Prima prova d esonero a.a. 16/17

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Prima prova d esonero a.a. 16/17"

Transcript

1 Prima prova d esonero a.a. 16/17 1. Si determini l insieme di definizione e il segno della seguente funzione: ( ) x + 1 f(x) = log x Si determinino e si rappresentino nel piano di Gauss le soluzioni complesse dell equazione z z = z Dopo aver determinato i valori dei parametri reali a e b che rendono continua la seguente funzione se ne rappresenti un grafico qualitativo. 2 log x a, x (, 2], f(x) = be x 2 + 1, x ( 2, 0], x 2 x, x (0, + ). 4. Si stabilisca se la funzione f(x) = x 2 3 è iniettiva e/o suriettiva. Si determini il più grande sottoinsieme del dominio in cui essa risulta invertibile e in esso si calcoli la sua funzione inversa. 5. Si dimostri per induzione che n 2 + n + 2 è un numero pari per ogni n N. 6. Si calcoli il seguente limite lim x + 1 e x2 3x 2 + cos x. 1

2 Seconda prova d esonero a.a.16/17 2. Si calcoli il seguente limite lim x 0 f(x) = x + 1 e x 1 + (sin x)2 1 2(tan x)2 + x 3 3. Si stabilisca se il seguente integrale improprio sia convergente e in caso affermativo lo si calcoli. x 1 x 3 1 dx 2 4. Si scriva l equazione della retta tangente in x 0 = 1 al grafico di f(x) = x2 + x + 1. a) Si calcoli la derivata prima della seguente funzione f(x) = [log(1 + sin 3x)] 3. b) Si calcoli l area del sottografico di f(x) = xe x2 relativo all intervallo [0, 1]. 5. Si determini l integrale generale dell equazione differenziale y (x) + y(x) = e x (x 2 1). 2

3 Terza prova d esonero a.a.16/17 1. Data la funzione f : R 2 R definita da 3x2 + 2y f(x, y) = 2 1 x 2, + y si stabilisca dominio e segno. Si rappresenti graficamente il dominio di f. 2. Si determinino gli eventuali punti di estremo relativo della funzione f(x, y) = 1 x + 8 y xy. 3. Si discuta il seguente sistema al variare di k R e se ne determino le eventuali soluzioni. 3x kz = 1 kx + 2y + 4z = 2 2x 2y 5z = 1 4. Una certa malattia ha una diffusione del 2%; un esame diagnostico rivela la malattia nell 80% dei casi, mentre nel 10% dei casi l esame risulta positivo anche se il soggetto è sano. Si calcolino le seguenti quantità: a) la probabilità che l esame risulti positivo; b) la probabilità di essere malato sapendo che l esame ha dato esito positivo. 5. Supponiamo che i punteggi di un test su un quoziente di intelligenza (Q.I.) di una certa popolazione di adulti si distribuiscano normalmente con uno scarto quadratico medio σ = 15. Un campione di 25 adulti estratti da questa popolazione ha un punteggio medio di 105. a) Si calcoli un intervallo di confidenza bilatero al 95% per il Q.I.; b) Sottoporre a test l ipotesi che il Q.I. sia 100 con un livello di significatività dell 1%. 3

4 30 Gennaio 2017 f(x) = xe x Dimostrare che tutte le primitive F della funzione f(x) = x log ( x 2 ) sono tali che lim x + F (x) = Si discuta il seguente sistema al variare di k R e se ne determino le eventuali soluzioni. 5x 2y (k + 5)z = 0 k 2 x + y + 2z = 1 2x 2y 5z = Una certa malattia ha una diffusione del 10%; un esame diagnostico rivela la malattia nell 70% dei casi, mentre nel 15% dei casi l esame risulta positivo anche se il soggetto è sano. Si calcolino le seguenti quantità: a) la probabilità che l esame risulti positivo; b) la probabilità di essere malato sapendo che l esame ha dato esito positivo. 5. Supponiamo che i punteggi di un test su un quoziente di intelligenza (Q.I.) di una certa popolazione di adulti si distribuiscano normalmente con uno scarto quadratico medio σ = 10. Un campione di 50 adulti estratti da questa popolazione ha un punteggio medio di 110. a) Si calcoli un intervallo di confidenza bilatero al 95% per il Q.I.; b) Sottoporre a test l ipotesi che il Q.I. sia 100 con un livello di significatività dell 1%. 4

5 27 Febbraio 2017 f(x) = xe x Dimostrare che tutte le primitive F della funzione f(x) = x+1 x+3 sono tali F (x) che lim x + x R. 3. Si discuta il seguente sistema al variare di k R e se ne determino le eventuali soluzioni. 5x 2y (k + 5)z = 0 kx + 2y + 4z = 2 2x 2y 5z = Una certa malattia ha una diffusione del 10%; un esame diagnostico rivela la malattia nell 70% dei casi, mentre nel 15% dei casi l esame risulta positivo anche se il soggetto è sano. Si calcolino le seguenti quantità: a) la probabilità che l esame risulti positivo; b) la probabilità di essere malato sapendo che l esame ha dato esito positivo. 5. Supponiamo che i punteggi di un test su un quoziente di intelligenza (Q.I.) di una certa popolazione di adulti si distribuiscano normalmente con uno scarto quadratico medio σ = 10. Un campione di 50 adulti estratti da questa popolazione ha un punteggio medio di 110. a) Si calcoli un intervallo di confidenza bilatero al 95% per il Q.I.; b) Sottoporre a test l ipotesi che il Q.I. sia 100 con un livello di significatività dell 1%. 5

6 12 Giugno 2017 ( ) x f(x) = arctan x Dire se esiste ed eventualmente calcolare il seguente limite 2 3x 3 2x lim x 0 x 3 3. Si discuta l esistenza delle soluzioni del sistema x + y + z = k x + ky z = k x ky + z = 1 al variare del parametro k R. 4. La probabilità che un soggetto abbia uninfezione virale è pari a La diagnosi dell infezione è effettuata mediante un test clinico che ha le seguenti caratteristiche: la probabilità che un soggetto infetto risulti positivo al test è 0.95, mentre la probabilità che un soggetto non infetto non risulti positivo al test è Qual è la probabilità che un soggetto sia infetto dato che è risultato positivo al test? 2. Qual è la probabilità che un soggetto sia infetto dato che non è risultato positivo al test? 5. Si supponga che il livello X di colesterolo in una certa popolazione costituita da 100 individui cinquantenni abbia distribuzione Normale con media µ = 260 e σ 2 = Si formuli la seguente ipotesi nulla: H0: Il livello del colesterolo medio dei cinquantenni è pari a Si calcoli un intervallo di confidenza bilatero (a due code) al 95% per il colesterolo medio. 2. Si calcoli il valore critico t della legge t di Student nel caso in cui si voglia eseguire una verifica dell ipotesi bilatera (a due code) H0 ad un livello di confidenza dell 1%. 3. Ad un livello di confidenza dell 1% è possibile rifiutare l ipotesi H0? 6

7 N.B. In alternativa all esercizio 3) si può risolvere il seguente problema di Cauchy { y (x) = y(x) log(1 + x 2 ) y(0) = e. 7

8 3 Luglio 2017 f(x) = e3x+1 x 2 2x 2. Dire se esiste ed eventualmente calcolare il seguente limite lim x 1 log(x 2 + x 1) log(x 2 + 2x 2) 3. Si discuta l esistenza delle soluzioni del sistema 2x + (1 a)y + 2z = a 1 x + ay z = a 2ay 2z = a + 1 al variare del parametro a R. 4. Il principio attivo di un farmaco antitumorale può provocare disturbi gastrici con probabilità p 1 e disturbi cardiaci con probabilità p 2. Inoltre i suddetti disturbi compaiono contemporaneamente con probabilità p Qual è la probabilità che, dopo l assunzione del farmaco, un soggetto abbia disturbi gastrici o cardiaci? 2. Qual è la probabilità che, dopo l assunzione del farmaco, un soggetto abbia sia disturbi gastrici che cardiaci nell ipotesi che i due malesseri compaiano uno indipendentemente dall altro? 3. Qual è la probabilità che, dopo l assunzione del farmaco, un soggetto abbia disturbi cardiaci stante il fatto che siano già sopraggiunti disturbi gastrici? 5. Si formulino le seguenti ipotesi: (Ipotesi nulla) H 0 : Il peso medio µ 0 degli studenti del corso è pari a 75 Kg. (Ipotesi alternativa) H A : Il peso medio µ 0 degli studenti del corso non è pari a 75 Kg. Si supponga di aver eseguito un campionamento casuale di ampiezza n = 36 e di aver ottenuto Y = 74 Kg e s = 7 Kg. Assumendo che la popolazione campionata abbia una distribuzione normale, si risponda alle seguenti domande: 8

9 1. Si calcoli un intervallo di confidenza bilatero (a due code) al 99% per il peso medio. 2. Si calcoli il valore critico t della legge t di Student nel caso in cui si voglia eseguire una verifica dell ipotesi bilatera (a due code) H 0 ad un livello del 99%. 3. Ad un livello di confidenza dell 1% è possibile rifiutare l ipotesi H 0? In alternativa all esercizio 3) si può risolvere il seguente esercizio 6. Si determini l integrale generale {y c (x) : c R} della seguente equazione differenziale y (x) = 2 x y(x) + x + 1 x e si verifichi che per ogni c R risulta y c (x) cx 2 per x +. 9

10 3 Luglio 2017 f(x) = x 3 x 1 2. Dire se esiste ed eventualmente calcolare il seguente limite e x2 1 x 2 lim x 0 (cos x 1) 2 3. Si discuta l esistenza delle soluzioni del sistema x + ky = 1 2y + kz = 0 x + y + z = 3 al variare del parametro k R. soluzioni. Quando è possibile si determinino le 4. Una compagnia di assicurazioni ritiene che gli assicurati possano essere suddivisi in due classi: a rischio di incidente e non a rischio di incidente. Le loro statistiche mostrano che una persona a rischio avrà un incidente di qualche tipo all interno di un periodo fissato di un anno con probabilità 0, 4, mentre tale probabilità è pari a 0, 2 per le persone non a rischio. a) Supponiamo che il 30% delle persone sia a rischio, qual è la probabilità che un nuovo assicurato abbia un incidente nel primo anno di polizza? b) Supponiamo che un nuovo assicurato abbia un incidente entro un anno dalla prima stipulazione della polizza. Qual è la probabilità che sia a rischio? 5. Nella produzione di semiconduttori non è possibile controllare esattamente la resistenza degli elementi prodotti. Supponiamo che vengano misurati i valori della resistenza per n = 81 semiconduttori, ottenendo una media campionaria x = 1, 2 ed una varianza campionaria s 2 = 0, Determinare lintervallo bilaterale di confidenza al 95% per la media della resistenza dei semiconduttori prodotti. 2. Ad un livello di confidenza dell 5% è possibile rifiutare l ipotesi nulla H 0 : µ = 1, 3 contro l ipotesi H 1 : µ 1, 3? In alternativa all esercizio 2) si può risolvere il seguente esercizio 6. Si determini l integrale generale della seguente equazione differenziale 2y (x) y (x) y(x) = 4xe 2x. 10

11 11 Settembre 2017 f(x) = xe x 4(x 1) 2. Trovare tutte le primitive della funzione f(x) = x(ln x + sin(x 2 + 1)). 3. Si discuta l esistenza delle soluzioni del sistema x + (2 + k)y + kz = 1 2y + kz = 0 x + 3y + (k + 1)z = 3 al variare del parametro k R. soluzioni. Quando è possibile si determinino le 4. Una compagnia di assicurazioni ritiene che gli assicurati possano essere suddivisi in due classi: a rischio di incidente e non a rischio di incidente. Le loro statistiche mostrano che una persona a rischio avrà un incidente di qualche tipo all interno di un periodo fissato di un anno con probabilità 0, 3, mentre tale probabilità è pari a 0, 1 per le persone non a rischio. a) Supponiamo che il 70% delle persone non sia a rischio, qual è la probabilità che un nuovo assicurato non abbia un incidente nel primo anno di polizza? b) Supponiamo che un nuovo assicurato abbia un incidente entro un anno dalla prima stipulazione della polizza. Qual è la probabilità che sia a rischio? 5. In un campione di 15 bambini della città di New York il tempo medio passato a guardare la televisione è di 28, 5 ore a settimana, con varianza campionaria di 16 ore. L organizzazione per la Salute per i Bambini Americani raccomanda un massimo di 25 ore per settimana. Il sindaco di New York assicura che i suoi bambini non superano questo limite. Usando un livello di significatività del 2, 5%, si può concludere che il sindaco abbia ragione? Si assuma che il tempo speso a guardare la TV dai bambini sia distribuito secondo una normale. Cambierebbe il risultato del test fissando un livello di significatività α = 0.10? Motivare la risposta. In alternativa all esercizio 2) si può risolvere il seguente esercizio 11

12 6. Si determini la soluzione del seguente problema di Cauchy { y (x) = xy(x) y(0) = 5 e si verifichi che y(x) x x per x 0. 12

13 13 Novembre 2017 f(x) = xe x Calcolare x log (1 + 1x ) 2 dx 3. Si discuta il seguente sistema al variare di k R e se ne determino le eventuali soluzioni. 5x 2y (k + 5)z = 0 k 2 x + y + 2z = 1 2x 2y 5z = Una certa malattia ha una diffusione del 15%; un esame diagnostico rivela la malattia nell 75% dei casi, mentre nel 10% dei casi l esame risulta positivo anche se il soggetto è sano. Si calcolino le seguenti quantità: a) la probabilità che l esame risulti positivo; b) la probabilità di essere malato sapendo che l esame ha dato esito positivo. 5. Supponiamo che i punteggi di un test su un quoziente di intelligenza (Q.I.) di una certa popolazione di adulti si distribuiscano normalmente con uno scarto quadratico medio σ = 15. Un campione di 80 adulti estratti da questa popolazione ha un punteggio medio di 120. a) Si calcoli un intervallo di confidenza bilatero al 95% per il Q.I.; b) Sottoporre a test l ipotesi che il Q.I. sia 100 con un livello di significatività dell 5%. 13

x + 1 2x], g(x) = x x + 2, h(x) = ln(x 1 2x 2 4x).

x + 1 2x], g(x) = x x + 2, h(x) = ln(x 1 2x 2 4x). Funzioni Esercizio Siano f, g due funzioni definite da fx) = x x 2, gx) = ln x Trovare l insieme di definizione di f e g 2 Determinare le funzioni composte f g e g f, precisandone insieme di definizione

Dettagli

Statistica 1- parte II

Statistica 1- parte II Statistica 1- parte II Esercitazione 3 Dott.ssa Antonella Costanzo 25/02/2016 Esercizio 1. Verifica di ipotesi sulla media (varianza nota) Il preside della scuola elementare XYZ sospetta che i suoi studenti

Dettagli

I Compito in itinere di Matematica e Statistica per il Corso di Laurea in Enologia e Viticoltura A.A , 26 ottobre 2015

I Compito in itinere di Matematica e Statistica per il Corso di Laurea in Enologia e Viticoltura A.A , 26 ottobre 2015 I Compito in itinere di Matematica e Statistica per il Corso di Laurea in Enologia e Viticoltura A.A. 205-206, 26 ottobre 205 Cognome: Nome: Matricola: CODICE = 838338 A B C D E 2 3 4 5 6 7 8 CODICE=838338

Dettagli

ESERCIZIO 1 Si considerino n v.c. Xi (i = 1,, n) tra loro indipendenti e somiglianti con media 10 e varianza 4. Si determini:

ESERCIZIO 1 Si considerino n v.c. Xi (i = 1,, n) tra loro indipendenti e somiglianti con media 10 e varianza 4. Si determini: ESERCIZIO 1 Si considerino n v.c. Xi (i = 1,, n) tra loro indipendenti e somiglianti con media 10 e varianza 4. Si determini: VALORE ATTESO Variabile casuale SOMMA delle n variabili Variabile casuale MEDIA

Dettagli

Statistica Metodologica

Statistica Metodologica Statistica Metodologica Esercizi di Probabilita e Inferenza Silvia Figini e-mail: silvia.figini@unipv.it Problema 1 Sia X una variabile aleatoria Bernoulliana con parametro p = 0.7. 1. Determinare la media

Dettagli

Esercizi di Ricapitolazione

Esercizi di Ricapitolazione Esercizio 1. Sono dati 150 g di una soluzione S 1 concentrata al 12%. (a) Determinare quanti grammi di soluto occorre aggiungere a S 1 per ottenere una nuova soluzione S 2 concentrata al 20%. (b) Determinare

Dettagli

Esercizi di Ricapitolazione

Esercizi di Ricapitolazione Esercizio 1. Sono dati 150g di una soluzione S 1 concentrata al 12%. (a) Determinare quanti grammi di soluto occorre aggiungere a S 1 per ottenere una nuova soluzione S 2 concentrata al 20%. (b) Determinare

Dettagli

Prova d esame di Matematica con Elementi di Statistica Laurea Triennale in Scienze Naturali. 18/02/2013

Prova d esame di Matematica con Elementi di Statistica Laurea Triennale in Scienze Naturali. 18/02/2013 Prova d esame di Matematica con Elementi di Statistica Laurea Triennale in Scienze Naturali. 8/02/203 COGNOME e NOME... N. MATRICOLA... Prima di uscire dall aula, CONSEGNARE QUESTI FOGLI indipendentemente

Dettagli

COGNOME... NOME... Matricola... II corso Prof. Camporesi. Esame di ANALISI MATEMATICA - 9 Settembre 2004

COGNOME... NOME... Matricola... II corso Prof. Camporesi. Esame di ANALISI MATEMATICA - 9 Settembre 2004 COGNOME... NOME... Matricola... II corso Prof. Camporesi Esame di ANALISI MATEMATICA - 9 Settembre 2004 A ESERCIZIO 1. (5 punti) 1. Risolvere in campo complesso l equazione z 5 + (1 + i)z = 0. 2. Dimostrare

Dettagli

A Politecnico di Torino II Facoltà di Architettura Esame di Istituzioni di Matematiche I 13 Gennaio 2009

A Politecnico di Torino II Facoltà di Architettura Esame di Istituzioni di Matematiche I 13 Gennaio 2009 A Esame di Istituzioni di Matematiche I 13 Gennaio 2009 Determinare l equazione del piano passante per il punto A = (2, 1, 3) e perpendicolare al vettore v dato da v = Au, dove A = 2 1 3 0 1 2, u = 1 3.

Dettagli

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica II del

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica II del Prova scritta di nalisi Matematica II del 12-06-2001. C1 1) Studiare la convergenza semplice, uniforme e totale della serie di funzioni seguente ( 1) [ n 2 ] n x 1 + n 2 x. n=0 2) Data la funzione (x 2

Dettagli

Prova d esame di Matematica con Elementi di Statistica Laurea Triennale in Scienze Naturali. 17/06/2013

Prova d esame di Matematica con Elementi di Statistica Laurea Triennale in Scienze Naturali. 17/06/2013 Prova d esame di Matematica con Elementi di Statistica Laurea Triennale in Scienze Naturali. 17/06/2013 COGNOME e NOME... N. MATRICOLA... Prima di uscire dall aula, CONSEGNARE QUESTI FOGLI indipendentemente

Dettagli

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica I del c.

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica I del c. Prova scritta di Analisi Matematica I del 22-5-2 - c. ) Provare che 3 3è irrazionale. 2) Provare che il grafico di f(x) =(x ) + 2 sin[(x ) ]:R \{} R ammette la retta di equazione x = come asintoto verticale.

Dettagli

ESERCIZIO 1. a) Calcolare il rendimento atteso del portafoglio:

ESERCIZIO 1. a) Calcolare il rendimento atteso del portafoglio: ESERCIZIO 1 Gastone investe i suoi risparmi in tre titoli (A: Paperone & Co; B: Rockerduck & Co; C: Bassotti & Co) quotati sul mercato di Paperopoli. La composizione percentuale del portafoglio di Gastone

Dettagli

{ x + 2y = 3 αx + 2y = 1 αx + y = 0. f(x) = e x 2 +3x+4 x 5. f(x) = x 3 e 7x.

{ x + 2y = 3 αx + 2y = 1 αx + y = 0. f(x) = e x 2 +3x+4 x 5. f(x) = x 3 e 7x. 0 Gennaio 006 Teoria: Definizione di derivata puntuale e suo significato geometrico Esercizio Determinare l equazione del piano contenente i vettori u = (,, 3 e v = (,, e passante per P o = (,, Scrivere

Dettagli

Esercizi di ricapitolazione

Esercizi di ricapitolazione Esercizio 1. Sono dati 150 g di una soluzione S 1 concentrata al 12%. (a) Determinare quanti grammi di soluto occorre aggiungere a S 1 per ottenere una nuova soluzione S 2 concentrata al 20%. (b) Determinare

Dettagli

Argomento 6: Derivate Esercizi. I Parte - Derivate

Argomento 6: Derivate Esercizi. I Parte - Derivate 6: Derivate Esercizi I Parte - Derivate E. 6.1 Calcolare le derivate delle seguenti funzioni: 1) log 5 3 + cos ) + 3 + 4 + 3 3) 5 tan 4) ( + 3e ) sin 5) arctan( + 1) 6) log 7) 10) + + 3 8) 3 3 1 + 16 11)

Dettagli

Analisi Matematica 1

Analisi Matematica 1 Michele Campiti Prove scritte di Analisi Matematica Ingegneria Industriale aa 28 29 y f g x La funzione seno e la funzione esponenziale Raccolta delle tracce di Analisi Matematica per Ingegneria Industriale,

Dettagli

Provetta scritta di Calcolo I Corsi di laurea in Fisica - Scienza e Tecnologia dei Materiali Prova scritta del 7/12/2005 Fila A

Provetta scritta di Calcolo I Corsi di laurea in Fisica - Scienza e Tecnologia dei Materiali Prova scritta del 7/12/2005 Fila A Provetta scritta di Calcolo I Prova scritta del 7/2/25 Fila A ) Calcolare i limiti 3 x 3 x 4 ; b) lim sin(2x) + x2 x( cos(3x)) c) lim + 5 x 7 x 4 x 2 + x. 2) Determinare il massimo di x 3 (2 + x 4 ) 3/2,

Dettagli

; c) log 3 5 (x 2 1) log 5 (x + 1). 1 log(x + 4) ; c) f(x) =

; c) log 3 5 (x 2 1) log 5 (x + 1). 1 log(x + 4) ; c) f(x) = Corso di Analisi Matematica I per Ingegneria Gestionale, a.a. 25-6 Esercizi per il ricevimento del 3 ottobre 25. Semplificare il più possibile le seguenti espressioni: a) 32x+4 9 ; b) x3 x 2 x+ ( x) 4

Dettagli

Statistica. Capitolo 10. Verifica di Ipotesi su una Singola Popolazione. Cap. 10-1

Statistica. Capitolo 10. Verifica di Ipotesi su una Singola Popolazione. Cap. 10-1 Statistica Capitolo 1 Verifica di Ipotesi su una Singola Popolazione Cap. 1-1 Obiettivi del Capitolo Dopo aver completato il capitolo, sarete in grado di: Formulare ipotesi nulla ed ipotesi alternativa

Dettagli

1. Riconoscere la natura delle coniche rappresentate dalle seguenti equazioni e disegnarle:

1. Riconoscere la natura delle coniche rappresentate dalle seguenti equazioni e disegnarle: Università degli Studi della Basilicata Corsi di Laurea in Chimica / Scienze Geologiche Matematica II A. A. 204-205 (dott.ssa Vita Leonessa) Esercizi proposti n. 3: Funzioni a due variabili. Riconoscere

Dettagli

II Esonero - Testo B

II Esonero - Testo B Dip. di Ingegneria, Univ. Roma Tre Prof. E. Scoppola, Dott.M. Quattropani Probabilità e Statistica, 2017-18, I semestre 29 Gennaio 2018 II Esonero - Testo B Cognome Nome Matricola Esercizio 1. (20%) Si

Dettagli

STATISTICA A K (60 ore)

STATISTICA A K (60 ore) STATISTICA A K (60 ore) Marco Riani mriani@unipr.it http://www.riani.it In una prova sul carico di rottura di due tipi di corda si dispone di 2 campioni di ampiezza 26 e 35 rispettivamente. Nel primo campione

Dettagli

Prova d esame di Matematica con Elementi di Statistica Laurea Triennale in Scienze Naturali. 8/07/2013

Prova d esame di Matematica con Elementi di Statistica Laurea Triennale in Scienze Naturali. 8/07/2013 Prova d esame di Matematica con Elementi di Statistica Laurea Triennale in Scienze Naturali. 8/07/2013 COGNOME e NOME... N. MATRICOLA... Prima di uscire dall aula, CONSEGNARE QUESTI FOGLI indipendentemente

Dettagli

Corso di Laurea in Ingegneria Informatica Anno Accademico 2012/2013 Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Anno Accademico 2012/2013 Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Anno Accademico 2012/2013 Analisi Matematica 1 Nome... N. Matricola... Ancona, 12 gennaio 2013 1. Sono dati i numeri complessi z 1 = 1 + i; z 2 = 2 3 i; z 3 =

Dettagli

CORSI DI LAUREA IN MATEMATICA E FISICA UNIVERSITÀ DEL SALENTO Prova parziale di ANALISI MATEMATICA I - 15/11/2017 Prova A

CORSI DI LAUREA IN MATEMATICA E FISICA UNIVERSITÀ DEL SALENTO Prova parziale di ANALISI MATEMATICA I - 15/11/2017 Prova A Prova parziale di ANALISI MATEMATICA I - 5//207 Prova A da Si studino l insieme di definizione ed il segno della funzione definita fx) = log 2 ) 2 sinx3 cos x+5) + arctan 3 x 3 x + π 4 ) 2 Si risolva la

Dettagli

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 6 giugno 2017 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.

Dettagli

ESERCITAZIONE 21 : VARIABILI ALEATORIE CONTINUE

ESERCITAZIONE 21 : VARIABILI ALEATORIE CONTINUE ESERCITAZIONE 21 : VARIABILI ALEATORIE CONTINUE e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: su appuntamento Dipartimento di Matematica, piano terra, studio 114 7 Maggio 2013 Esercizio

Dettagli

Corso di Laurea in Ingegneria Edile Prova scritta dell esame di Analisi Matematica I (M-Z).C

Corso di Laurea in Ingegneria Edile Prova scritta dell esame di Analisi Matematica I (M-Z).C Analisi Matematica I (M-Z).C1 08-0-1997 1) Data la funzione h(x) = x log(x + 1 + x + x + ) + log(1 + ) determinarne il dominio D. Provare poi che h(x) > 0 x D ]0, + [, h(x) = 0 x = 0. ) Utilizzando i risultati

Dettagli

1. (4 punti) Calcolare i seguenti limiti: (a) lim. n arctan( n (log n)2 n. Assegnata la funzione f(x) = (3x + 1) e 1

1. (4 punti) Calcolare i seguenti limiti: (a) lim. n arctan( n (log n)2 n. Assegnata la funzione f(x) = (3x + 1) e 1 Matematica, 2 CFU Corso di laurea in Scienze Biologiche- A.A. 2009-200 Laurea Triennale-Corsi A e C 9 Febbraio 200- COMPITO - Totale punti 40, punteggio minimo 24 Nome Cognome. (4 punti) Calcolare i seguenti

Dettagli

Esercizi Analisi 1. Foglio 1-19/09/2018. n(n + 1)(2n + 1) 6. (3k(k 1) + 1) = n 3. a n = 1 + a k

Esercizi Analisi 1. Foglio 1-19/09/2018. n(n + 1)(2n + 1) 6. (3k(k 1) + 1) = n 3. a n = 1 + a k Esercizi Analisi Foglio - 9/09/208 Dimostrare che per ogni a, b e per ogni n N si ha: n a n b n = (a b) a n j b j j= Dimostrare che per ogni n N si ha: n j 2 = j= n(n + )(2n + ) 6 Dimostrare che per ogni

Dettagli

Analisi I Ingegneria Chimica e Aerospaziale 1 o compitino

Analisi I Ingegneria Chimica e Aerospaziale 1 o compitino 1 o compitino 1 febbraio 215 1 Si consideri la funzione f : R R definita da { f) = 2 log se se = a) Si dimostri che f è continua e derivabile su tutto R b) Si dica se f ammette derivata seconda in ogni

Dettagli

UNIVERSITÀ DEGLI STUDI DI PERUGIA Facoltà di Scienze MM. FF. e NN.

UNIVERSITÀ DEGLI STUDI DI PERUGIA Facoltà di Scienze MM. FF. e NN. Corso di Matematica per le Applicazioni - Canale B Laurea Triennale in Biotecnologie A.A. 2011/2012 16 Dicembre 2011 I esercitazione Esercizio 1. Stabilire il dominio delle seguenti funzioni f 1 (x) =

Dettagli

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a Michele Campiti Prove scritte di Analisi Matematica 2 Ingegneria Industriale a.a. 20 202 Grafico della funzione f(x, y) := sin(2x 2 y) cos(x 2y 2 ) in [ π/2, π/2] 2 Raccolta delle tracce di Analisi Matematica

Dettagli

Esercizi Biostatistica

Esercizi Biostatistica Esercizi Biostatistica Esercizio 1. Si supponga che la media e la deviazione standard del colesterolo in individui sani tra i 18 e i 25 anni valgano, rispettivamente, 150 e 25. Calcolare la probabilità

Dettagli

ESAME. 9 Gennaio 2017 COMPITO A

ESAME. 9 Gennaio 2017 COMPITO A ESAME 9 Gennaio 2017 COMPITO A Cognome Nome Numero di matricola 1) Approssimare tutti i calcoli alla quarta cifra decimale. 2) Ai fini della valutazione si terrà conto solo ed esclusivamente di quanto

Dettagli

COGNOME... NOME... Matricola... Prof. Camporesi

COGNOME... NOME... Matricola... Prof. Camporesi COGNOME... NOME... Matricola... Prof. Camporesi Esame di ANALISI MATEMATICA - 3 Febbraio 2010 A ESERCIZIO 1. (5 punti) 1. Verificare che z = 1 è una radice del polinomio P (z) = z 3 + ( 3 + 2i)z 2 + (2

Dettagli

CORSI DI LAUREA IN MATEMATICA E FISICA UNIVERSITÀ DEL SALENTO Prova scritta di ANALISI MATEMATICA I - 22/01/2018

CORSI DI LAUREA IN MATEMATICA E FISICA UNIVERSITÀ DEL SALENTO Prova scritta di ANALISI MATEMATICA I - 22/01/2018 Prova scritta di ANALISI MATEMATICA I - 22/0/208 Studiare la funzione definita da fx) = x + x 2 2 Calcolare, se esiste, il ite sin3x) x cos3x) 2x x 0 log 4 + sin cos x) x ) 3 Calcolare log 2 xdx 4 Si risolva

Dettagli

Corso di Laurea in Farmacia Modulo di Matematica ed Informatica, 3 giugno Giustificare adeguatamente le soluzioni dei seguenti esercizi

Corso di Laurea in Farmacia Modulo di Matematica ed Informatica, 3 giugno Giustificare adeguatamente le soluzioni dei seguenti esercizi Modulo di Matematica ed Informatica, 3 giugno 204 Si sono registrati i battiti cardiaci al minuto ad una persona, una volta al giorno per 20 giorni. Si sono ottenuti i seguenti dati: 66, 69, 7, 68, 66,

Dettagli

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica II del c.1.

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica II del c.1. Prova scritta di Analisi Matematica II del 14-07-1999 - c.1 1) Sia (d n ) una successione di numeri reali tali che inf d n > 0. Studiare il carattere della serie + n=1 al variare del parametro reale positivo

Dettagli

Temi d esame di Analisi Matematica 1

Temi d esame di Analisi Matematica 1 Temi d esame di Analisi Matematica 1 Area di Ingegneria dell Informazione - a cura di M. Bardi 31.1.95 f(x) = xe arctan 1 x (insieme di definizione, segno, iti ed asintoti, continuità e derivabilità, crescenza

Dettagli

Esonero di Analisi Matematica (A)

Esonero di Analisi Matematica (A) Esonero di Analisi Matematica (A) Ingegneria Civile, 26 novembre 2001 () 1. Studiare il seguente limite: lim x x + ( e 1/x cos 1 ). x 2. Studiare gli eventuali massimi e minimi relativi ed assoluti della

Dettagli

Approssimazione normale alla distribuzione binomiale

Approssimazione normale alla distribuzione binomiale Approssimazione normale alla distribuzione binomiale P b (X r) costoso P b (X r) P(X r) per N grande Teorema: Se la variabile casuale X ha una distribuzione binomiale con parametri N e p, allora, per N

Dettagli

CODICE= Compiti di Analisi Matematica II per il Corso di Laurea in Ingegneria Edile A.A , Appelli 1, 2, 3 e 4

CODICE= Compiti di Analisi Matematica II per il Corso di Laurea in Ingegneria Edile A.A , Appelli 1, 2, 3 e 4 Compiti di Analisi Matematica II per il Corso di Laurea in Ingegneria Edile A.A. 00-0, Appelli,, 3 e 4 Cognome: Nome: Matricola: CODICE = 33877 A B C D E 3 4 5 6 7 8 9 CODICE=33877 PARTE A. Lo sviluppo

Dettagli

Prova d esame di Matematica con Elementi di Statistica Laurea Triennale in Scienze Naturali. 18/09/2013

Prova d esame di Matematica con Elementi di Statistica Laurea Triennale in Scienze Naturali. 18/09/2013 Prova d esame di Matematica con Elementi di Statistica Laurea Triennale in Scienze Naturali. 18/09/013 COGNOME e NOME... N. MATRICOLA... Prima di uscire dall aula, CONSEGNARE QUESTI FOGLI indipendentemente

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica ST410 - Statistica 1 - A.A. 2014/2015 Appello B - 5 Febbraio 2015

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica ST410 - Statistica 1 - A.A. 2014/2015 Appello B - 5 Febbraio 2015 UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica ST410 - Statistica 1 - A.A. 2014/2015 Appello B - 5 Febbraio 2015 1 2 3 4 5 6 7 Tot. Avvertenza: Svolgere ogni esercizio nello spazio assegnato,

Dettagli

Esame di MATEMATICA CORSO BASE del

Esame di MATEMATICA CORSO BASE del Esame di MATEMATICA CORSO BASE del Cognome Matricola Nome Esercizio 1. Si consideri il seguente sistema 2x 3y + z =5 x ky +2z = k kx y z = 1 Si trovino il numero delle soluzioni al variare del parametro

Dettagli

Intervalli di confidenza

Intervalli di confidenza Probabilità e Statistica Esercitazioni a.a. 2009/2010 C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica Intervalli di confidenza Ines Campa Probabilità e Statistica - Esercitazioni

Dettagli

Esercitazioni di Statistica Metodologica

Esercitazioni di Statistica Metodologica Esercitazioni di Statistica Metodologica June 22, 2009 1 Esercizio La compagnia di telefonia fissa Happy Line ha svolto una indagine sul numero di telefonate effettuate dai suoi clienti la settimana scorsa.

Dettagli

Equazioni differenziali del II ordine. y 5y + 6y = 0 y(0) = 0 y (0) = 1

Equazioni differenziali del II ordine. y 5y + 6y = 0 y(0) = 0 y (0) = 1 Equazioni differenziali del II ordine 1. Risolvere il seguente problema di Cauchy: y 5y + 6y = 0 y (0) = 1. Determinare l integrale generale della seguente equazione differenziale: y 5y + 6y = f(x), con

Dettagli

UNIVERSITÀ DEGLI STUDI DI PERUGIA Corso di Analisi Matematica III - 9 CFU C.d.S. Triennale in Matematica A.A. 2016/2017 I Esercitazione 12 Aprile 2017

UNIVERSITÀ DEGLI STUDI DI PERUGIA Corso di Analisi Matematica III - 9 CFU C.d.S. Triennale in Matematica A.A. 2016/2017 I Esercitazione 12 Aprile 2017 C.d.S. Triennale in Matematica A.A. 2016/2017 I Esercitazione 12 Aprile 2017 Esercizio 1. Data la successione di funzioni f n t = en1+t4 + e nt2 n 3 + e, t R, n1+t2 a determinare l insieme di convergenza

Dettagli

Corso di Laurea in Enologia e Viticoltura Prova di Matematica e Statistica 20 Dicembre 2013

Corso di Laurea in Enologia e Viticoltura Prova di Matematica e Statistica 20 Dicembre 2013 Corso di Laurea in Enologia e Viticoltura Prova di Matematica e Statistica 20 Dicembre 2013 1. Tracciare un grafico qualitativo (il più dettagliato possibile) della funzione f(x) = x 2 logx 2. In particolare

Dettagli

Distribuzione normale

Distribuzione normale Distribuzione normale istogramma delle frequenze di un insieme di misure relative a una grandezza che varia con continuità popolazione molto numerosa, costituita da una quantità praticamente illimitata

Dettagli

ESAME. 9 Gennaio 2017 COMPITO B

ESAME. 9 Gennaio 2017 COMPITO B ESAME 9 Gennaio 2017 COMPITO B Cognome Nome Numero di matricola 1) Approssimare tutti i calcoli alla quarta cifra decimale. 2) Ai fini della valutazione si terrà conto solo ed esclusivamente di quanto

Dettagli

Compito 14 Gennaio 2010, versione A. DOMANDA DI STATISTICA È stato lanciato 20 volte un dado, dando la seguente serie di dati statistici

Compito 14 Gennaio 2010, versione A. DOMANDA DI STATISTICA È stato lanciato 20 volte un dado, dando la seguente serie di dati statistici Compito 14 Gennaio 2010, versione A È stato lanciato 20 volte un dado, dando la seguente serie di dati statistici {2, 6, 4, 3, 4, 5, 1, 1, 3, 4, 6, 5, 3, 6, 1, 2, 3, 6, 2, 3} Rappresentare la serie tramite

Dettagli

Corso di laurea in ingegneria gestionale a.a. 2015/2016 Tutor: Andrea Bendinelli

Corso di laurea in ingegneria gestionale a.a. 2015/2016 Tutor: Andrea Bendinelli Corso di analisi matematica I 12 c.f.u. Facoltà di ingegneria dell'informazione, informatica e statistica Corso di laurea in ingegneria gestionale a.a. 2015/2016 Tutor: Andrea Bendinelli 1 Indice I Esercitazione

Dettagli

Prova scritta di Analisi Matematica T-B, Ingegneria Meccanica, 17/06/2014

Prova scritta di Analisi Matematica T-B, Ingegneria Meccanica, 17/06/2014 Prova scritta di Analisi Matematica T-B, Ingegneria Meccanica, 17/06/2014 MATRICOLA:...NOME e COGNOME:............................................. Desidero sostenere la prova orale al prossimo appello

Dettagli

Distribuzione Normale

Distribuzione Normale Distribuzione Normale istogramma delle frequenze di un insieme di misure di una grandezza che può variare con continuità popolazione molto numerosa, costituita da una quantità praticamente illimitata di

Dettagli

Corso: Calcolo e Biostatistica- Sc. Biologiche - AA Esercizi in preparazione della seconda prova di esonero

Corso: Calcolo e Biostatistica- Sc. Biologiche - AA Esercizi in preparazione della seconda prova di esonero Corso: Calcolo e Biostatistica- Sc. Biologiche - AA 1-13 Esercizi in preparazione della seconda prova di esonero N.B. Sono inclusi anche esercizi già svolti alla lavagna durante le lezioni, a beneficio

Dettagli

UNIVERSITÀ DEGLI STUDI DI PERUGIA

UNIVERSITÀ DEGLI STUDI DI PERUGIA SIGI, Statistica II, esercitazione n. 3 1 UNIVERSITÀ DEGLI STUDI DI PERUGIA FACOLTÀ DI ECONOMIA CORSO DI LAUREA S.I.G.I. STATISTICA II Esercitazione n. 3 Esercizio 1 Una v.c. X si dice v.c. esponenziale

Dettagli

Politecnico di Torino II Facoltà di Architettura Esame di Istituzioni di Matematiche I 15 gennaio 2004

Politecnico di Torino II Facoltà di Architettura Esame di Istituzioni di Matematiche I 15 gennaio 2004 Esame di Istituzioni di Matematiche I 5 gennaio 2004 Monaco 02BJVa W0034 60 De ngelis 02BJVb W003 630 Pieraccini 0BJU Biglio 03BJV Esame completo Prova intermedia Teoria: teoremi sulle funzioni continue.

Dettagli

Informatica. Prova in itinere del giorno di. Formazione Analitica.C1. n + 1 4n + 3 = 1 2. lim. lim 3n n n (4n)! (2n)! [(n + 2)!

Informatica. Prova in itinere del giorno di. Formazione Analitica.C1. n + 1 4n + 3 = 1 2. lim. lim 3n n n (4n)! (2n)! [(n + 2)! Prova in itinere del giorno 28-11-2003 di Formazione Analitica.C1 1) Provare che n k=2 log (1 1k ) 2 = log n + 1 2n n N 2) Provare, utilizzando la definizione di ite, che n + 1 4n + 3 = 1 2 3) Calcolare

Dettagli

MATEMATICA E STATISTICA CORSO A III COMPITINO 20 Marzo 2009

MATEMATICA E STATISTICA CORSO A III COMPITINO 20 Marzo 2009 MATEMATICA E STATISTICA CORSO A III COMPITINO Marzo 9 SOLUZIONI. () Sia X una variabile aleatoria binomiale con valor medio uguale a 5/; la varianza di X può valere? Giustificare la risposta. Il valor

Dettagli

PROBABILITÀ E STATISTICA - 23 Giugno 2017 Scrivere le risposte negli appositi spazi. Motivare dettagliatamente le risposte su fogli allegati

PROBABILITÀ E STATISTICA - 23 Giugno 2017 Scrivere le risposte negli appositi spazi. Motivare dettagliatamente le risposte su fogli allegati PROBABILITÀ E STATISTICA - 23 Giugno 2017 Scrivere le risposte negli appositi spazi. Motivare dettagliatamente le risposte su fogli allegati 1. - Un urna contiene 2 palline bianche e 28 nere; da essa vengono

Dettagli

Università di Pisa Geometria e Algebra Lineare per Ingegneria Aerospaziale, Ingegneria Meccanica, Ingegneria della Sicurezza

Università di Pisa Geometria e Algebra Lineare per Ingegneria Aerospaziale, Ingegneria Meccanica, Ingegneria della Sicurezza Scritto n.1 del 2010 Esercizio 1. Discutere il seguente sistema reale h x + y + h z = h 2 x + (1 h) z = 3 h 2 h x + y + h z = h h 2 Esercizio 2. Risolvere exp 2 z + ( 1 + i 3) expz + z ( exp 2 z + ( 1

Dettagli

Problema 1. Cognome, Nome: Facoltà di Economia Statistica Esame 1-20/01/2010: A. Matricola: Corso:

Problema 1. Cognome, Nome: Facoltà di Economia Statistica Esame 1-20/01/2010: A. Matricola: Corso: Facoltà di Economia Statistica Esame 1-20/01/2010: A Cognome, Nome: Matricola: Corso: Problema 1. Su 10 imprese è stato rilevato l utile netto dell ultimo triennio espresso in milioni di euro. Il risultato

Dettagli

Corso di laurea in Scienze Biologiche Compito di Istituzioni di Matematiche assegnato il 16 giugno 1999

Corso di laurea in Scienze Biologiche Compito di Istituzioni di Matematiche assegnato il 16 giugno 1999 assegnato il 16 giugno 1999 16 2 x+7 x 2 + 3x 4 + (2x + 1)2 2 Scrivere l equazione della circonferenza passante per i punti A = (0, 2), B = (0, 10) e tangente alla retta r di equazione x 8 = 0 3 Sia f

Dettagli

Analisi Matematica 2 Ingegneria Gestionale Docenti: B. Rubino e R. Sampalmieri L Aquila, 21 marzo 2005

Analisi Matematica 2 Ingegneria Gestionale Docenti: B. Rubino e R. Sampalmieri L Aquila, 21 marzo 2005 Analisi Matematica 2 Ingegneria Gestionale Docenti: B. Rubino e R. Sampalmieri L Aquila, 21 marzo 2005 Prova orale il: Docente: Determinare, se esistono, il massimo ed il minimo assoluto della funzione

Dettagli

Laurea triennale in Informatica Corso di Analisi matematica (A) a.a. 2007/08 9 giugno 2008

Laurea triennale in Informatica Corso di Analisi matematica (A) a.a. 2007/08 9 giugno 2008 9 giugno 2008 1. Data la funzione f(x) = x e 1/(x2 4), (c) stabilire se f ammette punti singolari e in caso affermativo classificarli; calcolare la derivata prima di f e utilizzarla per studiare la monotonia

Dettagli

Università degli studi di Udine - Sede di Pordenone

Università degli studi di Udine - Sede di Pordenone Università degli studi di Udine - Sede di Pordenone Facoltà di Scienze della Formazione - Corso di Corso di Matematica e Statistica Tema d esame AA2009/2010-27 gennaio 2010 Esercizio 1a Esplicitare la

Dettagli

Primo compito preliminare di Matematica I FILA 1 A.A.2011/2012 C.d.L. in Chimica 8 Novembre 2011 Prof. Elena Comparini, Dott.

Primo compito preliminare di Matematica I FILA 1 A.A.2011/2012 C.d.L. in Chimica 8 Novembre 2011 Prof. Elena Comparini, Dott. Primo compito preinare di Matematica I FILA 1 AA2011/2012 CdL in Chimica 8 Novembre 2011 ( ) 3 3i 1 i Facoltativo: determinare modulo e argomento delle radici quadrate del numero trovato Esercizio 2 Calcolare

Dettagli

ARGOMENTI MATEMATICA PER L INGEGNERIA

ARGOMENTI MATEMATICA PER L INGEGNERIA ARGOMENTI DI MATEMATICA PER L INGEGNERIA VOLUME 2 Esercizi proposti Quando non diversamente precisato, nel seguito si intenderà( sempre che nel piano sia stato introdotto un sistema cartesiano ortogonale

Dettagli

Esercitazione n. 3 - Corso di STATISTICA - Università della Basilicata - a.a. 2011/12 Prof. Roberta Siciliano

Esercitazione n. 3 - Corso di STATISTICA - Università della Basilicata - a.a. 2011/12 Prof. Roberta Siciliano Esercitazione n. 3 - Corso di STATISTICA - Università della Basilicata - a.a. 2011/12 Prof. Roberta Siciliano Esercizio 1 Una moneta viene lanciata 6 volte. Calcolare a) La probabilità che escano esattamente

Dettagli

Distribuzione Normale

Distribuzione Normale Distribuzione Normale istogramma delle frequenze di un insieme di misure di una grandezza che può variare con continuità popolazione molto numerosa, costituita da una quantità praticamente illimitata di

Dettagli

Gruppo esercizi 1: Dominio [E.1] Disegnare nel piano cartesiano il dominio della funzione

Gruppo esercizi 1: Dominio [E.1] Disegnare nel piano cartesiano il dominio della funzione Gruppo esercizi 1: Dominio [E.1] Disegnare nel piano cartesiano il dominio della funzione [E.2] Disegnare nel piano cartesiano il dominio della funzione ( 4 x 2 y 2) ) (1 x 2 y2 y + x 2. 4 1 y ex y y x

Dettagli

Matematica, 12 CFU. Corso di laurea in Scienze Biologiche- A.A Laurea Triennale

Matematica, 12 CFU. Corso di laurea in Scienze Biologiche- A.A Laurea Triennale Matematica, 2 CFU Corso di laurea in Scienze Biologiche- A.A. 2009-200 Laurea Triennale 4 Febbraio 200- COMPITO - Totale punti 40, punteggio minimo 24 Nome Cognome. (4 punti) Calcolare i seguenti limiti:

Dettagli

MATEMATICA CORSO A II APPELLO 21 Luglio 2011

MATEMATICA CORSO A II APPELLO 21 Luglio 2011 MATEMATICA CORSO A II APPELLO 21 Luglio 2011 Soluzioni 1. Da un indagine statistica su un campione di 100 coppie è emersa la seguente tabella di frequenza del numero di figli: NUMERO FIGLI 0 1 2 3 4 5

Dettagli

Esame di MATEMATICA CORSO BASE del

Esame di MATEMATICA CORSO BASE del Esame di MATEMATICA CORSO BASE del Cognome Matricola Nome Esercizio. Si consideri il seguente sistema x 3y + z =5 x ky +z = k kx y z = Si trovino il numero delle soluzioni al variare del parametro k e

Dettagli

1) D0MINIO. x x 4x + 3 Determinare il dominio della funzione f (x) = x Deve essere

1) D0MINIO. x x 4x + 3 Determinare il dominio della funzione f (x) = x Deve essere ) DMINIO + 3 Determinare il dominio della funzione f ) + 3 Deve essere Ovviamente, inoltre: se > + 3 ) 3) quindi < o 3 se < + 3, + 3 quindi 7 Determinare il dominio della funzione f ) + 5 Deve essere +

Dettagli

Statistica inferenziale, Varese, 18 novembre 2009 Prima parte - Modalità D

Statistica inferenziale, Varese, 18 novembre 2009 Prima parte - Modalità D Statistica inferenziale, Varese, 18 novembre 2009 Prima parte - Modalità D Cognome Nome: Part time: Numero di matricola: Diurno: ISTRUZIONI: Il punteggio relativo alla prima parte dell esame viene calcolato

Dettagli

Statistica inferenziale, Varese, 18 novembre 2009 Prima parte - Modalità B

Statistica inferenziale, Varese, 18 novembre 2009 Prima parte - Modalità B Statistica inferenziale, Varese, 18 novembre 2009 Prima parte - Modalità B Cognome Nome: Part time: Numero di matricola: Diurno: ISTRUZIONI: Il punteggio relativo alla prima parte dell esame viene calcolato

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prova d Esame (26/07/2010) Università di Verona - Laurea in Biotecnologie - A.A. 2009/10 1 Matematica e Statistica Prova d Esame di MATEMATICA (26/07/2010) Università di Verona

Dettagli

PER LA COMMISSIONE D ESAME 1E 2E 3E 4E 5E Totale

PER LA COMMISSIONE D ESAME 1E 2E 3E 4E 5E Totale Esame di Analisi Matematica Uno 31 Gennaio 2014 Fila: A 1 Università di Padova - Scuola di Ingegneria - Esame di Analisi Matematica Uno Lauree: Chimica e Materiali 31 Gennaio 2014 (Primo appello, a.a.

Dettagli

Intervalli di confidenza

Intervalli di confidenza Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile

Dettagli

UNIVERSITÀ DEGLI STUDI DI PERUGIA Facoltà di Scienze MM. FF. e NN.

UNIVERSITÀ DEGLI STUDI DI PERUGIA Facoltà di Scienze MM. FF. e NN. A.A. 2010/2011 29 Novembre 2010 I esercitazione Esercizio 1. Dato il problema di Cauchy y = (y2 4) arctan(1 y 2 ) 1 + y (1) 2 + log(1 + e x2 1 ), y(0) = 0, (b) provare che la soluzione y di (5) è definita

Dettagli

UNIVERSITÀ DEGLI STUDI DI PERUGIA Facoltà di Scienze MM. FF. e NN.

UNIVERSITÀ DEGLI STUDI DI PERUGIA Facoltà di Scienze MM. FF. e NN. A.A. 213/214 2 Novembre 213 I esercitazione Esercizio 1. Dato il problema di Cauchy ( e y 2 2 1 ) arctan 3y 5 y = 2 sin (1) 2 x 2, 1 + x 2 y() = 1, (b) provare che la soluzione y di (3) è definita in tutto

Dettagli

Esame di Statistica (10 o 12 CFU) CLEF 11 febbraio 2016

Esame di Statistica (10 o 12 CFU) CLEF 11 febbraio 2016 Esame di Statistica 0 o CFU) CLEF febbraio 06 Esercizio Si considerino i seguenti dati, relativi a 00 clienti di una banca a cui è stato concesso un prestito, classificati per età e per esito dell operazione

Dettagli

Probabilità e Statistica

Probabilità e Statistica Probabilità e Statistica Intervalli di confidenza Marco Pietro Longhi C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica a.s. 2018/2019 Marco Pietro Longhi Prob. e Stat. 1

Dettagli

ESERCIZI SULLE EQUAZIONI DIFFERENZIALI

ESERCIZI SULLE EQUAZIONI DIFFERENZIALI ESERCII SULLE EQUAIONI DIFFERENIALI PRIMA PARTE VALENTINA CASARINO Esercizi per il corso di Fondamenti di Analisi Matematica 2, (Ingegneria Gestionale, dell Innovazione del Prodotto, Meccanica e Meccatronica,

Dettagli

x = t y = t z = t 3 1 A = B = 1 2

x = t y = t z = t 3 1 A = B = 1 2 11/1/05 Teoria: Enunciare e discutere il teorema di Lagrange. Esercizio 1. Determinare l equazione cartesiana del piano passante per P 0 = (1,, 1) e contenente i vettori u = (,, ) e v = (1, 5, 4). Risposta

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica ST410 - Statistica 1 - A.A. 2014/2015 II Esonero - 15 Gennaio 2015

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica ST410 - Statistica 1 - A.A. 2014/2015 II Esonero - 15 Gennaio 2015 UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica ST410 - Statistica 1 - A.A. 014/015 II Esonero - 15 Gennaio 015 1 3 4 5 6 Tot. Avvertenza: Svolgere ogni esercizio nello spazio assegnato,

Dettagli

Matematica, 12 CFU, Corso di laurea in Scienze Biologiche- A.A Laurea Triennale

Matematica, 12 CFU, Corso di laurea in Scienze Biologiche- A.A Laurea Triennale Matematica, CFU, Corso di laurea in Scienze Biologiche- A.A. 009-00 Laurea Triennale Luglio 00- COMPITO - Totale punti 40, punteggio minimo 4 Nome Cognome. (4 punti) Calcolare i seguenti limiti: (a) lim

Dettagli

Politecnico di Torino II Facoltà di Architettura - 5 Luglio 2011 Esercizio 1. Sono date le matrici 2 1, B = 1 4

Politecnico di Torino II Facoltà di Architettura - 5 Luglio 2011 Esercizio 1. Sono date le matrici 2 1, B = 1 4 A Politecnico di Torino II Facoltà di Architettura - 5 Luglio 20 Esercizio. Sono date le matrici A = ( ) 2, B = 4 ( ). 2 a) Calcolare la matrice A. b) Enunciare ed applicare la regola di Cramer per determinare

Dettagli

Laboratorio di Didattica di elaborazione dati 5 STIMA PUNTUALE DEI PARAMETRI. x i. SE = n.

Laboratorio di Didattica di elaborazione dati 5 STIMA PUNTUALE DEI PARAMETRI. x i. SE = n. 5 STIMA PUNTUALE DEI PARAMETRI [Adattato dal libro Excel per la statistica di Enzo Belluco] Sia θ un parametro incognito della distribuzione di un carattere in una determinata popolazione. Il problema

Dettagli

Determinare per quali valori del parametro a il seguente sistema ha soluzioni.

Determinare per quali valori del parametro a il seguente sistema ha soluzioni. Determinare per quali valori del parametro a il seguente sistema ha soluzioni. x + y + z = 3 x + 2y z = 2 + a x + 3y 3z = 7 2) Determinare il valore massimo assunto dalla funzione: f(x, y) = xy2 x sul

Dettagli

Esercizi per il corso di Algebra e Geometria L.

Esercizi per il corso di Algebra e Geometria L. Esercizi per il corso di Algebra e Geometria L AA 2006/2007 1 Foglio 1 In tutti gli esercizi che seguiranno lo spazio ambiente sarà il piano cartesiano a valori nel campo dei numeri reali, dove supporremo

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 018-019 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per la

Dettagli