolo differenziale I Calcolo differenziale I Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) Derivate Analisi Matematica 1 1 / 25 Definizione: rapporto incrementale Sia f : A

Dettagli

Un intervallo di numeri reali è un sottoinsieme I R tale che. è l estremità superiore. Si vede facilmente che I contiene x R ; a(i) < x < b(i)

Un intervallo di numeri reali è un sottoinsieme I R tale che. è l estremità superiore. Si vede facilmente che I contiene x R ; a(i) < x < b(i) ed è contenuto in {x R ; a(i) x b(i) }. Sulla continuità uniforma: Un intervallo di numeri reali è un sottoinsieme I R tale che Per un intervallo I I x 1 x x 2 I = x I. a(i) = inf x (appartenente a R o

Dettagli

Continuità e derivabilità. Calcola la derivata delle seguenti funzioni

Continuità e derivabilità. Calcola la derivata delle seguenti funzioni ESERCIZI SUL CALCOLO DIFFERENZIALE Continuità e derivabilità Si studi la continuità e la derivabilità delle seguenti funzioni nel punto indicato a fianco { Si trovi, se possibile, a e b in modo che le

Dettagli

Derivate. Derivata di una funzione in un punto. = velocita media di P nell intervallo [x. = pendenza del segmento P 0 P.

Derivate. Derivata di una funzione in un punto. = velocita media di P nell intervallo [x. = pendenza del segmento P 0 P. Derivate Derivata di una funzione in un punto Definizione Interpretazioni Definizione 1 Sia f : I x0 R una funzione definita in un intorno I x0 di un punto x 0 Per ciascun x I x0 con x = x 0 consideriamo

Dettagli

Calcolo Differenziale. Corsi di Laurea in Tecniche di Radiologia ecc... A.A Analisi Matematica - Calcolo Differenziale - p.

Calcolo Differenziale. Corsi di Laurea in Tecniche di Radiologia ecc... A.A Analisi Matematica - Calcolo Differenziale - p. Calcolo Differenziale Corsi di Laurea in Tecniche di Radiologia ecc... A.A. 2010-2011 - Analisi Matematica - Calcolo Differenziale - p. 1/33 Velocità istantanea Percorriamo il tratto di strada tra Udine

Dettagli

ANALISI 1 - Teoremi e dimostrazioni vari

ANALISI 1 - Teoremi e dimostrazioni vari ANALISI 1 - Teoremi e dimostrazioni vari Sommario Proprietà dell estremo superiore per R... 2 Definitivamente... 2 Successioni convergenti... 2 Successioni monotone... 2 Teorema di esistenza del limite

Dettagli

Metodi Matematici per l Economia anno 2017/2018 Gruppo B

Metodi Matematici per l Economia anno 2017/2018 Gruppo B Metodi Matematici per l Economia anno 2017/2018 Gruppo B Docente: Giacomo Dimarco Dipartimento di Matematica e Informatica Università di Ferrara https://sites.google.com/a/unife.it/giacomo-dimarco-home-page/

Dettagli

Teoremi fondamentali dell'analisi Matematica versione 1

Teoremi fondamentali dell'analisi Matematica versione 1 Teoremi fondamentali dell'analisi Matematica versione 1 Roberto Boggiani 7 novembre 2012 1 Richiami di geometria analitica Dalla geometria analitica sulla retta sappiamo che dati due punti del piano A(x

Dettagli

Indice. Calcolo differenziale Parte seconda. Mauro Saita Versione provvisoria. Novembre

Indice. Calcolo differenziale Parte seconda. Mauro Saita Versione provvisoria. Novembre Calcolo differenziale Parte seconda Mauro Saita maurosaita@tiscalinet.it Versione provvisoria. Novembre 214. 1 Indice 1 Funzioni derivabili su un intervallo 2 1.1 Punti di massimo o minimo locale per una

Dettagli

Prova d appello di Matematica 1 (Chimica) 10 Settembre x π + sin x(1 + cos x). lim. 2) Studiare la seguente funzione e tracciarne il grafico:

Prova d appello di Matematica 1 (Chimica) 10 Settembre x π + sin x(1 + cos x). lim. 2) Studiare la seguente funzione e tracciarne il grafico: Prova d appello di Matematica 1 (Chimica) 10 Settembre 2013 (x π) 2 x π + sin x(1 + cos x) f(x) = 1 2 x + 3 3 x e 1 x x 2 dx sull intervallo [0, 3 4 π] f(x) = cos x cos 2 x 5) Enunciare e dimostrare il

Dettagli

P[x; f(x)] y = f(x) le coordinate del punto P possono essere scritte anche come DERIVATA DI UNA FUNZIONE RAPPORTO INCREMENTALE

P[x; f(x)] y = f(x) le coordinate del punto P possono essere scritte anche come DERIVATA DI UNA FUNZIONE RAPPORTO INCREMENTALE DERIVATA DI UNA FUNZIONE RAPPORTO INCREMENTALE Consideriamo una funzione reale y=f(x), definita in un intervallo [a, b] di numeri reali che appartiene al dominio D della funzione ( [a, b] è contenuto in

Dettagli

Derivazione delle funzioni di una variabile reale

Derivazione delle funzioni di una variabile reale Capitolo 4 4.1 Introduzione Avendo completato nei capitoli precedenti la fase preinare (cioè i principali fatti riguardanti i numeri reali, i iti e la continuità), siamo finalmente giunti al nucleo fondamentale

Dettagli

1. Mercoledì 07/03/2018, ore: 2(2) Introduzione e presentazione del corso. Richiami: i numeri naturali, interi, razionali e reali.

1. Mercoledì 07/03/2018, ore: 2(2) Introduzione e presentazione del corso. Richiami: i numeri naturali, interi, razionali e reali. Registro delle lezioni di MATEMATICA 2 Corso di Laurea in Chimica 6 CFU - A.A. 2017/2018 docente: Francesco Demontis ultimo aggiornamento: 28 maggio 2018 1. Mercoledì 07/03/2018, 9 11. ore: 2(2) Introduzione

Dettagli

DIARIO DELLE LEZIONI DI ANALISI PER FISICA (Pb-Z) a.a. 2016/2017

DIARIO DELLE LEZIONI DI ANALISI PER FISICA (Pb-Z) a.a. 2016/2017 DIARIO DELLE LEZIONI DI ANALISI PER FISICA (Pb-Z) a.a. 2016/2017 27 settembre.(2 ore) Introduzione e informazioni. Linguaggio matematico. Insiemi numerici e loro proprietà : N, Z, Q. 2 non è un numero

Dettagli

Appunti di Matematica 5 - Derivate - Derivate. Considero una funzione e sia e definita in un intorno completo di.

Appunti di Matematica 5 - Derivate - Derivate. Considero una funzione e sia e definita in un intorno completo di. Derivate Definizione di derivata di f(x) in x D o f Considero una funzione e sia e definita in un intorno completo di. Consideriamo il rapporto (detto rapporto incrementale ) È evidente che il rapporto

Dettagli

A) Intorni in R. Chiamiamo intorno di x R ogni intervallo aperto contenente x. Ciascuno di essi contiene un intorno sferico di x, ]x-r, x+r[, r >0.

A) Intorni in R. Chiamiamo intorno di x R ogni intervallo aperto contenente x. Ciascuno di essi contiene un intorno sferico di x, ]x-r, x+r[, r >0. L. Verardi Alcuni lucidi su limiti, continuità e derivate 1 CTOPOLOGIA DI R C Poniamo R = R {+, - } A) Intorni in R Chiamiamo intorno di x R ogni intervallo aperto contenente x. Ciascuno di essi contiene

Dettagli

1. Calcolo Differenziale per funzioni di una variabile

1. Calcolo Differenziale per funzioni di una variabile 1. Calcolo Differenziale per funzioni di una variabile 1.1 Definizione di Derivata e prime proprietà Definizione 1.1 Sia f :]a, b[ R, x 0 ]a, b[. Allora esiste δ > 0 : x 0 + ]a, b[, 0 < < δ. Se esiste

Dettagli

Massimi e minimi. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Massimi e minimi. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Massimi e minimi Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)

Dettagli

Derivate. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) Derivate Analisi A 1 / 33

Derivate. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) Derivate Analisi A 1 / 33 Derivate Hynek Kovarik Università di Brescia Analisi A Hynek Kovarik (Università di Brescia) Derivate Analisi A 1 / 33 Definizione: rapporto incrementale Sia f : domf R R. Dati x 1, x 2 domf con x 1 x

Dettagli

Teorema del valor medio e di Rolle

Teorema del valor medio e di Rolle Prof Chirizzi Marco wwwelettronealtervistaorg wwwprofessoremypodcastcom Teorema del valor medio e di Rolle f una funzione continua nell intervallo chiuso [ b ] Sia ( esso Si dimostra che esiste almeno

Dettagli

Calcolo differenziale Test di autovalutazione

Calcolo differenziale Test di autovalutazione Test di autovalutazione 1. Sia f : R R una funzione derivabile in 0 tale che f(0) = f (0) = 0. Si consideri la funzione g(x) = f(x). Allora, necessariamente sin x (a) lim g(x) = 0 (b) lim g(x) = 1 (c)

Dettagli

ANALISI 1 1 VENTICINQUESIMA LEZIONE Equazioni differenziali Equazioni lineari del primo ordine

ANALISI 1 1 VENTICINQUESIMA LEZIONE Equazioni differenziali Equazioni lineari del primo ordine ANALISI 1 1 VENTICINQUESIMA LEZIONE Equazioni differenziali Equazioni lineari del primo ordine 1 prof. Claudio Saccon, Dipartimento di Matematica Applicata, Via F. Buonarroti 1/C email: saccon@mail.dm.unipi.it

Dettagli

Le derivate: introduzione storica

Le derivate: introduzione storica Le derivate: introduzione storica I due fondamentali capitoli dell analisi matematica sono il calcolo differenziale e il calcolo integrale. Mentre il calcolo integrale trova le sue origini nella matematica

Dettagli

Lezione 4 (8/10/2014)

Lezione 4 (8/10/2014) Lezione 4 (8/10/2014) Esercizi svolti a lezione Nota 1. Teorema del valore intermedio: Se la funzione f(x) è continua in [a,b] e si a: f(a) < k (f(a) > k), f(b) > k (f(b) < k) allora esiste almeno un punto

Dettagli

Corso di Analisi Matematica

Corso di Analisi Matematica Corso di Laurea in Ingegneria Edile Corso di CONVESSITÀ Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche Derivata seconda Se la derivata (prima) di una funzione è definita

Dettagli

Le derivate parziali

Le derivate parziali Sia f(x, y) una funzione definita in un insieme aperto A R 2 e sia P 0 = x 0, y 0 un punto di A. Essendo A un aperto, esiste un intorno I(P 0, δ) A. Preso un punto P(x, y) I(P 0, δ), P P 0, possiamo definire

Dettagli

NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE

NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE ROBERTO GIAMBÒ 1. DEFINIZIONI E PRIME PROPRIETÀ In queste note saranno presentate alcune proprietà principali delle funzioni convesse di una variabile

Dettagli

Analisi Matematica 1 Quarantesima lezione [1cm] Equazioni differenziali 5 maggio lineari2010 del primo1 ordine / 10

Analisi Matematica 1 Quarantesima lezione [1cm] Equazioni differenziali 5 maggio lineari2010 del primo1 ordine / 10 Analisi Matematica 1 Quarantesima lezione Equazioni differenziali lineari del primo ordine prof. Claudio Saccon Dipartimento di Matematica Applicata, Via F. Buonarroti 1/C email: saccon@mail.dm.unipi.it

Dettagli

ANALISI MATEMATICA I per Ingegneria Aerospaziale - A.A Diario delle lezioni. Mercoledì 2 ottobre 2013 (2 ore)

ANALISI MATEMATICA I per Ingegneria Aerospaziale - A.A Diario delle lezioni. Mercoledì 2 ottobre 2013 (2 ore) c Andrea Dall Aglio - Analisi Matematica: Diario delle lezioni - 8 novembre 0 ANALISI MATEMATICA I per Ingegneria Aerospaziale - A.A. 0-04 Diario delle lezioni Questo è un indice degli argomenti trattati

Dettagli

Regole di derivazione Ulteriori concetti Teorema di Fermat Monotonia e punti di estremo Convessità e punti di flesso Teorema di de l Hôpital

Regole di derivazione Ulteriori concetti Teorema di Fermat Monotonia e punti di estremo Convessità e punti di flesso Teorema di de l Hôpital Calcolo dierenziale Regole di derivazione Ulteriori concetti Teorema di Fermat Monotonia e punti di estremo Convessità e punti di lesso Teorema di de l Hôpital 2 2006 Politecnico di Torino 1 Calcolo dierenziale

Dettagli

Unità didattica: TEOREMI FONDAMENTALI DEL CALCOLO DIFFERENZIALE

Unità didattica: TEOREMI FONDAMENTALI DEL CALCOLO DIFFERENZIALE Unità didattica: TEOREMI FONDAMENTALI DEL CALCOLO DIFFERENZIALE DESTINATARI: Allievi che frequentano il quarto anno di un Liceo Scientifico PNI. Si svolge nel corso del secondo quadrimestre. (questo da

Dettagli

Esercizio 1. Esercizio 2. Assegnata la funzione:

Esercizio 1. Esercizio 2. Assegnata la funzione: Esercizio 1 Assegnata la funzione: f ) = 3, mostrare che verifica il teorema di Rolle nei rispettivi intervalli compatti [ 1, 0] e [0, 1]. Determinare inoltre i punti 0 tali che f 0 ) = 0. Risulta: f è

Dettagli

Programma di Matematica

Programma di Matematica LICEO SCIENTIFICO FEDERICO II DI SVEVIA Via Verdi, 1 Tel. 0972-24435 85025 Melfi (PZ) Programma di Matematica Anno scolastico: 2014-20125 Docente Prof.ssa Giovanna Bonacaro Classe V C La topologia della

Dettagli

1. Mercoledì 07/03/2018, ore: 2(2) Introduzione e presentazione del corso. Richiami: i numeri naturali, interi, razionali e reali.

1. Mercoledì 07/03/2018, ore: 2(2) Introduzione e presentazione del corso. Richiami: i numeri naturali, interi, razionali e reali. Registro delle lezioni di MATEMATICA 2 Corso di Laurea in Chimica 6 CFU - A.A. 2017/2018 docente: Francesco Demontis ultimo aggiornamento: 7 giugno 2018 1. Mercoledì 07/03/2018, 9 11. ore: 2(2) Introduzione

Dettagli

9.2 La Formula di Taylor

9.2 La Formula di Taylor Università Roma Tre L. Chierchia 149 9.2 La Formula di Taylor Formula di Taylor al secondo ordine Dal punto di vista geometrico, l Osservazione 7.5 può essere parafrasata dicendo che, se f è derivabile

Dettagli

M174sett.tex. 4a settimana Inizio 22/10/2007. Terzo limite fondamentale (sul libro, p. 113, è chiamato secondo ) lim x 1 x 0 x

M174sett.tex. 4a settimana Inizio 22/10/2007. Terzo limite fondamentale (sul libro, p. 113, è chiamato secondo ) lim x 1 x 0 x M74sett.te 4a settimana Inizio 22/0/2007 Terzo ite fondamentale (sul libro, p. 3, è chiamato secondo ) e 0 =. La tangente al grafico nel punto (0,0) risulta y = (vedremo poi perché). Ricordare che e è

Dettagli

LICEO SCIENTIFICO "ULISSE DINI" PISA PROGRAMMA DI MATEMATICA a. s classe quinta G

LICEO SCIENTIFICO ULISSE DINI PISA PROGRAMMA DI MATEMATICA a. s classe quinta G LICEO SCIENTIFICO "ULISSE DINI" PISA PROGRAMMA DI MATEMATICA a. s. 2016-2017 classe quinta G Libro di testo adottato: Bergamini Trifone - Barozzi Matematica.blu.2.0 Zanichelli ANALISI INFINITESIMALE MODULO

Dettagli

Istituzioni di Matematiche quarta parte

Istituzioni di Matematiche quarta parte Istituzioni di Matematiche quarta parte anno acc. 2012/2013 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano) Istituzioni di Matematiche 1 / 22 index Derivate 1 Derivate 2 Teoremi

Dettagli

Analisi Matematica 1 - a.a. 2017/ Quarto appello

Analisi Matematica 1 - a.a. 2017/ Quarto appello Analisi Matematica - a.a. 07/08 - Quarto appello Soluzione del test Test A E C B B C A D C C D Test B C B C E B A E E D B Test C A A D B E C A C D D Test D D B A A B E A E B D Soluzione della parte di

Dettagli

a a e coincide quindi con la lunghezza del lato della ruota quadrata. 3) Dalla similitudine dei triangoli ACL e ALM, abbiamo che CL AL CA = AM

a a e coincide quindi con la lunghezza del lato della ruota quadrata. 3) Dalla similitudine dei triangoli ACL e ALM, abbiamo che CL AL CA = AM Problemi Problema ) ) Un profilo adeguato f(x) deve essere una funzione concava per garantire che il lato della ruota, che risulta essere tangente nel punto di contatto, sia completamente al di sopra del

Dettagli

Derivata di una funzione Massimo e minimo assoluti Definizione R, si dice che M è massimo assoluto (o

Derivata di una funzione Massimo e minimo assoluti Definizione R, si dice che M è massimo assoluto (o Derivata di una unzione Massimo e minimo assoluti Deinizione Sia :[ a, ] R, si dice che M è massimo assoluto o gloale di in [a,] e [ a, ] è punto di massimo se M, [ a, ] In modo analogo: Si dice che m

Dettagli

Teoria introduttiva e metodi di calcolo delle derivate di funzioni reali di variabile reale

Teoria introduttiva e metodi di calcolo delle derivate di funzioni reali di variabile reale Teoria introduttiva e metodi di calcolo delle derivate di funzioni reali di variabile reale Stefano Mandelli 22 dicembre 2009 Indice 1 Introduzione storica 2 2 Prime definizioni Utili 3 3 Teoremi sulle

Dettagli

Studio qualitativo. Emanuele Paolini 2 luglio 2002

Studio qualitativo. Emanuele Paolini 2 luglio 2002 Studio qualitativo Emanuele Paolini 2 luglio 2002 Non sempre è possibile determinare esplicitamente le soluzione di una equazione differenziale. Ci proponiamo quindi di trovare dei metodi per determinare

Dettagli

Modulo di Fisica (F-N) A.A MECCANICA

Modulo di Fisica (F-N) A.A MECCANICA Modulo di Fisica (F-N) A.A. 2016-2017 MECCANICA COSA E LA MECCANICA? Studio del MOTO DEI CORPI e delle CAUSE che lo DETERMINANO. COSA E LA MECCANICA? Viene tradizionalmente suddivisa in: CINEMATICA DINAMICA

Dettagli

DERIVATE. Rispondere ai seguenti quesiti. Una sola risposta è corretta. 1. Data la funzione f(x) =2+ x 7, quale delle seguente affermazioni èvera?

DERIVATE. Rispondere ai seguenti quesiti. Una sola risposta è corretta. 1. Data la funzione f(x) =2+ x 7, quale delle seguente affermazioni èvera? DERIVATE Rispondere ai seguenti quesiti. Una sola risposta è corretta.. Data la funzione f(x) =+ x 7, quale delle seguente affermazioni èvera? (a) f(x) nonè derivabile in x =0 (b) f (0) = (c) f (0) = (d)

Dettagli

La derivata. variabile indipendente x. Definiamo f := f(x) f(x 0 ) l incremento (positivo o negativo) della variabile dipendente.

La derivata. variabile indipendente x. Definiamo f := f(x) f(x 0 ) l incremento (positivo o negativo) della variabile dipendente. La derivata Sia f : domf R R; sia x 0 domf, f sia definita in I r (x 0 ) e sia x I r (x 0 ). ments Definiamo x := x x 0 l incremento (positivo o negativo) della f(x 0 ) + x + x) variabile indipendente

Dettagli

Equazione della retta tangente al grafico di una funzione

Equazione della retta tangente al grafico di una funzione Equazione della retta tangente al grafico di una funzione Abbiamo già visto che in un sistema di assi cartesiani ortogonali, è possibile determinare l equazione di una retta r non parallela agli assi coordinati,

Dettagli

Derivate di ordine superiore

Derivate di ordine superiore Derivate di ordine superiore Derivate di ordine superiore Il processo che porta alla definizione di derivabilta e di derivata di una funzione in un punto si puo iterare per dare per ogni intero positivo

Dettagli