SOMMARIO 1 Introduzione al calcolo delle probabilità 2. 2 Cenni di calcolo combinatorio 4

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "SOMMARIO 1 Introduzione al calcolo delle probabilità 2. 2 Cenni di calcolo combinatorio 4"

Transcript

1 SOMMARIO 1 Introduzione al calcolo delle probabilità La probabilità Legge empirica del caso: legge dei grandi numeri Proprietà additiva della probabilità Probabilità condizionata Eventi indipendenti 3 2 Cenni di calcolo combinatorio Principio fondamentale Operatore fattoriale: Permutazioni, disposizioni, combinazioni semplici Permutazioni semplici Disposizioni semplici Combinazioni semplici Coefficiente binomiale Permutazioni, disposizioni, combinazioni con ripetizioni Permutazioni con ripetizioni Disposizioni con ripetizioni Combinazioni con ripetizioni 6 1

2 1 Introduzione al calcolo delle probabilità Un avvenimento che, al realizzarsi di determinate condizioni, può verificarsi oppure no si dice casuale o aleatorio. Quando si realizza un esperimento basato sulla ripetizione di situazioni casuali per valutarne la possibilità di esito positivo o negativo, si chiama prova la singola esecuzione; si chiama spazio delle probabilità l insieme dei possibili risultati (da non confondersi con l insieme di tutte le prove effettuate!); si chiama evento un sottoinsieme dello spazio delle probabilità. Un evento si dice elementare quando è un insieme che contiene un solo elemento; si dice certo se coincide con lo spazio delle probabilità; si dice impossibile se coincide con l insieme vuoto. Nel corso dell esperimento si dirà che l evento A si è verificato se il risultato della prova coincide con un suo elemento. 1.1 La probabilità La definizione classica di probabilità p di un evento rappresentato dall insieme A nello spazio delle probabilità (che si assume come universo) ha la forma: p(a) = m n dove m rappresenta il numero di elementi di A (casi favorevoli) e n rappresenta il numero di elementi dello spazio delle probabilità (casi possibili). E immediatamente evidente che: 0 p(a) 1 con il valore 0 che indica un evento impossibile ed il valore 1 che indica un evento certo. Inoltre la somma della probabilità di un evento e quella dell evento contrario (cioè il caso che l evento non si verifichi) è sempre pari ad 1: come è ovvio, è certo che un evento accada oppure no Legge empirica del caso: legge dei grandi numeri Ricordando che la frequenza relativa di un evento aleatorio è il rapporto tra il numero di prove con esito positivo ed il numero di prove effettuate, pur essendo ciascuna prova regolata dalla definizione di probabilità precedentemente indicata, si ha che la frequenza relativa tende ad approssimare sempre meglio la probabilità dell evento al crescere del numero di prove effettuate. Questa è la cosiddetta legge dei grandi numeri (che non permette alcuna previsione sulla prossima prova, ma serve a dare informazioni su un ipotetico insieme infinito di prove) Proprietà additiva della probabilità Se si vuole valutare la probabilità che si verifichi uno qualsiasi di due eventi A (con probabilità p(a)) e B (con probabilità p(b)), si deve valutare l evento A B. La probabilità p(a B) è pari alla somma di p(a) e p(b) solo nel caso che A e B siano eventi incompatibili, cioè che non possano avvenire contemporaneamente. Infatti, se i due eventi fossero compatibili, la probabilità dell evento contemporaneo A B sarebbe computata sia tra i casi favorevoli di A che di B, venendo così conteggiata due volte. Quindi, in generale: p(a B) = p(a) + p(b) p(a B) Con ovviamente p(a B) = 0 per eventi incompatibili Probabilità condizionata La probabilità che si verifichi un evento A a condizione che si sia già verificato un secondo evento B si chiama probabilità condizionata di A rispetto a B e si indica come p(a B). E ovvio che la probabilità di A dato B ha senso solo se l evento B non è impossibile, quindi assumeremo sempre: p(b) > 0. 2

3 Sia n > 0 il numero di elementi dello spazio delle probabilità; sia m 0 il numero degli elementi di A e sia > 0 quello degli elementi di B. Infine, sia h 0 il numero degli elementi di p(a B) (evento dato dal verificarsi sia di A che di B). La condizione che B si sia verificato significa che i casi possibili non sono più tutti gli elementi dello spazio delle probabilità, ma solo i valori dell insieme B: a causa di questa condizione i casi favorevoli rimanenti sono solo gli h valori di A che prevedevano il verificarsi anche di B; quindi: p(a B) = h h = n n = p(a B) p(b) Dalla formula della probabilità condizionata si ricava immediatamente la regola della probabilità composta (probabilità del prodotto di due eventi): p(a B) = p(b) p(a B) = p(a) p(b A) Per chiarire l ultimo passaggio, si ricordi che ovviamente A B = B A Eventi indipendenti Nel caso particolare in cui la probabilità che si verifichi l evento A non è alterata dal verificarsi dell evento B, si dice che i due eventi sono indipendenti e si ha: p(a B) = p(a) p(a B) = p(a) p(b). E evidente che se A è indipendente da B allora B è indipendente da A. Infatti: p(a) p(b A) = p(b) p(a B) = p(a B) p(b A) = p(b) Per concludere, si può dire che per eventi indipendenti la proprietà della probabilità di somma di eventi diventa: p(a B) = p(a) + p(b) p(a) p(b) 3

4 2 Cenni di calcolo combinatorio "Quasi tutta la matematica classica, dall'algebra elementare alla teoria delle equazioni differenziali, è applicabile al mondo reale solo nell'ipotesi che questo sia costituito di oggetti e di eventi a carattere continuo. Però, in molte situazioni comuni in fisica e in chimica ed in altre scienze, si può parlare realisticamente solo di collezione di oggetti a carattere discreto, i quali agiscono in combinazione, un passo per volta; la matematica applicata a tali situazioni si chiama analisi combinatoria. Molti problemi di analisi combinatoria, tra i più interessanti, si sono presentati nella forma di ingegnosi indovinelli, a sfida di matematici e non matematici assieme: a prima vista, alcuni di essi possono sembrare addirittura frivolezze, eppure quasi tutti hanno delle applicazioni immediate ed importanti a problemi scientifici concreti " Gian Carlo Rota- Analisi combinatoria (Le Scienze Matematiche -UMI-Zanichelli, 1973) Principio fondamentale Se una scelta può essere fatta in n modi diversi per ciascuno dei quali una seconda scelta può essere effettuata in m modi diversi e, per ciascuno dei modi in cui si sono compiute le prime due scelte una terza scelta può essere effettuata in modi diversi ecc., allora la successione di tutte le scelte può essere compiuta in n m modi diversi Operatore fattoriale: L operatore fattoriale è un operatore aritmetico (si applica ai numeri naturali) definito come segue: 0! = 1 (n + 1)! = (n + 1) In poche parole il fattoriale di un numero naturale n > 0 equivale al prodotto di tutti i numeri da 1 a n. 2.2 Permutazioni, disposizioni, combinazioni semplici Permutazioni semplici Sia n > 0; nel caso di un insieme di n elementi distinguibili ogni possibile loro numerazione da 1 a n è univoca; ciascuna numerazione si chiama permutazione (o permutazione semplice) e si indica con P n. Dimostriamo per induzione il seguente teorema: il numero di permutazioni di un insieme di n elementi distinguibili è P n = Se n = 1 allora la numerazione è ovviamente unica, cioè P 1 = 1!; posto che per n elementi le permutazioni siano, allora dimostriamo che per n + 1 elementi le permutazioni devono essere (n + 1)!. Si ha infatti che per i primi n elementi si hanno permutazioni; aggiungendo un elemento, questo può essere messo in ciascuna delle n + 1 nuove posizioni di ognuna delle permutazioni precedenti. Vale a dire che per ogni precedente permutazione ce ne devono essere altre n + 1 se si aggiunge un elemento: P n = P n+1 = (n + 1) = (n + 1)! Disposizioni semplici Sempre nel caso precedente di un insieme di n elementi distinguibili possiamo generalizzare il concetto di permutazione numerando non tutti gli n elementi dell insieme, ma quelli di ogni suo possibile sottoinsieme di elementi (con n); ciascuna numerazione si chiama disposizione semplice di n elementi di classe e si indica con D n,. In pratica, si tratta di calcolare in quante 4

5 maniere si possano disporre elementi scelti in ogni modo possibile tra n elementi distinguibili senza che siano possibili ripetizioni tra gli elementi. Dimostriamo il seguente teorema: il numero di disposizioni semplici di n elementi di classe è D n, = (n )! Infatti, fissata una particolare disposizione di elementi, per gli altri n deve valere che P n = (n )!. In definitiva si deve avere: D n, (n )! = P n = D n, = (n )! Combinazioni semplici Nella precedente trattazione ci siamo chiesti come disporre elementi scelti in un insieme di n elementi distinguibili; ma quanti sono i possibili sottoinsiemi di elementi (con n)? Ciascuno dei sottoinsiemi si chiama combinazione semplice di n elementi di classe e si indica con C n,. E importante notare che in questo caso stiamo calcolando il numero dei possibili sottoinsiemi che sono enti matematici non ordinati. Dimostriamo il seguente teorema: il numero di combinazioni semplici di n elementi di classe è C n, =!(n )! Infatti, fissato un particolare sottoinsieme di elementi, deve valere che P =!. In definitiva si deve avere: C n,! = D n, = Coefficiente binomiale (n )! C n, =! (n )! Il numero di combinazioni semplici di n elementi di classe che abbiamo calcolato è dato dal valore!(n )! rappresentabile anche col simbolo (n ) che si chiama coefficiente binomiale; il nome deriva dal fatto che tale coefficiente rappresenta il -esimo coefficiente dello sviluppo del binomio di grado n (seguendo l ordine del triangolo di Tartaglia). Si elencano alcune proprietà del coefficiente binomiale: Infatti: ( n 0 ) = 0! (n 0)! = = 1 ( n n ) = (0)! = = 1 ( n 1 ) = 1! (n 1)! = n ( n ) =! (n )! = (n )!! = (n )! [n (n )]! = ( n n ) ( n ) = (n + 1 ) ( n 1 ) 5

6 ( n + 1 ) ( n 1 ) = (n + 1)!! (n + 1 )! = = ( 1)! (n + 1)! (n + 1) (n + 1)! (n )! (n + 1)! (n )!! (n )! [ (n + 1) (n + 1) (n + 1) ] = 2.3 Permutazioni, disposizioni, combinazioni con ripetizioni Permutazioni con ripetizioni Nel caso di un insieme di n elementi tra i quali a i indistinguibili (con! (n )! = (n ) j=1 a j = n ) ogni possibile loro elencazione si chiama permutazione con ripetizioni e si indica con P n. Dimostriamo il seguente teorema: il numero di permutazioni con ripetizioni di un insieme di n elementi tra i quali a i indistinguibili è P n = j=1 a j! Infatti per ciascuna permutazione P n ce ne sarebbero altre ai se numerassimo ciascun gruppo di elementi a i rendendoli distinguibili. Quindi: P n a j! = P n = j= Disposizioni con ripetizioni j=1 a j! Sempre nel caso precedente di un insieme di n elementi distinguibili possiamo generalizzare il concetto di permutazione elencando non tutti gli n elementi dell insieme, ma facendo un elenco di elementi (con anche la possibilità di > n) ammettendo ripetizioni degli elementi; ciascuna numerazione si chiama disposizione con ripetizioni di n elementi di classe e si indica con D n,. In pratica, si tratta di calcolare in quante maniere si possano disporre in posti elementi scelti tra n elementi distinguibili accettando ripetizioni tra gli elementi. Dimostriamo per induzione il seguente teorema: il numero di disposizioni con ripetizioni di n elementi di classe è D n, = n Se = 1 allora le possibili elencazioni sono ovviamente n, cioè D n,1 = n 1 ; posto che per posti le disposizioni siano n, allora dimostriamo che per + 1 elementi le disposizioni devono essere n +1. Si ha infatti che per il + 1esimo posto si hanno ulteriori n disposizioni per ciascuna delle D n, disposizioni. Vale a dire che per ogni precedente disposizione ce ne devono essere altre n se si aggiunge un posto: D n, Combinazioni con ripetizioni = n D n,+1 = n n = n +1 Come in precedenza possiamo chiederci: quanti sono i possibili raggruppamenti di elementi (con anche la possibilità di > n) se in tali raggruppamenti si ammette la ripetizione di elementi? Si noti che questi raggruppamenti non sono ordinate ma non sono sottoinsiemi dell insieme di partenza, in quanto negli insiemi la ripetizione di un elemento non ha alcun valore. Ciascuno di 6

7 questi raggruppamenti si chiama combinazione con ripetizioni di n elementi di classe e si indica con C n,. Dimostriamo il seguente teorema: il numero di combinazioni con ripetizioni di n elementi di classe è C n, = ( n+ 1 ) Infatti, poiché l ordine non ha significato, possiamo idealmente pensare di dividere i elementi di ogni raggruppamento con n 1 barriere divisorie che separino gli elementi indistinguibili; a questo punto il problema è quello di calcolare le combinazioni semplici di + n 1 elementi di classe. Vale a dire: n + 1 C n, = C n+ 1, = ( ) 7

Introduzione al Calcolo delle Probabilità

Introduzione al Calcolo delle Probabilità Introduzione al Calcolo delle Probabilità In tutti quei casi in cui le manifestazioni di un fenomeno (EVENTI) non possono essere determinate a priori in modo univoco, e i risultati possono essere oggetto

Dettagli

Statistica ARGOMENTI. Calcolo combinatorio

Statistica ARGOMENTI. Calcolo combinatorio Statistica ARGOMENTI Calcolo combinatorio Probabilità Disposizioni semplici Disposizioni con ripetizione Permutazioni semplici Permutazioni con ripetizioni Combinazioni semplici Assiomi di probabilità

Dettagli

Calcolo della probabilità

Calcolo della probabilità Calcolo della probabilità GLI EVENTI Un evento è un fatto che può accadere o non accadere. Se esso avviene con certezza si dice evento certo, mentre se non può mai accadere si dice evento impossibile.

Dettagli

3.1 La probabilità: eventi e variabili casuali

3.1 La probabilità: eventi e variabili casuali Capitolo 3 Elementi di teoria della probabilità Abbiamo già notato come, per la ineliminabile presenza degli errori di misura, quello che otteniamo come risultato della stima del valore di una grandezza

Dettagli

Calcolo combinatorio

Calcolo combinatorio Calcolo combinatorio Fattoriale: n! = n( n 1)( n 2)...1 1 1 n n = 0 Fattoriale discendente: n( n 1)...( n k + 1) n! (n) k = = ( n k)! 1 1 k n k = 0 Coefficiente binomiale (k n) : n (n) = k n! = k k! k!(

Dettagli

Probabilità. Spazi di probabilità

Probabilità. Spazi di probabilità Probabilità Paolo Montanari Appunti di Matematica Probabilità 1 Spazi di probabilità Un esperimento si dice casuale quando esso può essere ripetuto quante volte si vuole, ed il risultato di ogni esecuzione

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabilità Il calcolo delle probabilità studia i modelli matematici delle cosiddette situazioni di incertezza. Molte situazioni concrete sono caratterizzate a priori da incertezza su quello

Dettagli

Combinatoria. Lezione del 12/02/2014. Stage di Parma Progetto Olimpiadi

Combinatoria. Lezione del 12/02/2014. Stage di Parma Progetto Olimpiadi Combinatoria Lezione del 12/02/2014 Stage di Parma Progetto Olimpiadi Fattoriali e Binomiali Fattoriale: n!=n*(n-1)*(n-2)* 2*1 0!=1 Binomiale (n,k)= n!/(k!(n-k)!) I binomiali formano il triangolo di tartaglia

Dettagli

Probabilità. Ing. Ivano Coccorullo

Probabilità. Ing. Ivano Coccorullo Ing. Ivano Coccorullo PROBABILITA Teoria della Eventi certi, impossibili e casuali Nella scienza e nella tecnologia è fondamentale il principio secondo il quale ogni volta che si realizza un insieme di

Dettagli

Statistica Inferenziale

Statistica Inferenziale Statistica Inferenziale Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010 Riepilogo lezione 1 Abbiamo visto: Definizioni di statistica, statistica inferenziale, probabilità (interpretazione

Dettagli

Combinatoria. Lezione del 04/01/2010. Stage di Terni Progetto Olimpiadi

Combinatoria. Lezione del 04/01/2010. Stage di Terni Progetto Olimpiadi Combinatoria Lezione del 04/01/2010 Stage di Terni Progetto Olimpiadi Fattoriali e Binomiali Fattoriale: n!=n*(n-1)*(n-2)* 2*1 0!=1 Binomiale (n,k)= n!/(k!(n-k)!) I binomiali formano il triangolo di tartaglia

Dettagli

Primi elementi di combinatoria Federico Lastaria, Analisi e Geometria 1

Primi elementi di combinatoria Federico Lastaria, Analisi e Geometria 1 Politecnico di Milano. Scuola di Ingegneria Industriale e dell Informazione Analisi e Geometria 1 Federico Lastaria Primi elementi di combinatoria 11 Ottobre 2016 Indice 1 Elementi di combinatoria 2 1.1

Dettagli

Introduzione al calcolo delle probabilità

Introduzione al calcolo delle probabilità Introduzione al calcolo delle probabilità L. Boni Approccio empirico OSSERVAZIONE IPOTESI TEORIA DOMINANTE ESPERIMENTO L esperimento Un esperimento (dal latino ex, da, e perire, tentare, passare attraverso

Dettagli

0 Richiami di algebra lineare e geometria analitica Distanza, coordinate e vettori Sistemi lineari e matrici...

0 Richiami di algebra lineare e geometria analitica Distanza, coordinate e vettori Sistemi lineari e matrici... Indice 0 Richiami di algebra lineare e geometria analitica........... 9 0.1 Distanza, coordinate e vettori............................. 9 0.2 Sistemi lineari e matrici..................................

Dettagli

NOZIONI DI CALCOLO DELLE PROBABILITÀ

NOZIONI DI CALCOLO DELLE PROBABILITÀ NOZIONI DI CALCOLO DELLE PROBABILITÀ ESPERIMENTO CASUALE: un esperimento si dice casuale quando gli esiti (manifestazioni o eventi) non possono essere previsti con certezza. PROVA: le ripetizioni, o occasioni

Dettagli

VARIABILI CASUALI CONTINUE

VARIABILI CASUALI CONTINUE p. 1/1 VARIABILI CASUALI CONTINUE Una variabile casuale continua può assumere tutti gli infiniti valori appartenenti ad un intervallo di numeri reali. p. 1/1 VARIABILI CASUALI CONTINUE Una variabile casuale

Dettagli

Lanciando un dado, il tuo compagno esclama: uscirà 1, 2, 3, 4, 5 o 6 oppure: uscirà il numero 4. uscirà il numero 9

Lanciando un dado, il tuo compagno esclama: uscirà 1, 2, 3, 4, 5 o 6 oppure: uscirà il numero 4. uscirà il numero 9 Lanciando un dado, il tuo compagno esclama: uscirà 1, 2, 3, 4, 5 o 6 oppure: uscirà il numero 4 o ancora: uscirà il numero 9 Possiamo dire che le previsione del tuo compagno sono la prima certa, la seconda

Dettagli

Sperimentazioni di Fisica I mod. A Statistica - Lezione 3

Sperimentazioni di Fisica I mod. A Statistica - Lezione 3 Sperimentazioni di Fisica I mod. A Statistica - Lezione 3 A Garfagnini, M Mazzocco, C Sada Dipartimento di Fisica G. Galilei, Università di Padova AA 2014/2015 Elementi di Teoria della Probabilità L ineliminabile

Dettagli

IL CALCOLO DELLE PROBABILITA

IL CALCOLO DELLE PROBABILITA IL CALCOLO DELLE PROBABILITA INTRODUZIONE Già 3000 anni fa gli Egizi praticavano un antenato del gioco dei dadi, che si svolgeva lanciando una pietra. Il gioco dei dadi era diffuso anche nell antica Roma,

Dettagli

MATEMATICA DISCRETA CLAUDIA MALVENUTO PRIMA PROVA IN ITINERE 24 APRILE 2014

MATEMATICA DISCRETA CLAUDIA MALVENUTO PRIMA PROVA IN ITINERE 24 APRILE 2014 MATEMATICA DISCRETA CLAUDIA MALVENUTO PRIMA PROVA IN ITINERE 4 APRILE 014 1. Trovare il numero di stringhe di lunghezza n che si possono formare usando le lettere A, B, C, D, E in modo che ogni stringa

Dettagli

MATEMATICA. a.a. 2014/15

MATEMATICA. a.a. 2014/15 MATEMATICA a.a. 2014/15 5. Introduzione alla probabilità: Definizioni di probabilità. Evento, prova, esperimento. Eventi indipendenti e incompatibili. Probabilità condizionata. Teorema di Bayes CONCETTI

Dettagli

Ψ PSICOMETRIA. Corso di laurea triennale (classe 34) STATISTICA INFERENZIALE

Ψ PSICOMETRIA. Corso di laurea triennale (classe 34) STATISTICA INFERENZIALE Ψ PSICOMETRIA Corso di laurea triennale (classe 34) STATISTICA INFERENZIALE STATISTICA INFERENZIALE CAMPIONE caratteristiche conosciute POPOLAZIONE caratteristiche sconosciute STATISTICA INFERENZIALE STIMA

Dettagli

2 per ogni n N +. k=1 a k) ( n. k=1 b k) n

2 per ogni n N +. k=1 a k) ( n. k=1 b k) n (ii) il prodotto di due irrazionali è irrazionale; (iii) la somma di un razionale e di un irrazionale è irrazionale; (iv) il prodotto di un razionale e di un irrazionale è irrazionale. 5. Siano a, b R.

Dettagli

Corso di Istituzioni di Matematiche

Corso di Istituzioni di Matematiche Corso di Istituzioni di Matematiche Università degli Studi della Basilicata Facoltà di Scienze MM. FF. NN. Corso di laurea in Biotecnologie A.A. 2010/11 dott.ssa Vita Leonessa Elementi di calcolo combinatorio

Dettagli

I Esonero di Matematica Discreta - a.a. 06/07 Versione C

I Esonero di Matematica Discreta - a.a. 06/07 Versione C I Esonero di Matematica Discreta - a.a. 06/07 Versione C 1. a. Sono dati gli insiemi A = 1, 2, 3,, 5, 6} e B = numeri naturali dispari}. Determinare A B, A B, B C N (A), C N (A B), P(A B), P(A) P(B). b.

Dettagli

Matematica e Statistica per Scienze Ambientali

Matematica e Statistica per Scienze Ambientali per Scienze Ambientali Insiemi e Combinatoria - Appunti 1 1 Dipartimento di Matematica Sapienza, Università di Roma Roma, 23 - Ottobre 2012 Il concetto di insieme Non tratterò la teoria assiomatica degli

Dettagli

Appendice A Richiami di calcolo combinatorio

Appendice A Richiami di calcolo combinatorio Appendice A Richiami di calcolo combinatorio A.1. Dati due insiemi finiti A e B, concarda = m, cardb = n, siha card(a B) =m n. Possiamo anche dire che il numero di scelte possibili di un elemento di A

Dettagli

P (A) = P (B) = P (A ^ B) = P (A _ B) = P (A _ A c B)= P ([A _ B] ^ [A c _ B c ]) =

P (A) = P (B) = P (A ^ B) = P (A _ B) = P (A _ A c B)= P ([A _ B] ^ [A c _ B c ]) = Esercizio 7 2 Un esperimento consiste nel lanciare una moneta e nell estrarre una pallina da un urna contenente 4 palline numerate da 1 a 4. Consideriamo gli eventi: A = Esce Testa, B = Si estrae la pallina

Dettagli

Teoria della probabilità

Teoria della probabilità Introduzione alla teoria della probabilità Teoria della probabilità Primi sviluppi nel XVII secolo (Pascal( Pascal, Fermat, Bernoulli); Nasce nell ambito dei giochi d azzardo; d La prima formalizzazione

Dettagli

Alcune nozioni preliminari di teoria elementare di insiemi e funzioni

Alcune nozioni preliminari di teoria elementare di insiemi e funzioni Alcune nozioni preliminari di teoria elementare di insiemi e funzioni Alberto Pinto Corso Propedeutico - METS A.A. 2013/2014 1 Insiemi 1.1 Generalità Diamo la definizione di insieme secondo Georg Cantor,

Dettagli

È l insieme di tutti i possibili esiti di un esperimento aleatorio; si indica generalmente con il simbolo.

È l insieme di tutti i possibili esiti di un esperimento aleatorio; si indica generalmente con il simbolo. A Ripasso Terminologia DOMADE Spazio campionario Evento Evento certo Evento elementare Evento impossibile Evento unione Evento intersezione Eventi incompatibili Evento contrario RISPOSTE È l insieme di

Dettagli

Classi: 4A inf Serale Disciplina: MATEMATICA Ore settimanali previste: 3

Classi: 4A inf Serale Disciplina: MATEMATICA Ore settimanali previste: 3 Classi: 4A inf Serale Disciplina: MATEMATICA Ore settimanali previste: 3 Titolo unità didattiche in cui è diviso Titolo Modulo il modulo Prerequisiti per l'accesso al modulo 1: Calcolo numerico e letterale,

Dettagli

Esperimentazioni di Fisica 1 Elementi di Calcolo delle Probabilità

Esperimentazioni di Fisica 1 Elementi di Calcolo delle Probabilità Esperimentazioni di Fisica 1 Elementi di Calcolo delle Probabilità Università Roma Tre - Dipartimento di Matematica e Fisica 3 novembre 2016 Introduzione La probabilità nel linguaggio comune I E probabile

Dettagli

La probabilità composta

La probabilità composta La probabilità composta DEFINIZIONE. Un evento E si dice composto se il suo verificarsi è legato al verificarsi contemporaneo (o in successione) degli eventi E 1, E 2 che lo compongono. Consideriamo il

Dettagli

Numero di successi su n prove

Numero di successi su n prove Numero di successi su n prove Risultati possibili lanciando, volte una moneta. numero di volte in cui esce croce... (,) 0. 0 0 0..... numero di volte in cui esce testa Figura : I risultati favorevoli all

Dettagli

ELEMENTI DI PROBABILITA (parte 2) 1 / 27

ELEMENTI DI PROBABILITA (parte 2) 1 / 27 ELEMENTI DI PROBABILITA (parte 2) 1 / 27 Combinazioni 2 / 27 Supponiamo di non essere interessati all ordine in cui sono disposti gli oggetti, per cui la parola abc sia indistinguibile dalla parola bca.

Dettagli

Classi: 4A inf Sirio Disciplina: MATEMATICA Ore settimanali previste: 3

Classi: 4A inf Sirio Disciplina: MATEMATICA Ore settimanali previste: 3 Classi: 4A inf Sirio Disciplina: MATEMATICA Ore settimanali previste: 3 Titolo unità didattiche in cui è diviso Titolo Modulo il modulo Prerequisiti per l'accesso al modulo 1: Calcolo numerico e letterale,

Dettagli

Combinatoria. Lezione del 16/12/2009. Stage di Treviso Progetto Olimpiadi

Combinatoria. Lezione del 16/12/2009. Stage di Treviso Progetto Olimpiadi Combinatoria Lezione del 16/12/2009 Stage di Treviso Progetto Olimpiadi Fattoriali e Binomiali Fattoriale: n!=n*(n-1)*(n-2)* 2*1 0!=1 Binomiale (n,k)= n!/(k!(n-k)!) I binomiali formano il triangolo di

Dettagli

Salto in alto oltre le formule

Salto in alto oltre le formule Corso PON Competenze per lo sviluppo Liceo Scientifico "Bonaventura Rescigno Ing. Ivano Coccorullo Prof.ssa Laura Falcone Teoria della Probabilità Legge empirica del caso: in un grande numero di prove,

Dettagli

Figura 7: Ruota della Fortuna. Quanti sono i casi possibili? G. Sanfilippo - CdP - STAD - Lezione 2 del 12 Aprile pag. 15

Figura 7: Ruota della Fortuna. Quanti sono i casi possibili? G. Sanfilippo - CdP - STAD - Lezione 2 del 12 Aprile pag. 15 Figura 7: Ruota della Fortuna. Quanti sono i casi possibili? G. Sanfilippo - CdP - STAD - Lezione 2 del 12 Aprile 2012- pag. 15 Casi Possibili B= La lancetta indica il Blu V= La lancetta indica il Verde

Dettagli

MATEMATICA E STATISTICA CORSO A CORSO DI LAUREA IN SCIENZE BIOLOGICHE MOLECOLARI

MATEMATICA E STATISTICA CORSO A CORSO DI LAUREA IN SCIENZE BIOLOGICHE MOLECOLARI MATEMATICA E STATISTICA CORSO A CORSO DI LAUREA IN SCIENZE BIOLOGICHE MOLECOLARI ESERCITATI CON ME! I ESERCITAZIONE 1) Misure ripetute (materiale secco su vetrino) della lunghezza del diametro maggiore

Dettagli

Richiami sul calcolo delle probabilità

Richiami sul calcolo delle probabilità robabilità Richiami sul calcolo delle probabilità TEORIA DEI SEGNALI LAUREA IN INGEGNERIA DELL INFORMAZIONE Modello matematico Sommario Assiomi del calcolo delle probabilità robabilità di un evento robabilità

Dettagli

«l arte di contare senza contare»

«l arte di contare senza contare» «l arte di contare senza contare» Numero di oggetti disponibili Numero di oggetti che costituiscono una sola estrazione Regole per costruire le estrazioni: se si possono utilizzare tutti gli oggetti o

Dettagli

Introduzione al calcolo delle probabilità

Introduzione al calcolo delle probabilità Introduzione al calcolo delle probabilità venti certi, impossibili, aleatori Supponiamo di lanciare un dado e consideriamo i seguenti eventi : ={ esce un numero compreso tra e 6 (estremi inclusi) } 2 ={

Dettagli

Variabili aleatorie binomiali e di Poisson

Variabili aleatorie binomiali e di Poisson Variabili aleatorie binomiali e di Poisson Tiziano Vargiolu Dipartimento di Matematica Pura ed Applicata via Trieste, 63-35121 Padova email: vargiolu@math.unipd.it 9 gennaio 2007 Indice 1 Variabili aleatorie

Dettagli

Probabilità: teoremi e distribuzioni

Probabilità: teoremi e distribuzioni Probabilità: teoremi e distribuzioni OBIETTIVO DIDATTICO DELLA LEZIONE Illustrare le più importanti distribuzioni di probabilità che vengono utilizzate in statistica Distribuzioni di probabilità 1. La

Dettagli

Elementi di Analisi Combinatoria

Elementi di Analisi Combinatoria Elementi di Analisi Combinatoria Angelica Malaspina Dipartimento di Matematica, Informatica ed Economia Università degli Studi della Basilicata, Italy angelica.malaspina@unibas.it Lo studio dei vari raggruppamenti

Dettagli

Liceo Scientifico Statale G. Stampacchia Tricase Tempo di lavoro 120 minuti

Liceo Scientifico Statale G. Stampacchia Tricase Tempo di lavoro 120 minuti Compito in classe 4D/17 Gennaio 006 1 Oggetto: compito in Classe 4D/PNI Liceo Scientifico Statale G. Stampacchia Tricase Tempo di lavoro 10 minuti Argomenti: Calcolo combinatorio e calcolo delle probabilità.

Dettagli

{ } corrisponde all uscita della faccia i-esima del dado. La distribuzione di probabilità associata ( )

{ } corrisponde all uscita della faccia i-esima del dado. La distribuzione di probabilità associata ( ) Università di Trento - Corsi di Laurea in Ingegneria Civile e in Ingegneria per l Ambiente e il Territorio - 2017/18 Analisi Matematica 1 - professore Alberto Valli 2 foglio di esercizi 25 settembre 2017

Dettagli

Correzione Esercitazione 1. Esercizio 1. La risposta alla domanda dell esercizio ci viene fornita dal coefficiente multinomiale. = n! k i!

Correzione Esercitazione 1. Esercizio 1. La risposta alla domanda dell esercizio ci viene fornita dal coefficiente multinomiale. = n! k i! Correzione Esercitazione 1 Esercizio 1. La risposta alla domanda dell esercizio ci viene fornita dal coefficiente multinomiale ( n = n! k r k i! che ci dice in quanti modi possiamo mettere n oggetti in

Dettagli

Modelli descrittivi, statistica e simulazione

Modelli descrittivi, statistica e simulazione Modelli descrittivi, statistica e simulazione Master per Smart Logistics specialist Roberto Cordone (roberto.cordone@unimi.it) Teoria della probabilità Cernusco S.N., mercoledì 8 marzo 2017 1 / 23 Teoria

Dettagli

SCHEDA ATTIVITÀ DIDATTICA SVOLTA A. S. 2016/17

SCHEDA ATTIVITÀ DIDATTICA SVOLTA A. S. 2016/17 Nome e cognome del docente: Disciplina insegnata: Tiziana Paoli Matematica Libro/i di testo in uso: L. Lamberti, L. Mereu, A. Nanni, Nuovo Lezioni di Matematica, vol. B, ETAS L. Lamberti, L. Mereu, A.

Dettagli

Facoltà di SCIENZE Anno Accademico 2016/17 Registro lezioni del docente MUSIO MONICA

Facoltà di SCIENZE Anno Accademico 2016/17 Registro lezioni del docente MUSIO MONICA Facoltà di SCIENZE Anno Accademico 2016/17 Registro lezioni del docente MUSIO MONICA Attività didattica CALCOLO DELLE PROBABILITA' [60/64/186] Periodo di svolgimento: Primo Semestre Docente titolare del

Dettagli

Appunti di Calcolo delle Probabilità per il corso di Modelli Matematici per le Scienze Sociali

Appunti di Calcolo delle Probabilità per il corso di Modelli Matematici per le Scienze Sociali 1 Calcolo combinatorio Appunti di Calcolo delle Probabilità per il corso di Modelli Matematici per le Scienze Sociali Si dice disposizione semplice di n oggetti di classe K (con k n) ogni allineamento

Dettagli

1 Il linguaggio matematico

1 Il linguaggio matematico 1 Il linguaggio matematico 1.1 La logica delle proposizioni La matematica è un linguaggio; a differenza del linguaggio letterario che utilizza una logica soggettiva, la matematica si serve di una logica

Dettagli

Lezione 1: Università Mediterranea di Reggio Calabria Decisions Lab. Insiemi. La Probabilità Probabilità e Teoria degli Insiemi

Lezione 1: Università Mediterranea di Reggio Calabria Decisions Lab. Insiemi. La Probabilità Probabilità e Teoria degli Insiemi Lezione 1: Probabilità e Teoria degli Università Mediterranea di Reggio Calabria Decisions Lab Gli insiemi Gli Un insieme S è una collezione di oggetti chiamati elementi dell insieme. - Se x è un elemento

Dettagli

Correzione Quarto scritto di Matematica per Biologi, corso B, 2010

Correzione Quarto scritto di Matematica per Biologi, corso B, 2010 Correzione Quarto scritto di Matematica per Biologi, corso B, 010 31 gennaio 011 1 Parte 1 Esercizio 1.1. Per risolvere questo esercizio bisogna ricordarsi (formula.5 pag. 66 del vostro libro) che per

Dettagli

Matematica con elementi di Informatica

Matematica con elementi di Informatica Probabilità discreta Matematica con elementi di Informatica Tiziano Vargiolu Dipartimento di Matematica vargiolu@math.unipd.it Corso di Laurea Magistrale in Chimica e Tecnologie Farmaceutiche Anno Accademico

Dettagli

La probabilità matematica

La probabilità matematica 1 La probabilità matematica In generale parliamo di eventi probabili o improbabili quando non siamo sicuri se si verificheranno. DEFINIZIONE. Un evento (E) si dice casuale, o aleatorio, quando il suo verificarsi

Dettagli

Per capire qual è l altezza media degli italiani è stato intervistato un campione di 1523 cittadini. La media campionaria dell altezza risulta essere:

Per capire qual è l altezza media degli italiani è stato intervistato un campione di 1523 cittadini. La media campionaria dell altezza risulta essere: PROBABILITÀ E STATISTICA Per capire qual è l altezza media degli italiani è stato intervistato un campione di 1523 cittadini. La media campionaria dell altezza risulta essere: x = 172, 3 cm Possiamo affermare

Dettagli

APPUNTI DI STATISTICA INFERENZIALE. Avalle Fulvia, maggio 2014, ITSOS MARIE CURIE CLASSI 4A BIO e 4B BIO

APPUNTI DI STATISTICA INFERENZIALE. Avalle Fulvia, maggio 2014, ITSOS MARIE CURIE CLASSI 4A BIO e 4B BIO APPUNTI DI STATISTICA INFERENZIALE Avalle Fulvia, maggio 2014, ITSOS MARIE CURIE CLASSI 4A BIO e 4B BIO PREREQUISITI VARIABILE ALEATORIA (QUANTITATIVA): è una funzione che associa un numero reale ad ogni

Dettagli

CALCOLO DELLE PROBABILITA' risultato non può essere previsto con certezza ogni risultato possibile di un esperimento

CALCOLO DELLE PROBABILITA' risultato non può essere previsto con certezza ogni risultato possibile di un esperimento CALCOLO DELLE PROBABILITA' Esperimento o prova Evento Spazio Campionario (Ω) una qualsiasi operazione il cui risultato non può essere previsto con certezza ogni risultato possibile di un esperimento insieme

Dettagli

Probabilità. 2) Vengono estratte 5 carte; quale è la probabilità che ci siano esattamente 2 denari? ª 0,278. k fattori. n - k +1 ) k!

Probabilità. 2) Vengono estratte 5 carte; quale è la probabilità che ci siano esattamente 2 denari? ª 0,278. k fattori. n - k +1 ) k! Definizione classica = P A Probabilità numero esiti favorevoli numero esiti possibili Esempi 1) Da un mazzo di 40 carte (bastoni, coppe, denari, spade) ne viene estratta una; quale è la probabilità che

Dettagli

INCERTEZZA e PROBABILITA

INCERTEZZA e PROBABILITA Incertezza e Probabilità INCERTEZZA e PROBABILITA Esempi: Qual è la probabilità che la pallina si posi su un numero dispari? Qual è la probabilità che uno studente di Monza passi l esame di Statistica

Dettagli

IL CALCOLO DELLE PROBABILITA

IL CALCOLO DELLE PROBABILITA IL CLCOLO DLL ROILIT SRIMNTO: si dice deterministico l esperimento il cui risultato è prevedibile con certezza; si dice casuale l esperimento il cui risultato non è prevedibile con certezza. VNTO: si dice

Dettagli

PROBABILITA E STATISTICA

PROBABILITA E STATISTICA PROBABILITA E STATISTICA La nozione di probabilità è stata concepita in modi diversi; GROSSOLANAMENTE le principali sono: Concezione classica: concetto di probabilità come uguale possibilità concezione

Dettagli

Introduzione alla probabilità

Introduzione alla probabilità Introduzione alla probabilità Osservazione e studio dei fenomeni naturali: a. Caso deterministico: l osservazione fornisce sempre lo stesso risultato. b. Caso stocastico o aleatorio: l osservazione fornisce

Dettagli

PROGRAMMAZIONE DIDATTICA ANNUALE

PROGRAMMAZIONE DIDATTICA ANNUALE PROGRAMMAZIONE DIDATTICA ANNUALE Anno Scolastico: 2018 / 2019 Dipartimento: MATEMATICA Coordinatore: Boni Cristina Classe: 5 Indirizzo: Tecnico Turistico Ore di insegnamento settimanale: 3 Testo in adozione

Dettagli

ALGEBRA DEGLI EVENTI

ALGEBRA DEGLI EVENTI ALGEBRA DEGLI EVENTI Appunti introduttivi al Calcolo Combinatorio e al Calcolo delle Probabilità Classe Terza a cura di Franca Gressini Novembre 2008 1 Conosciamo tante algebre. quella letterale (gli oggetti

Dettagli

Probabilità e Statistica

Probabilità e Statistica Corso PON Competenze per lo sviluppo Liceo Scientifico "Bonaventura Rescigno Baronissi Ing. Ivano Coccorullo Prof.ssa Angela D Ambrosio Teoria delle probabilità Si è soliti far risalire la nascita della

Dettagli

NOZIONI DI CALCOLO DELLE PROBABILITÀ ALCUNE DEFINIZIONI

NOZIONI DI CALCOLO DELLE PROBABILITÀ ALCUNE DEFINIZIONI NOZIONI DI CALCOLO DELLE PROBABILITÀ ALCUNE DEFINIZIONI ESPERIMENTO CASUALE: un esperimento si dice casuale quando gli esiti (manifestazioni o eventi) non possono essere previsti con certezza. PROVA: le

Dettagli

Esercizio 2 Si consideri l esperimento avente come risultati possibili i numeri 1, 2, 3, 4, 5 di probabilità rispettivamente 0.2, 0.4, 0.1, 0.1, 0.2.

Esercizio 2 Si consideri l esperimento avente come risultati possibili i numeri 1, 2, 3, 4, 5 di probabilità rispettivamente 0.2, 0.4, 0.1, 0.1, 0.2. Esercizio 2 Si consideri l esperimento avente come risultati possibili i numeri 1, 2, 3, 4, 5 di probabilità rispettivamente 0.2, 0.4, 0.1, 0.1, 0.2. a) Determinare l insieme di tutti i possibili sottoinsiemi

Dettagli

combiniamo le lettere, ciascuna presa una sola volta per formare parole di n lettere;

combiniamo le lettere, ciascuna presa una sola volta per formare parole di n lettere; CALCOLO COMBINATORIO Il calcolo combinatorio si occupa di contare i raggruppamenti che si possono fare con n oggetti di un insieme finito, secondo determinate regole. Vediamo di seguito come, a seconda

Dettagli

PROGRAMMAZIONE DIDATTICA ANNUALE

PROGRAMMAZIONE DIDATTICA ANNUALE PROGRAMMAZIONE DIDATTICA ANNUALE Anno Scolastico: 2018 / 2019 Dipartimento: MATEMATICA Coordinatore: Boni Cristina Classe: 5 Indirizzo: Servizi commerciali Ore di insegnamento settimanale: 3 Testo in adozione

Dettagli

Freq.relative Freq.cumul. Freq.Cum.rel.

Freq.relative Freq.cumul. Freq.Cum.rel. 0 A B C D E F G H I Esercizio frequenze Nella colonna R, a partire dalla riga,si riportino 00 numeri compresi tra 0 e, generati dal "generatore di numeri casuali". Nella zona riquadrata di rosso si riportino

Dettagli

LICEO SCIENTIFICO "R. NUZZI" - ANDRIA Anno Scolastico 2015/16 MATEMATICA

LICEO SCIENTIFICO R. NUZZI - ANDRIA Anno Scolastico 2015/16 MATEMATICA LICEO SCIENTIFICO "R. NUZZI" - ANDRIA Anno Scolastico 2015/16 MATEMATICA Il Dipartimento di Matematica per il corrente anno scolastico (2015/2016) ha individuato la realizzazione di diciannove corsi integrativi

Dettagli

La PROBABILITA è un numero che si associa ad un evento E ed esprime il grado di aspettativa circa il suo verificarsi.

La PROBABILITA è un numero che si associa ad un evento E ed esprime il grado di aspettativa circa il suo verificarsi. La maggior parte dei fenomeni, ai quali assistiamo quotidianamente, può manifestarsi in vari modi, ma è quasi sempre impossibile stabilire a priori quale di essi si presenterà ogni volta. La PROBABILITA

Dettagli

In molte applicazioni sorge il problema di sapere in quanti modi possibili si può presentare un certo fenomeno.

In molte applicazioni sorge il problema di sapere in quanti modi possibili si può presentare un certo fenomeno. Definizione Oggetto del calcolo combinatorio è quello di determinare il numero dei modi mediante i quali possono essere associati, secondo prefissate regole, gli elementi di uno stesso insieme o di più

Dettagli

Calcolo delle Probabilità Soluzioni 1. Spazio campionario ed eventi

Calcolo delle Probabilità Soluzioni 1. Spazio campionario ed eventi ISTITUZIONI DI STATISTICA A. A. 2007/2008 Marco Minozzo e Annamaria Guolo Laurea in Economia del Commercio Internazionale Laurea in Economia e Amministrazione delle Imprese Università degli Studi di Verona

Dettagli

TEMI D ESAME: classi III

TEMI D ESAME: classi III TEMI D ESAME: classi III a.f. 2017-2018 Operatore del benessere Raccolta di esercizi, suddivisi per argomento, tratti dalle prove d esame a cura di A. Vaghi e G. Lorusso AFOL SUD MILANO Preparazione alla

Dettagli

Esercizi riguardanti limiti di successioni e di funzioni

Esercizi riguardanti limiti di successioni e di funzioni Esercizi riguardanti iti di successioni e di funzioni Davide Boscaini Queste sono le note da cui ho tratto le esercitazioni del giorno 0 Novembre 20. Come tali sono ben lungi dall essere esenti da errori,

Dettagli

Matematica e Statistica per STB A.A. 2017/2018. Soluzioni degli esercizi - Foglio 1

Matematica e Statistica per STB A.A. 2017/2018. Soluzioni degli esercizi - Foglio 1 Matematica e Statistica per STB A.A. 017/018 Soluzioni degli esercizi - Foglio 1 1. B = 0. a Lo spazio dei campioni associato all esperimento è il prodotto cartesiano Ω = Ω 1 Ω. dove Ω 1 = {1,,, 4, 5,

Dettagli

Brevi richiami su variabili aleatorie e processi stocastici

Brevi richiami su variabili aleatorie e processi stocastici Appendice Parte 9, 1 Brevi richiami su variabili aleatorie e processi stocastici Richiami di teoria della probabilita` Appendice Parte 9, 2 Esperimento casuale: analisi degli elementi caratteristici dei

Dettagli

Matematica e Statistica per Scienze Ambientali

Matematica e Statistica per Scienze Ambientali per Scienze Ambientali Variabili aleatorie - Appunti 1 1 Dipartimento di Matematica Sapienza, Università di Roma Roma, Gennaio 2013 Variabili aleatorie Un numero aleatorio è un esempio di variabile aleatoria.

Dettagli

Probabilità e Statistica

Probabilità e Statistica Corso PON Competenze per lo sviluppo Liceo Scientifico "Bonaventura Rescigno Ing. Ivano Coccorullo Prof.ssa Angela D Ambrosio Calcolo Combinatorio Calcolo Combinatorio ü Molti dei problemi classici

Dettagli

Salto in alto oltre le formule

Salto in alto oltre le formule Corso PON Competenze per lo sviluppo Liceo Scientifico "Bonaventura Rescigno Ing. Ivano Coccorullo Prof.ssa Elisa Salvati Calcolo Combinatorio Calcolo Combinatorio ü Molti dei problemi classici di calcolo

Dettagli

1! 4! = 5. Quindi la probabilità di ottenere 1 successo su 5 lanci sarà 5 2 = 5! 2! 3! = 10

1! 4! = 5. Quindi la probabilità di ottenere 1 successo su 5 lanci sarà 5 2 = 5! 2! 3! = 10 Note sulla Distribuzione Binomiale La distribuzione binomiale è relativa ad una variabile aleatoria discreta, che descrive i possibili risultati di un esperimento composto da n prove. In particolare, definisce

Dettagli

1. Sistemi di equazioni lineari. 1.1 Considerazioni preliminari

1. Sistemi di equazioni lineari. 1.1 Considerazioni preliminari 1. Sistemi di equazioni lineari 1.1 Considerazioni preliminari I sistemi lineari sono sistemi di equazioni di primo grado in più incognite. Molti problemi di matematica e fisica portano alla soluzione

Dettagli

Miniguida logica al calcolo combinatorio LOGICAMENTE

Miniguida logica al calcolo combinatorio LOGICAMENTE LOGICAMENTE Cosa dobbiamo fare? Per risolvere gli esercizi relativi al calcolo combinatorio dobbiamo: Sapere eseguire un calcolo fattoriale; Sapere distinguere fra combinazioni e disposizioni; Saper distinguere

Dettagli

Cenni di calcolo delle probabilità

Cenni di calcolo delle probabilità Cenni di calcolo delle probabilità Prof.ssa G. Serio, Prof. P. Trerotoli, Cattedra di Statistica Medica, Università di Bari 1/19 Quando si compie un esperimento o una serie di prove i possibili risultati

Dettagli

Progetto Lauree Scientifiche Liceo Classico L.Ariosto, Ferrara Dipartimento di Matematica Università di Ferrara 24 Gennaio 2012

Progetto Lauree Scientifiche Liceo Classico L.Ariosto, Ferrara Dipartimento di Matematica Università di Ferrara 24 Gennaio 2012 Progetto Lauree Scientifiche Liceo Classico L.Ariosto, Ferrara Dipartimento di Matematica Università di Ferrara 24 Gennaio 2012 Concetti importanti da (ri)vedere funzione vettore matrice cenni di calcolo

Dettagli

Registro Lezione del 21 settembre 2016.

Registro Lezione del 21 settembre 2016. Il libro di testo del corso e il seguente, ad esso rimandano i riferimenti nel registro della lezione. M. Bramanti, C.D. Pagani, S. Salsa; Analisi matematica 1 con elementi di geoemetria e algebra lineare;

Dettagli

SOLUZIONI DEL 1 0 TEST DI PREPARAZIONE ALLA 1 a PROVA INTERMEDIA

SOLUZIONI DEL 1 0 TEST DI PREPARAZIONE ALLA 1 a PROVA INTERMEDIA SOLUZIONI DEL 1 0 TEST DI PREPARAZIONE ALLA 1 a PROVA INTERMEDIA 1 Esercizio 0.1 Dato P (A) = 0.5 e P (A B) = 0.6, determinare P (B) nei casi in cui: a] A e B sono incompatibili; b] A e B sono indipendenti;

Dettagli

La probabilità. Monia Ranalli. Ranalli M. Probabilità Settimana # 5 1 / 20

La probabilità. Monia Ranalli. Ranalli M. Probabilità Settimana # 5 1 / 20 La probabilità Monia Ranalli Ranalli M. Probabilità Settimana # 5 1 / 20 Sommario Concetti base Evento elementare, spazio campionario ed evento complementare Rappresentazioni dello spazio campionario Intersezione

Dettagli