Università di Pavia Econometria. Minimi quadrati ordinari Interpretazione geometrica. Eduardo Rossi

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Università di Pavia Econometria. Minimi quadrati ordinari Interpretazione geometrica. Eduardo Rossi"

Transcript

1 Università di Pavia Econometria Minimi quadrati ordinari Interpretazione geometrica Eduardo Rossi Università di Pavia

2 Introduzione L econometria si interessa all analisi dei dati economici. I dati economici provengono esclusivamente da fonti non sperimentali. Non possiamo come economisti ripetere l esperimento, cioè valutare le reazioni a due diversi stimoli, per misurarne l effetto. Possiamo però esaminare come variano tra individui eterogeni, cioè con diversi caratteri (scolarità, età, razza, area geografica di residenza, ecc.), i redditi da lavoro individuali. Per lo stesso periodo di tempo o per un certo numero di periodi. 1

3 Introduzione Il modello lineare di regressione multipla è usato per studiare le relazioni tra la variabile dipendente e diverse variabili indipendenti (esplicative). y t = β 1 x 1t β K x Kt + ǫ t (1) β 1,... β K fixed but unknown parameters, ǫ t ignoto, y t regredendo, v.casuale, x kt regressore, covariata casuale. In genere, uno dei regressori è fissato uguale ad 1,per esempio il primo: x 1t = 1, t; con β 1 intercetta (o costante) dell equazione. 2

4 Le osservazioni possono essere: serie storiche, tempi successivi (anni, trimestri, mesi, settimane, ecc.) cross-section, unità economiche individuali (individui, famiglie, imprese, ecc.) osservate allo stesso istante di tempo. Cross-section di unità individuali osservate un certo numero di periodi di tempo (panel data). 3

5 Introduzione Si suppone che le osservazioni siano generate da un esperimento casuale, prima del quale i loro valori sono ignoti. In verità, la nozione di esperimento è piuttosto vaga e fa riferimento all atto di raccolta dei dati. 4

6 Il metodo dei minimi quadrati I caratteri variano simultaneamente tra gli individui. Il metodo dei minimi quadrati ordinari è un modo per scomporre le differenze nella variabile dipendente fra diverse caratteristiche osservate (variabili esplicative) per le diverse unità nel campione. Il metodo dei minimi quadrati orinari (in inglese Ordinary Least Squares, OLS) è usato per stimare il valore di β k, k = 1,..., K. Questi sono scelti in modo tale che siano la soluzione al seguente problema: min β 1,...,β K N t=1 [y t (β 1 x 1t + β 2 x 2t β K x Kt )] 2 Il termine minimi quadrati si riferisce alla minimizzazione della somma delle differenze al quadrato. [y t (β 1 x 1t β K x Kt )], i residui. 5

7 La funzione obiettivo f(β 1,..., β K ) = N t=1 [y t (β 1 x 1t + β 2 x 2t β K x Kt )] 2 (2) è la sum of squared residuals (somma dei quadrati dei residui). Quando i residui sono valutati in β 1,..., β K i residui sono detti fitted residuals (residui fittati, o residui della regressione). Consideriamo il caso in cui l unica variabile esplicativa è la costante: K = 1 e x 1t = 1, t. OLS trova il valore di β 1 che è il più vicino a y t nel senso della somma dei qudrati dei residui. OLS è la minimizzazione di una funzione quadratica in β 1 e il risultato è la media: β 1 = argmin N t=1 (y t β 1 ) 2 = Nt=1 y t N 6

8 Notazione Notazione matriciale y = X = 1. y y N β = [β 1, β 2,..., β K ] (K 1) (3) x 1. x N x t = x 1t. x Kt (N 1) = x 11 x 21 (K 1) x x 1K x x 2K... x N1 x N2... x NK (N K) 7

9 x 1 β. x N β = Xβ Il vettore y raccoglie tutte le osservazioni della variabile dipendente. La matrice X raccoglie le osservazioni sulle variabili esplicative. Ogni colonna di X contiene tutte le osservazioni per la singola variabile esplicativa. 8

10 Lo stimatore dei minimi quadrati (OLS) Stimatore = E una regola per calcolare una stima (un numero) dai dati campionari. Il metodo dei minimi quadrati risolve Definiamo β argmin β (y Xβ) (y Xβ) S(β) (y Xβ) (y Xβ) 9

11 S(β) β = ( y y 2β X y + β X Xβ ) β = ( 2β X y + β X Xβ ) β = 2 β β X y + ( β X Xβ ) β = 2X y + 2X Xβ 10

12 Le equazioni normali S( β) β = 2X y + 2X X β = 0 (4) X y X X β = 0 (5) Lo stimatore OLS è β = ( X X ) 1 X y (6) Poichè la funzione stimata è lineare nei coefficienti, gli OLS ci danno dei coefficienti stimati che sono somme ponderate delle {y t }. Le stime OLS sono funzioni lineari della variabile dipendente. Questa linearità in {y t } semplifica l analisi statistica degli OLS. 11

13 L interpretazione geometrica degli OLS Lo spazio delle colonne di X, Col(X), è il sottospazio lineare di R N coperto dalle combinazioni lineari dei vettori colonna di X: Col(X) {z R N z = Xα, α R k } La procedura di stima OLS trova il vettore in Col(X), µ, che è più vicino a y. µ è detta proiezione di y. Il metodo OLS risolve: β argmin β (y Xβ) (y Xβ) (7) 12

14 La somma delle deviazioni al quadrato tra gli elementi di di y e Xβ è il quadrato della distanza Euclidea fra y e Xβ: (y Xβ) (y Xβ) = N t=1 (y t x tβ) 2 = y Xβ 2 13

15 Procedura in due passi: 1. Trovare il punto in un sottospazio che è il più vicino ad un punto che non si trova il quel sottospazio. Il sottospazio è l insieme dei possibili vettori reali N dimensionali Xβ che può essere creato cambiando β e questo sottospazio è lo spazio delle colonne di X. µ arg min µ Col(X) y µ 2 2. Trovare un β che sia soluzione a: µ = X β 14

16 La soluzione al primo passo è unica mentre ci possono essere molte soluzione al secondo problema. Sia β una soluzione di (7) e sia µ = X β. 1. Il vettore dei valori fittati µ è l unica proiezione ortogonale di y su Col(X). 2. Il vettore dei residui fittati y µ è ortogonale a Col(X) 3. Se dim[col(x)] = K, allora (7) ha una soluzione unica: β = (X X) 1 X µ 15

17 Tre idee base: 1. La regressione OLS significa minimizzare la distanza al quadrato tra il vettore osservato y e un vettore di regressione Xβ che appartiene a Col(X). 2. Il vettore dei valori fittati µ = Xβ è la proiezione ortogonale su Col(X). Il vettore dei residui (y µ) è perpendicolare a µ e ad ogni altro vettore in Col(X). 3. If the dim[col(x)] = K allora β è unico. 16

18 La dipendenza lineare fra le variabile esplicative non ha un ruolo fondamentale su quanto bene una regressione lineare spiega y. La distanza dipende solo da µ. Caso Speciale: possiamo costruire una soluzione direttamente. Mostriamo che µ = X β = X(X X) 1 X y solo quando le colonne di X sono linearmente indipendenti. ma y µ 2 = y µ + µ µ 2 = y µ 2 + µ µ 2 + 2(y µ) ( µ µ) (y µ) ( µ µ) (y µ) ( µ µ) = 0 17

19 Teorema di Pitagora y µ 2 = y µ 2 + µ µ 2 Se c è un µ Col(X) tale che X (y µ) = 0 allora per tutti gli altri µ Col(x) µ (y µ) = 0 (µ µ) (y µ) = 0 y µ 2 = y µ 2 + µ µ 2 y µ 2 18

20 Poichè y µ è ortogonale a Col(X), µ è vicino a y almeno quanto un qualunque µ in Col(X). Therefore µ is one solution to the OLS (minimum distance) problem µ = arg min y µ 2 µ Col(X) La soluzione è unica perchè per ogni altra possibile soluzione µ deve essere che y µ 2 = y µ 2 poichè nessun altro µ è più vicino a µ. 19

21 Il teorema di Pitagora implica che µ µ 2 = 0 µ = µ La condizione di ortogonalità caratterizza completamente il vettore OLS dei valori fittati µ. Costruiamo µ per il caso X (y X β) = 0 e mostriamo che la soluzione unica è dato che X X è nonsingolare. X (y X β) = 0 X X β X y = 0 β = (X X) 1 X y 20

22 La soluzione per µ segue µ = X β = X(X X) 1 X y β e µ hanno una relazione 1-to-1. Possiamo anche ottenere β da µ: premoltiplicando per (X X) 1 X (X X) 1 X µ = (X X) 1 X X β = β 21

23 Teorema Proiezione Sia y R N e S R N un sottospazio lineare. Allora µ S è una soluzione al problema min µ S y µ 2 se e solo se (y µ) S. Inoltre, µ è la soluzione unica ed esiste. 22

24 Il teorema identifica il meccanismo di minimizzazione che significa trovare un µ Col(X) tale che y µ Col(X) Secondo, il teorema chiarisce che Col(X) determina l ottimale µ. 23

25 Proiettori ortogonali Per ogni y, c è un unica µ, µ = argmin µ S y µ 2 chiamata proiezione di y. La proiezione ortogonale di y è sempre una trasformazione lineare di y: µ = Py P proiettore ortogonale. Nel caso generale che S = Col(X) e X sia di rango-colonna pieno, la matrice P X X(X X) 1 X µ = P X y è la trasformazione lineare di y su Col(X) che produce µ. 24

26 P X ha due proprietà: non modifica i vettori in Col(X) z Col(X) P X z = z trasforma i vettori ortogonali a Col(X) nel vettore zero. z Col(X) P X z = 0 25

27 Prova z Col(X) esiste un α : z = Xα P X z = P X Xα = X(X X) 1 X Xα = Xα = z Se z Col(X) : z X = 0, X Col(X) cosicchè X z = 0 e P X z = X(X X) 1 X z = 0 26

28 Scomposizione ortogonale z R N, possiamo scomporre z univocamente nel vettore somma z 1 + z 2 dove z 1 Col(X) e z 2 Col (X) {z R N X z = 0}. Dove Col (X) è il complemento ortogonale. Complemento ortogonale Il sottospazio lineare di vettori S, ortogonale al sottospazio S V: S = {v V u v = 0, u S} è chiamato complemento ortogonale di S. E equivalente a scrivere v S come v S. Notiamo che se v S S allora v v = 0 tale che v deve essere il vettore zero. In altre parole S S = {0} 27

29 Proiezione ortogonale Sia S R N (sottospazio lineare) tale che per ogni z R N c è un unico z 1 S ed un unico z 2 S tale che z = z 1 + z 2. Allora la funzione da R N a S che associa ogni z con il suo corrispondente z 1 è una proiezione ortogonale. Quando S = Col(X) allora P X z = z 1 è la proiezione ortogonale di z su Col(X). Solo la componente di z in Col(X) sopravvive alla premoltiplicazione per P X. La proiezione ortogonale da R N su un sottospazio S è una trasformazione lineare. (La proiezione ortogonale di una combinazione lineare di vettori uguaglia la combinazione lineare delle proiezioni ortogonali dei singoli vettori). 28

30 Proiettore ortogonale Ogni proiezione ortogonale da R N in un sottospazio S può essere rappresentata da una matrice P, chiamata Proiettore ortogonale. Sia S R N, z R N c è un unico z 1 S ed un unico z 2 S tale che z = z 1 + z 2. Allora una matrice (N N) P tale che Pz = z 1 è un proiettore ortogonale su S. Un proiettore ortogonale preserva la componente di un vettore in un sottospazio S e annulla la componente nel sottospazio complementare ortogonale S. Se P è un proiettore ortogonale su un sottospazio di R N, allora P è unica. 29

31 Proprietà dei Proiettori ortogonali 1. Simmetria P X = X(X X)X = [X(X X)X ] = P X 2. Idempotenza P X P X = [X(X X)X ][X(X X)X ] = X(X X)X = P X 3. Semidefinitezza positiva Per ogni w R N w P X w = w P X P X w = w P X P Xw = (P X w) (P X w) = P X w

32 Osserviamo che z Col (X) (I P X )z = z z Col(X) (I P X )z = 0 cioè M X = (I P X ) è un proiettore ortogonale su Col (X), il complemento ortogonale di Col(X). 31

33 Multicollinearità esatta Se esiste un vettore α R K tale che Xα = 0 allora le colonne di X sono linearmente indipendenti. Questa situazione è detta multicollinearità esatta. Un unico µ esite anche quando X è di rango ridotto. Quando X e (X X) sono singolari non possiamo usare P X = X(X X) 1 X per trovare P X. Quando dim[col(x)] < K, possiamo trovare P X applicando la formula ad ogni sottoinsieme linearmente indipendente delle colonne di X cioè una base per Col(X). 32

34 Indichiamo con P X il proiettore ortogonale su Col(X) e sia X 1 una matrice composta da un sottoinsieme linearmente di colonne di X tale che allora Col(X 1 ) = Col(X) P X = X 1 (X 1 X 1) 1 X 1 33

Minimi quadrati ordinari Interpretazione geometrica. Eduardo Rossi

Minimi quadrati ordinari Interpretazione geometrica. Eduardo Rossi Minimi quadrati ordinari Interpretazione geometrica Eduardo Rossi Il MRLM Il modello di regressione lineare multipla è usato per studiare le relazioni tra la variabile dipendente e diverse variabili indipendenti

Dettagli

Il modello di regressione lineare multipla

Il modello di regressione lineare multipla Il modello di regressione lineare multipla Eduardo Rossi 2 2 Università di Pavia (Italy) Aprile 2014 Rossi MRLM Econometria - 2014 1 / 31 Outline 1 Notazione 2 3 Collinearità Rossi MRLM Econometria - 2014

Dettagli

Il modello di regressione lineare multivariata

Il modello di regressione lineare multivariata Il modello di regressione lineare multivariata Eduardo Rossi 2 2 Università di Pavia (Italy) Aprile 2015 Rossi MRLM Econometria - 2015 1 / 39 Outline 1 Notazione 2 il MRLM - Assunzioni 3 OLS 4 Proprietà

Dettagli

Il modello di regressione lineare multipla con regressori stocastici

Il modello di regressione lineare multipla con regressori stocastici Università di Pavia Il modello di regressione lineare multipla con regressori stocastici Eduardo Rossi Il valore atteso condizionale Modellare l esperimento casuale bivariato nel quale le variabili casuali

Dettagli

Il modello di regressione lineare multipla. Il modello di regressione lineare multipla

Il modello di regressione lineare multipla. Il modello di regressione lineare multipla Introduzione E la generalizzazione del modello di regressione lineare semplice: per spiegare il fenomeno d interesse Y vengono introdotte p, con p > 1, variabili esplicative. Tale generalizzazione diventa

Dettagli

1. variabili dicotomiche: 2 sole categorie A e B

1. variabili dicotomiche: 2 sole categorie A e B Variabile X su scala qualitativa (due categorie) modello di regressione: variabili quantitative misurate almeno su scala intervallo (meglio se Y è di questo tipo e preferibilmente anche le X i ) variabili

Dettagli

Il modello di regressione lineare classico

Il modello di regressione lineare classico Università di Pavia Il modello di regressione lineare classico Eduardo Rossi Ipotesi Il modello di regressione lineare classico y t = x tβ + ε t t = 1,...,N Y = Xβ + ε Se il modello ha un intercetta allora

Dettagli

x1 + 2x 2 + 3x 3 = 0 nelle tre incognite x 1, x 2, x 3. Possiamo risolvere l equazione ricavando l incognita x 1 x 1 = 2x 2 3x 3 2r 1 3r 2 x 2 x 3

x1 + 2x 2 + 3x 3 = 0 nelle tre incognite x 1, x 2, x 3. Possiamo risolvere l equazione ricavando l incognita x 1 x 1 = 2x 2 3x 3 2r 1 3r 2 x 2 x 3 Matematica II -..9 Spazio delle soluzioni di un sistema lineare omogeneo.. Consideriamo l equazione lineare omogenea nelle tre incognite x, x, x 3. x + x + 3x 3 = Possiamo risolvere l equazione ricavando

Dettagli

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ. ESERCIZI SVOLTI DI ALGEBRA LINEARE (Sono svolti alcune degli esercizi proposti nei fogli di esercizi su vettori linearmente dipendenti e vettori linearmente indipendenti e su sistemi lineari ) I. Foglio

Dettagli

Il modello di regressione lineare multivariata

Il modello di regressione lineare multivariata Il modello di regressione lineare multivariata Eduardo Rossi 2 2 Università di Pavia (Italy) Aprile 2013 Rossi MRLM Econometria - 2013 1 / 39 Outline 1 Notazione 2 il MRLM 3 Il modello partizionato 4 Collinearità

Dettagli

Microeconometria Day # 3 L. Cembalo. Regressione con due variabili e metodo dei minimi quadrati

Microeconometria Day # 3 L. Cembalo. Regressione con due variabili e metodo dei minimi quadrati Microeconometria Day # 3 L. Cembalo Regressione con due variabili e metodo dei minimi quadrati SRF: sample regression function Il passaggio dalla regressione sulla popolazione a quella sul campione è cruciale

Dettagli

Statistica Applicata all edilizia: il modello di regressione

Statistica Applicata all edilizia: il modello di regressione Statistica Applicata all edilizia: il modello di regressione E-mail: orietta.nicolis@unibg.it 27 aprile 2009 Indice Il modello di Regressione Lineare 1 Il modello di Regressione Lineare Analisi di regressione

Dettagli

Spazi vettoriali euclidei.

Spazi vettoriali euclidei. Spazi vettoriali euclidei Prodotto scalare, lunghezza e ortogonalità in R n Consideriamo lo spazio vettoriale R n = { =,,, n R}, n con la somma fra vettori e il prodotto di un vettore per uno scalare definiti

Dettagli

Università di Pavia Econometria Esercizi 4 Soluzioni

Università di Pavia Econometria Esercizi 4 Soluzioni Università di Pavia Econometria 2008-2009 Esercizi 4 Soluzioni Maggio, 2009 Istruzioni: I commenti devono essere concisi! 1. Dato il modello di regressione lineare, con K regressori con E(ɛ) = 0 e E(ɛɛ

Dettagli

s a Inferenza: singolo parametro Sistema di ipotesi: : β j = β j0 H 1 β j0 statistica test t confronto con valore t o p-value

s a Inferenza: singolo parametro Sistema di ipotesi: : β j = β j0 H 1 β j0 statistica test t confronto con valore t o p-value Inferenza: singolo parametro Sistema di ipotesi: H 0 : β j = β j0 H 1 : β j β j0 statistica test t b j - b s a jj j0 > t a, 2 ( n-k) confronto con valore t o p-value Se β j0 = 0 X j non ha nessuna influenza

Dettagli

ed un operazione di moltiplicazione per scalari reali u u 2u

ed un operazione di moltiplicazione per scalari reali u u 2u Geometria e Algebra (II), 0... Consideriamo il piano della geometria euclidea, intuitivamente inteso, e sia un punto fissato in esso. Sull insieme P dei vettori del piano applicati nel punto sono definite

Dettagli

Analisi di Regressione Multipla

Analisi di Regressione Multipla Analisi di Regressione Multipla Stima OLS della relazione Test Score/STR : TestScore! = 698.9.8 STR, R =.05, SER = 18.6 (10.4) (0.5) E una stima credibile dell effetto causale sul rendimento nei test di

Dettagli

Proprietà asintotiche dello stimatore OLS

Proprietà asintotiche dello stimatore OLS Università di Pavia Proprietà asintotiche dello stimatore OLS Eduardo Rossi Sequenze Consideriamo un infinita sequenza di variabili indicizzate con i numeri naturali: X 1, X 2, X 3,...,X N,... = {X N }

Dettagli

STATISTICA A K (60 ore)

STATISTICA A K (60 ore) STATISTICA A K (60 ore) Marco Riani mriani@unipr.it http://www.riani.it Richiami sulla regressione Marco Riani, Univ. di Parma 1 MODELLO DI REGRESSIONE y i = a + bx i + e i dove: i = 1,, n a + bx i rappresenta

Dettagli

lezione 4 AA Paolo Brunori

lezione 4 AA Paolo Brunori AA 2016-2017 Paolo Brunori dove eravamo arrivati - abbiamo individuato la regressione lineare semplice (OLS) come modo immediato per sintetizzare una relazione fra una variabile dipendente (Y) e una indipendente

Dettagli

Nozioni e notazioni: concetti primitivi di insieme, elemento ed appartenenza.

Nozioni e notazioni: concetti primitivi di insieme, elemento ed appartenenza. Geometria I lezione del 30 settembre 2013 Presentazione del corso. Nozioni e notazioni: concetti primitivi di insieme, elemento ed appartenenza. Insiemi numerici: i numeri naturali, gli interi, i numeri

Dettagli

Richiami di Algebra Lineare

Richiami di Algebra Lineare Richiami di Algebra Lineare Eduardo Rossi Università degli Studi di Pavia Corso di Econometria Marzo 2012 Rossi Algebra Lineare 2012 1 / 59 Vettori Prodotto interno a : (n 1) b : (n 1) a b = a 1 b 1 +

Dettagli

Università di Pavia Econometria. Cambiamento di regime nei parametri Test di stabilità. Eduardo Rossi

Università di Pavia Econometria. Cambiamento di regime nei parametri Test di stabilità. Eduardo Rossi Università di Pavia Econometria Cambiamento di regime nei parametri Test di stabilità Eduardo Rossi Università di Pavia Cambiamento di regime nei parametri Funzione del consumo C t = β 1 + β 2 Y t + ǫ

Dettagli

Richiami di Algebra Lineare

Richiami di Algebra Lineare Richiami di Algebra Lineare Eduardo Rossi Università degli Studi di Pavia Corso di Econometria Marzo 2015 Rossi Algebra Lineare 2015 1 / 41 Vettori Prodotto interno a : (n 1) b : (n 1) a b = a 1 b 1 +

Dettagli

Metodo dei minimi quadrati e matrice pseudoinversa

Metodo dei minimi quadrati e matrice pseudoinversa Scuola universitaria professionale della Svizzera italiana Dipartimento Tecnologie Innovative Metodo dei minimi quadrati e matrice pseudoinversa Algebra Lineare Semestre Estivo 2006 Metodo dei minimi quadrati

Dettagli

Modelli Statistici per l Economia. Regressione lineare con un singolo regressore (terza parte)

Modelli Statistici per l Economia. Regressione lineare con un singolo regressore (terza parte) Modelli Statistici per l Economia Regressione lineare con un singolo regressore (terza parte) 1 Verifica di ipotesi su β 1 H 0 : β 1 = β 1,0 H 1 : β 1 β 1,0 Se è vera H 0 (cioè sotto H 0 ) e n è grande,

Dettagli

Metodi statistici per l economia (Prof. Capitanio) Slide n. 10. Materiale di supporto per le lezioni. Non sostituisce il libro di testo

Metodi statistici per l economia (Prof. Capitanio) Slide n. 10. Materiale di supporto per le lezioni. Non sostituisce il libro di testo Metodi statistici per l economia (Prof. Capitanio) Slide n. 10 Materiale di supporto per le lezioni. Non sostituisce il libro di testo 1 REGRESSIONE LINEARE Date due variabili quantitative, X e Y, si è

Dettagli

1. Complemento ortogonale di un vettore non nullo Abbiamo visto che nel piano

1. Complemento ortogonale di un vettore non nullo Abbiamo visto che nel piano Geometria e Algebra (II), 11.12.12 1. Complemento ortogonale di un vettore non nullo Abbiamo visto che nel piano P O i vettori ortogonali ad un dato vettore non nullo descrivono una retta per O, e nello

Dettagli

Richiami di Algebra Lineare

Richiami di Algebra Lineare Università di Pavia Richiami di Algebra Lineare Eduardo Rossi Vettori a : (n 1) b : (n 1) Prodotto interno a b = a 1 b 1 + a 2 b 2 +... + a n b n Modulo (lunghezza): a = a 2 1 +... + a2 n Vettori ortogonali:

Dettagli

Introduzione. Eduardo Rossi 2. Marzo Università di Pavia (Italy) Rossi Introduzione Econometria / 11

Introduzione. Eduardo Rossi 2. Marzo Università di Pavia (Italy) Rossi Introduzione Econometria / 11 Eduardo Rossi 2 2 Università di Pavia (Italy) Marzo 2014 Rossi Introduzione Econometria - 2014 1 / 11 Econometria significa misurazione economica. Lo scopo dell econometria è molto più ampio. Definizione

Dettagli

Introduzione al corso di Econometria

Introduzione al corso di Econometria Università di Pavia Introduzione al corso di Econometria Eduardo Rossi Che cos è l econometria? Gli economisti sono interessati alle relazioni fra diverse variabili, per esempio la relazione tra salari

Dettagli

0.1 Spazi Euclidei in generale

0.1 Spazi Euclidei in generale 0.1. SPAZI EUCLIDEI IN GENERALE 1 0.1 Spazi Euclidei in generale Sia V uno spazio vettoriale definito su R. Diremo, estendendo una definizione data in precedenza, che V è uno spazio vettoriale euclideo

Dettagli

Minimi quadrati vincolati e test F

Minimi quadrati vincolati e test F Minimi quadrati vincolati e test F Impostazione del problema Spesso, i modelli econometrici che stimiamo hanno dei parametri che sono passibili di interpretazione diretta nella teoria economica. Consideriamo

Dettagli

3. Vettori, Spazi Vettoriali e Matrici

3. Vettori, Spazi Vettoriali e Matrici 3. Vettori, Spazi Vettoriali e Matrici Vettori e Spazi Vettoriali Operazioni tra vettori Basi Trasformazioni ed Operatori Operazioni tra Matrici Autovalori ed autovettori Forme quadratiche, quadriche e

Dettagli

3. Vettori, Spazi Vettoriali e Matrici

3. Vettori, Spazi Vettoriali e Matrici 3. Vettori, Spazi Vettoriali e Matrici Vettori e Spazi Vettoriali Operazioni tra vettori Basi Trasformazioni ed Operatori Operazioni tra Matrici Autovalori ed autovettori Forme quadratiche, quadriche e

Dettagli

La regressione (S. Terzi) 1. Retta di regressione (regressione lineare semplice)

La regressione (S. Terzi) 1. Retta di regressione (regressione lineare semplice) La regressione (S. Terzi) 1. Retta di regressione (regressione lineare semplice) Date n coppie di osservazioni (x i,y i ), i=1,,n si desidera fare un interpolazione dei punti attraverso una retta: y* =

Dettagli

IL METODO ECONOMETRICO

IL METODO ECONOMETRICO IL METODO ECONOMETRICO 8 maggio 2017 L obiettivo di questa lezione è quello di fornire alcuni strumenti necessari per l analisi empirica In particolare, approfondiremo il metodo econometrico come strumento

Dettagli

Università di Pavia. Test diagnostici. Eduardo Rossi

Università di Pavia. Test diagnostici. Eduardo Rossi Università di Pavia Test diagnostici Eduardo Rossi Test diagnostici Fase di controllo diagnostico: controllo della coerenza tra quanto direttamente osservato e le ipotesi statistiche adottate Ipotesi MRLM

Dettagli

Università di Pavia Econometria. Richiami di Statistica. Eduardo Rossi

Università di Pavia Econometria. Richiami di Statistica. Eduardo Rossi Università di Pavia Econometria Richiami di Statistica Eduardo Rossi Università di Pavia Campione casuale Siano (Y 1, Y 2,..., Y N ) variabili casuali tali che le y i siano realizzazioni mutuamente indipendenti

Dettagli

b = p + q l q Diciamo che p e la proiezione ortogonale di b su l, e che q e la proiezione ortogonale di b su l.

b = p + q l q Diciamo che p e la proiezione ortogonale di b su l, e che q e la proiezione ortogonale di b su l. Matematica II, 4... rtogonalita nel piano. Fissato nel piano un punto, consideriamo il piano vettoriale P. Diamo per intuitivamente nota la nozione di ortogonalita fra due vettori non nulli. Per convenzione,

Dettagli

Il problema della migliore approssimazione. Teorema 3.2 Il problema 3.1 ammette sempre almeno una soluzione.

Il problema della migliore approssimazione. Teorema 3.2 Il problema 3.1 ammette sempre almeno una soluzione. 3. Spazi di Hilbert Wir müssen wissen. Wir werden wissen. Noi abbiamo il dovere di conoscere. Alla fine conosceremo.) David Hilbert 1862-1943) Il problema della migliore approssimazione Problema 3.1 Migliore

Dettagli

Capitolo 12 La regressione lineare semplice

Capitolo 12 La regressione lineare semplice Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 12 La regressione lineare semplice Insegnamento: Statistica Corso di Laurea Triennale in Ingegneria Gestionale Facoltà di Ingegneria, Università

Dettagli

La regressione fuzzy. Capitolo I limiti della regressione classica. a cura di Fabrizio Maturo

La regressione fuzzy. Capitolo I limiti della regressione classica. a cura di Fabrizio Maturo Capitolo 14 La regressione fuzzy a cura di Fabrizio Maturo 14.1 I limiti della regressione classica L analisi di regressione offre una possibile soluzione per studiare l effetto di una o più variabili

Dettagli

Soluzioni della prova scritta di Geometria 1 del 27 giugno 2019 (versione I)

Soluzioni della prova scritta di Geometria 1 del 27 giugno 2019 (versione I) Soluzioni della prova scritta di Geometria 1 del 7 giugno 019 (versione I) Esercizio 1. Sia R 4 lo spazio quadridimensionale standard munito del prodotto scalare standard con coordinate canoniche (x 1,

Dettagli

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE. Esercizi Esercizio. In R calcolare il modulo dei vettori,, ),,, ) ed il loro angolo. Esercizio. Calcolare una base ortonormale del sottospazio

Dettagli

Metodi Quantitativi per Economia, Finanza e Management. Lezione n 8 Regressione lineare multipla: le ipotesi del modello, la stima del modello

Metodi Quantitativi per Economia, Finanza e Management. Lezione n 8 Regressione lineare multipla: le ipotesi del modello, la stima del modello Metodi Quantitativi per Economia, Finanza e Management Lezione n 8 Regressione lineare multipla: le ipotesi del modello, la stima del modello 1. Introduzione ai modelli di regressione 2. Obiettivi 3. Le

Dettagli

Prova scritta di Geometria 1 Docente: Giovanni Cerulli Irelli 20 Gennaio 2017

Prova scritta di Geometria 1 Docente: Giovanni Cerulli Irelli 20 Gennaio 2017 Prova scritta di Geometria Docente: Giovanni Cerulli Irelli Gennaio 7 Esercizio. Si considerino i seguenti tre punti dello spazio euclideo: P :=, Q :=, R :=.. Dimostrare che P, Q ed R non sono collineari.

Dettagli

0.1 Complemento diretto

0.1 Complemento diretto 1 0.1 Complemento diretto Dato U V, un complemento diretto di U é un sottospazio W V tale che U W = {0} U + W = V cioé la somma di U con il suo complemento diretto é diretta, e dá tutto lo spazio vettoriale

Dettagli

Introduzione al corso di Econometria

Introduzione al corso di Econometria Università di Pavia Introduzione al corso di Econometria Eduardo Rossi Che cos è l econometria? Econometria significa misurazione economica. Lo scopo dell econometria è molto più ampio. Definizione di

Dettagli

Facoltà di Scienze Statistiche, Algebra Lineare 1 A, G. Parmeggiani - Programma

Facoltà di Scienze Statistiche, Algebra Lineare 1 A, G. Parmeggiani - Programma Facoltà di Scienze Statistiche, Algebra Lineare 1 A, G. Parmeggiani - Programma Il testo di riferimento è: Appunti di Algebra Lineare, Gregorio, Parmeggiani, Salce 06/12/04 Matrici. Esempi. Tipi particolari

Dettagli

Sistemi sovradeterminati

Sistemi sovradeterminati Sistemi sovradeterminati Sia A una matrice m n ove m > n sia b R m trovare una soluzione del sistema sovradeterminato Ax = b significa cercare di esprimere un vettore di R m come combinazione lineare di

Dettagli

Regressione & Correlazione

Regressione & Correlazione Regressione & Correlazione Monia Ranalli Ranalli M. Dipendenza Settimana # 4 1 / 20 Sommario Regressione Modello di regressione lineare senplice Stima dei parametri Adattamento del modello ai dati Correlazione

Dettagli

v w u O Osserviamo che tale segmento ha la stessa lunghezza del vettore w tale che u+w = v cioe del vettore w = v u. Cosi si ha

v w u O Osserviamo che tale segmento ha la stessa lunghezza del vettore w tale che u+w = v cioe del vettore w = v u. Cosi si ha Matematica II, 708 Nel piano sia fissata una unita di misura Dati nel piano due vettori u, v applicati in uno stesso punto O, col termine distanza fra u e v intendiamo e col simbolo d(u, v) indichiamo

Dettagli

STATISTICA (2) ESERCITAZIONE Dott.ssa Antonella Costanzo

STATISTICA (2) ESERCITAZIONE Dott.ssa Antonella Costanzo STATISTICA (2) ESERCITAZIONE 7 11.03.2014 Dott.ssa Antonella Costanzo Esercizio 1. Test di indipendenza tra mutabili In un indagine vengono rilevate le informazioni su settore produttivo (Y) e genere (X)

Dettagli

Matematica II, aa

Matematica II, aa Matematica II, aa 2011-2012 Il corso si e svolto su cinque temi principali: sistemi lineari, algebra delle matrici, determinati, spazio vettoriale R n, spazio euclideo R n ; per ogni tema descrivo gli

Dettagli

Nota 4.1 Il modello (4.1) può essere anche utilizzato per studiare strutture più complesse. Consideriamo ad esempio il modello polinomiale:

Nota 4.1 Il modello (4.1) può essere anche utilizzato per studiare strutture più complesse. Consideriamo ad esempio il modello polinomiale: A Capitolo 4 La regressione multipla 4 Introduzione Nel caso della regressione lineare multipla si considerano variabili indipendenti (o predittive) ed una variabile dipendente Il modello si scrive pertanto:

Dettagli

Esercitazione 5 Sta/s/ca Aziendale

Esercitazione 5 Sta/s/ca Aziendale Esercitazione 5 Sta/s/ca Aziendale David Aristei 12 maggio 2015 Si è interessa/ ad analizzare le determinan/ a livello aziendale della produ>vità del lavoro (PL, in migliaia di euro per dipendente) di

Dettagli

Regressione multipla

Regressione multipla Regressione multipla L obiettivo è costruire un modello probabilistico per spiegare la variabile y tramite più di una variabile indipendente x 1, x 2,..., x k. Esempio: Per un efficiente progettazione

Dettagli

b vettore(termine noto) y* proiezione ortogonale di b

b vettore(termine noto) y* proiezione ortogonale di b Carla Guerrini 1 Sistemi sovradeterminati Sia A una matrice m n ove m > n sia b R m trovare una soluzione del sistema sovradeterminato Ax = b significa cercare di esprimere un vettore di R m come combinazione

Dettagli

Università di Pavia Econometria Esercizi 5

Università di Pavia Econometria Esercizi 5 Università di Pavia Econometria 2007-2008 Esercizi 5 Maggio, 2008 1. Una regressione lineare multipla di y su una costante, x 2 e x 3 produce i seguenti risultati: ŷ t = 4 + 0.4x t2 + 0.9x t3 con X X =

Dettagli

Esercizi 2. Soluzioni. 1. Siano dati i vettori 1 1, 1 R 3.

Esercizi 2. Soluzioni. 1. Siano dati i vettori 1 1, 1 R 3. Esercizi. Soluzioni.. Siano dati i vettori,, R. (i) Far vedere che formano una base di R. (ii) Ortonormalizzarla col metodo di Gram-Schmidt. (iii) Calcolare le coordinate del vettore X = 5 Sol. (i) Usiamo

Dettagli

MODELLO DI REGRESSIONE LINEARE. le ipotesi del modello di regressione classico, stima con i metodi dei minimi quadrati e di massima verosimiglianza,

MODELLO DI REGRESSIONE LINEARE. le ipotesi del modello di regressione classico, stima con i metodi dei minimi quadrati e di massima verosimiglianza, MODELLO DI REGRESSIONE LINEARE le ipotesi del modello di regressione classico, stima con i metodi dei minimi quadrati e di massima verosimiglianza, teorema di Gauss-Markov, verifica di ipotesi e test di

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 4: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 4: soluzioni Corso di Geometria - BIAR, BSIR Esercizi : soluzioni Esercizio. Sono dati i seguenti sistemi lineari omogenei nelle incognite x, y, z: { x + y z = x + y z = x + y z = S : x y + z =, S :, S 3 : x 3y =,

Dettagli

2. SPECIFICAZIONE DI UN MODELLO DI REGRESSIONE MULTIPLA

2. SPECIFICAZIONE DI UN MODELLO DI REGRESSIONE MULTIPLA CAPITOLO QUARTO IL MODELLO DI REGRESSIONE MULTIPLA SOMMARIO:. Introduzione. -. Specificazione di un modello di regressione multipla. - 3. Stima con il metodo dei minimi quadrati ordinari (OLS). - 4. Proprietà

Dettagli

Geometria analitica: rette e piani

Geometria analitica: rette e piani Geometria analitica: rette e piani parametriche Allineamento nel piano nello spazio Angoli tra rette e distanza 2 2006 Politecnico di Torino 1 Esempio 2 Sia A = (1, 2). Per l interpretazione geometrica

Dettagli

21 settembre Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

21 settembre Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

Capitolo 3 Matrici. Marco Robutti. Facoltà di ingegneria Università degli studi di Pavia. Anno accademico

Capitolo 3 Matrici. Marco Robutti. Facoltà di ingegneria Università degli studi di Pavia. Anno accademico Capitolo 3 Matrici Marco Robutti Facoltà di ingegneria Università degli studi di Pavia Anno accademico 2017-2018 Tutorato di geometria e algebra lineare Definizione (Matrice) Una matrice A M R (k, n) è

Dettagli

DATA MINING PER IL MARKETING (63 ore)

DATA MINING PER IL MARKETING (63 ore) DATA MINING PER IL MARKETING (63 ore) Marco Riani mriani@unipr.it Sito web del corso http://www.riani.it/dmm Studio della distribuzione di ˆ E( ˆ) var( ˆ) 2 ( X ' X ) 1 Teorema di Gauss Markov (efficienza

Dettagli

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n NOTE DI ALGEBRA LINEARE 2- MM 9 NOVEMBRE 2 Combinazioni lineari e generatori Sia K un campo e V uno spazio vettoriale su K Siano v,, v n vettori in V Definizione Un vettore v V si dice combinazione lineare

Dettagli

Esercizi di geometria per Fisica / Fisica e Astrofisica

Esercizi di geometria per Fisica / Fisica e Astrofisica Esercizi di geometria per Fisica / Fisica e Astrofisica Foglio 3 - Soluzioni Esercizio. Stabilire se i seguenti sottoinsiemi di R 3 sono sottospazi vettoriali: (a) S = {(x y z) R 3 : x + y + z = }. (b)

Dettagli

Richiami di Statistica

Richiami di Statistica Università di Pavia Richiami di Statistica Eduardo Rossi Popolazione e campione casuale Un idea centrale della statistica è che un campione sia una rappresentazione della popolazione. Si possono sfruttare

Dettagli

Variabili indipendenti qualitative. In molte applicazioni si rende necessario l introduzione di un fattore a due o più livelli.

Variabili indipendenti qualitative. In molte applicazioni si rende necessario l introduzione di un fattore a due o più livelli. Variabili indipendenti qualitative Di solito le variabili nella regressione sono variabili continue In molte applicazioni si rende necessario l introduzione di un fattore a due o più livelli Ad esempio:

Dettagli

GAAL: Capitolo di Geometria Affine e Coniche

GAAL: Capitolo di Geometria Affine e Coniche GAAL: Capitolo di Geometria Affine e Coniche Nozioni introduttive: Distanza indotta Isometrie lineari (Gruppo ortogonale) Isometrie Affinità Spazi affini: Sottospazi affini Combinazione affine di punti

Dettagli

Complemento ortogonale e proiezioni

Complemento ortogonale e proiezioni Complemento ortogonale e proiezioni Dicembre 9 Complemento ortogonale di un sottospazio Sie E un sottospazio di R n Definiamo il complemento ortogonale di E come l insieme dei vettori di R n ortogonali

Dettagli

Destagionalizzazione, detrendizzazione delle serie storiche

Destagionalizzazione, detrendizzazione delle serie storiche DATA MINING PER IL MARKETING (63 ore) Marco Riani mriani@unipr.it Sito web del corso http://www.riani.it/dmm Destagionalizzazione, detrendizzazione delle serie storiche 1 Serie storica della vendita di

Dettagli

Old Faithful, Yellowstone Park. Statistica e biometria. D. Bertacchi. Dati congiunti. Tabella. Scatterplot. Covarianza. Correlazione.

Old Faithful, Yellowstone Park. Statistica e biometria. D. Bertacchi. Dati congiunti. Tabella. Scatterplot. Covarianza. Correlazione. Coppie o vettori di dati Spesso i dati osservati sono di tipo vettoriale. Ad esempio studiamo 222 osservazioni relative alle eruzioni del geyser Old Faithful. Old Faithful, Yellowstone Park. Old Faithful

Dettagli

Sistemi Lineari. Rango di una matrice. Lezione 21, Algebra Lineare,

Sistemi Lineari. Rango di una matrice. Lezione 21, Algebra Lineare, Lezione 21, Algebra Lineare, 15.11.2017 Sistemi Lineari Rango di una matrice Esempio principale, I Considerata una matrice, ci poniamo il problema di determinare il massimo numero di colonne linearmente

Dettagli

5. Richiami: R n come spazio euclideo

5. Richiami: R n come spazio euclideo 5. Richiami: R n come spazio euclideo 5.a Prodotto scalare Dati due vettori in R n, si misurano le rispettive lunghezze e l angolo (senza il segno) fra essi mediante il prodotto scalare. Il prodotto scalare

Dettagli

lezione 10 AA Paolo Brunori

lezione 10 AA Paolo Brunori AA 2016-2017 Paolo Brunori Redditi svedesi - il dataset contiene i dati di reddito di 838 individui - il dataset contiene le variabili: sex = sesso age = età edu = anni di istruzione y_gross = reddito

Dettagli

Geometria BAER Test di autovalutazione del 31/10/18

Geometria BAER Test di autovalutazione del 31/10/18 Geometria BAER Test di autovalutazione del 3//8 LEGGERE ATTENTAMENTE PRIMA DI ANDARE ALL INIZIO DEL TEST ALLA PAGINA SUCCESSIVA. NON LEGGERE LE DOMANDE PRIMA DI INIZIARE IL TEST Il test NON É VALUTATO

Dettagli

4. Sottospazi vettoriali Piani e rette in E 3 O

4. Sottospazi vettoriali Piani e rette in E 3 O Indice Prefazione i Capitolo 0. Preliminari 1 1. Insiemistica e logica 1 1.1. Insiemi 1 1.2. Insiemi numerici 2 1.3. Logica matematica elementare 5 1.4. Ancora sugli insiemi 7 1.5. Funzioni 10 1.6. Composizione

Dettagli

Rango di una matrice e teorema di Rouché-Capelli

Rango di una matrice e teorema di Rouché-Capelli Rango di una matrice e teorema di Rouché-Capelli Sappiamo che a una matrice m n, A, è associata l applicazione lineare L A : R n R m, L A (X) = AX, X R n. Definizione 1. Lo spazio nullo di A, N (A), è

Dettagli

Restrizioni lineari nel MRLM: esempi

Restrizioni lineari nel MRLM: esempi Restrizioni lineari nel MRLM: esempi Eduardo Rossi 2 2 Università di Pavia (Italy) Maggio 2013 Rossi Restrizioni lineari: esempi Econometria - 2013 1 / 22 Funzione di produzione Cobb-Douglas Esempio GDP

Dettagli

SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n

SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n SPAZI E SOTTOSPAZI 1 SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n Spazi di matrici. Spazi di polinomi. Generatori, dipendenza e indipendenza lineare, basi e dimensione. Intersezione e somma di sottospazi,

Dettagli

Geometria Prova scritta, appello unico, sessione autunnale Corso di laurea in fisica A.A 2017/2018 Canali A C, e L Pa

Geometria Prova scritta, appello unico, sessione autunnale Corso di laurea in fisica A.A 2017/2018 Canali A C, e L Pa Geometria Prova scritta, appello unico, sessione autunnale Corso di laurea in fisica A.A 27/28 Canali A C, e L Pa Durata: 2 ore e 3 minuti Simone Diverio Alessandro D Andrea Paolo Piccinni 7 settembre

Dettagli

Esempio. L immagine di f è l insieme dei vettori w = (w 1, w 2 ) R 2 che hanno w 1 = w 2. Quindi:

Esempio. L immagine di f è l insieme dei vettori w = (w 1, w 2 ) R 2 che hanno w 1 = w 2. Quindi: Nucleo, immagine e loro proprietà [Abate, 5.2] Data una applicazione lineare f : V W, chiamiamo nucleo di f l insieme N(f) := { v V : f(v) = 0 W } Se S V è un sottoinsieme del dominio, indichiamo con f(s)

Dettagli

Capitolo 7 Struttura metrica in R n Esercizi svolti Tutorato di geometria e algebra lineare. Marco Robutti

Capitolo 7 Struttura metrica in R n Esercizi svolti Tutorato di geometria e algebra lineare. Marco Robutti Capitolo 7 Struttura metrica in R n Esercizi svolti Tutorato di geometria e algebra lineare Marco Robutti 5 Ottobre 27 Introduzione Gli esercizi di questo capitolo riguardano i seguenti argomenti: Data

Dettagli

Regressione Mario Guarracino Laboratorio di Sistemi Informativi Aziendali a.a. 2006/2007

Regressione Mario Guarracino Laboratorio di Sistemi Informativi Aziendali a.a. 2006/2007 Regressione Esempio Un azienda manifatturiera vuole analizzare il legame che intercorre tra il costo mensile Y di produzione e il corrispondente volume produttivo X per uno dei propri stabilimenti. Volume

Dettagli

25 - Funzioni di più Variabili Introduzione

25 - Funzioni di più Variabili Introduzione Università degli Studi di Palermo Facoltà di Economia CdS Statistica per l Analisi dei Dati Appunti del corso di Matematica 25 - Funzioni di più Variabili Introduzione Anno Accademico 2013/2014 M. Tumminello

Dettagli

STIMA DELLA PIENA INDICE

STIMA DELLA PIENA INDICE STIMA DELLA PIENA INDICE STIMA LOCALE - Anche se basata su un numero molto limitato di osservazioni (5-6) STIMA REGIONALE 1) Metodi basati su regressioni rispetto a parametri morfo-climatici 2) Metodi

Dettagli

Fattorizzazione QR e matrici di Householder

Fattorizzazione QR e matrici di Householder Fattorizzazione QR e matrici di Householder ottobre 009 In questa nota considereremo un tipo di fattorizzazione che esiste sempre nel caso di matrici quadrate non singolari ad entrate reali. Definizione

Dettagli

1 La soluzione del problema dei minimi quadrati

1 La soluzione del problema dei minimi quadrati 1 La soluzione del problema dei minimi quadrati I modelli di regressione lineare prevedono che la variabile risposta Y si possa esprimere come funzione lineare delle variabili predittori X 1,...X p più

Dettagli

x + 2y = 0 Soluzione. La retta vettoriale di equazione cartesiana x + 2y = 0.

x + 2y = 0 Soluzione. La retta vettoriale di equazione cartesiana x + 2y = 0. Algebra Lineare. a.a. 4-5. Gruppo A-H. Prof. P. Piazza Soluzioni del compito pomeridiano del //5 Esercizio. Sia V = R il piano vettoriale euclideo con base ortonormale standard {e, e }. Determinare le

Dettagli

Risoluzione di problemi ingegneristici con Excel

Risoluzione di problemi ingegneristici con Excel Risoluzione di problemi ingegneristici con Excel Problemi Ingegneristici Calcolare per via numerica le radici di un equazione Trovare l equazione che lega un set di dati ottenuti empiricamente (fitting

Dettagli

A =, c d. d = ad cb. c d A =

A =, c d. d = ad cb. c d A = Geometria e Algebra (II), 271112 1 Definizione D ora innanzi, al posto di dire matrice quadrata di tipo n n o matrice quadrata n n diremo matrice quadrata di ordine n o in breve matrice di ordine n Il

Dettagli

Lezione 10 27/11/09. = 0 = x y + 2z = 0. Le componenti del vettore v devono essere quindi soluzione del sistema linere omogeneo. { x y +2z = 0 x z = 0

Lezione 10 27/11/09. = 0 = x y + 2z = 0. Le componenti del vettore v devono essere quindi soluzione del sistema linere omogeneo. { x y +2z = 0 x z = 0 Lezione 10 7/11/09 Esercizio 1 Nello spazio vettoriale euclideo V 3 sia W il sottospazio generato dai vettori v 1 = 1, 1, 1), v = 0,, 1) Determinare un vettore di W di modulo 3 ortogonale al vettore v

Dettagli

La lunghezza dei vettori e legata alle operazioni sui vettori nel modo seguente: Consideriamo due vettori v, w e il vettore v + w loro somma.

La lunghezza dei vettori e legata alle operazioni sui vettori nel modo seguente: Consideriamo due vettori v, w e il vettore v + w loro somma. Matematica II, 20.2.. Lunghezza di un vettore nel piano Consideriamo il piano vettoriale geometrico P O. Scelto un segmento come unita, possiamo parlare di lunghezza di un vettore v P O rispetto a tale

Dettagli

Note per le esercitazioni di Geometria 1 a.a. 2007/08 A. Lotta. Metodi per il calcolo del rango di una matrice

Note per le esercitazioni di Geometria 1 a.a. 2007/08 A. Lotta. Metodi per il calcolo del rango di una matrice Note per le esercitazioni di Geometria 1 a.a. 2007/08 A. Lotta Versione del 21/12/07 Metodi per il calcolo del rango di una matrice Sia A M m,n (K). Denotiamo con A (i) la riga i-ma di A, i {1,..., m}.

Dettagli

Test delle Ipotesi Parte I

Test delle Ipotesi Parte I Test delle Ipotesi Parte I Test delle Ipotesi sulla media Introduzione Definizioni basilari Teoria per il caso di varianza nota Rischi nel test delle ipotesi Teoria per il caso di varianza non nota Test

Dettagli